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Abstract

In this paper, we address the detection of daily liv-
ing activities in long-term untrimmed videos. The detec-
tion of daily living activities is challenging due to their
long temporal components, low inter-class variation and
high intra-class variation. To tackle these challenges, re-
cent approaches based on Temporal Convolutional Net-
works (TCNs) have been proposed. Such methods can
capture long-term temporal patterns using a hierarchy of
temporal convolutional filters, pooling and up sampling
steps. However, as one of the important features of con-
volutional networks, TCNs process a local neighborhood
across time which leads to inefficiency in modeling the
long-range dependencies between these temporal patterns
of the video. In this paper, we propose Self-Attention -
Temporal Convolutional Network (SA-TCN), which is able
to capture both complex activity patterns and their depen-
dencies within long-term untrimmed videos. We evaluate
our proposed model on DAily Home LIfe Activity Dataset
(DAHLIA) and Breakfast datasets. Our proposed method
achieves state-of-the-art performance on both DAHLIA and
Breakfast dataset.

1. Introduction
Detecting activities in untrimmed videos has been a

long-studied task in computer vision. Its performance
impacts domains such as health-care, assistive robotics,
and video surveillance. With the impressive success of
Convolutional Neural Networks (CNNs), activity recogni-
tion techniques have achieved high performance on many
trimmed video datasets [28, 19]. However, most videos in
real world scenarios are untrimmed. They may contain mul-
tiple activities at the same time and the range of duration is
essentially limitless. In addition, often a large number of
frames are background and consequently hardly usable to

Figure 1. Overview of SA-TCN framework. The system contains
5 main parts: (1) visual encoder, (2) temporal encoder, (3) self-
attention block, (4) temporal decoder and (5) prediction classifier.

detect target activities. Therefore, the task of finding both
where and what are the activities in untrimmed videos is
extremely challenging. In our work, we focus on activities
of daily living (ADL). Due to their low inter-class varia-
tion, high intra-class variation and long temporal duration,
activity detection techniques for ADL video datasets need
a higher capacity of capturing complex long-term temporal
patterns.

Some existing state-of-the-art methods address this task
by using sliding window approaches [31, 16]. Generally,
these methods use a classifier trained on trimmed videos. At
test time though, a sliding window extracts video segments
that are then labelled by the classifier. Some approaches
implement further post-processing filters to improve per-
formance. Due to the balance between window size and
computational cost, these methods can achieve high perfor-
mance on short-term videos but tend to struggle on longer
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video sequences.
Following the recent advances of Recurrent Neural Net-

works (RNNs) in processing sequence data, numerous ap-
proaches are using RNN-based model to do activity detec-
tion [2, 22]. Memory cells help RNNs capture temporal in-
formation from video sequences [10], while forgetting cells
drop information that is irrelevant for the long-term encod-
ing. Therefore, RNNs can only capture a limited amount of
temporal context in video, which is not suitable to process
long-term data.

Temporal Convolutional Networks (TCNs) use 1D con-
volutions and are another way to compute features encoded
across time. Contrary to RNN-based methods, TCN com-
putations are performed layer-wise: that means that at ev-
ery time-step its weights are updated simultaneously, which
allows TCN to process long-term sequences. There have
been already several applications of TCN in activity detec-
tion [13, 6]. However, recent studies focus on short-term ac-
tivity datasets as [24, 7], where the mean activity duration is
less than 30 second. This cannot be straightforwardly gen-
eralized to ADL datasets, where activities can last several
minutes [26]. Because of the limited receptive field of CNN
kernels, TCNs still have limitations when dealing with de-
pendencies between long-range patterns in video. As a re-
sult, we introduce Self-Attention - Temporal Convolutional
Network(SA-TCN), which is a TCN-based model embed-
ded with temporal self-attention block. This block extracts
a global temporal attention mask from the hidden represen-
tation laying between encoder and decoder. Fig. 1 shows an
overview of our proposed network. Thanks to TCN struc-
ture and self-attention block, our proposed attention mech-
anism can better focus on long temporal patterns and their
dependencies.

In this work, we used DAHLIA [26] as the main dataset
to evaluate our proposed method, along with a medium-
term dataset, Breakfast [12], to show the robustness of the
framework. Our proposed method achieves state-of-start
performance on both datasets.

2. Related Work
In this section, we summarize the recent works in activity

detection.
The literature on activity recognition on short trimmed

video clips is vast [3, 23, 1]. As a consequence, sev-
eral approaches apply the lessons learned from the work
on trimmed sequences to deal with the untrimmed activ-
ity detection problem. Shou et al. [20] train a classifier
on trimmed videos, using sliding windows with multi-scale
window size, along with a post-processing filter to improve
performance. Zhu et al. [32] employ a multi-task classifier,
to detect the boundaries and activity classes from a fixed-
size sliding window. However, the fixed window size and
the high computational cost limit its applicability to long

Figure 2. Distribution of activities. A typical activity distribution
in (a) THUMOS’14 (val#161: Cliff Diving), (b) a long term ADL
dataset: DAHLIA (S01A2K1).

sequences.
Methods like [17, 31] are two-steps methods. In the first

step, they generate initial temporal action proposals using
an actioness detector. In the second step, the action pro-
posals are classified and the initial coarse activity bound-
aries are refined. Actioness was introduced in [5] to in-
dicate the likelihood that a generic action instance can be
localized at a specific temporal location. This measure is
useful for generating accurate action proposals in datasets
as THUMOS’14 [8], that include many background frames.
As shown in Fig. 2, contrary to THUMOS’14, most ADL
datasets do not have as much background since long ac-
tivities are often connected by short background intervals.
Thus, this kind of actioness-based method cannot effec-
tively localize the activities in ADL datasets.

After encoding the video, activity detection can be
seen as a sequence-to-sequence problem. The following
are approaches that use RNNs to process sequence data.
Singh et al. [22] feed per-frame CNN features into a bi-
directional LSTM model and apply a method analogous to
non-maximal suppression to the LSTM output. Yeung et
al. [30] propose an attention LSTM network to model the
dependencies between the input frame features within fixed
length window. Nonetheless, RNNs can only capture a lim-
ited amount of temporal information and have short-term
dependencies because they suffer from the vanishing gradi-
ents problem.

TCN is a class of time-series models [25]. Different from
RNNs, TCN can capture long-range patterns by using a hi-
erarchy of temporal convolutional filters, pooling, and up
sampling steps. Lea et al. [13] propose Encoder Decoder-
TCN (ED-TCN), which has an encoder-decoder structure
to capture long-range temporal pattern. ED-TCN achieves
state-of-the-art performance in 50 Salad [24] and GTEA [7]
datasets. This work proves that TCNs are capable of cap-
turing complex patterns such as activity compositions and
activity duration. Ding et al. propose TCFPN, an extension
of ED-TCN, which has a pyramid structure with lateral con-
nections to reduce computation cost. However, temporal
convolution processes the information within local neigh-
borhood, thus using convolutional layers alone is compu-
tationally inefficient for modeling long-range dependencies
in videos.

Attention mechanisms focus on the salient part of the
scene relative to the target task. Employing attention mech-



anisms has gained popularity for the activity-recognition
task [14, 23]. Self-attention mechanism is firstly proposed
by Non-local Neural Networks [29]. Inspired by non-
local image processing, self-attention mechanisms force
networks to establish one-to-one temporal relations to cap-
ture long-range time dependencies.

3. Proposed Method
In this section we propose our new model: the Self-

Attention - Temporal Convolutional Network (SA-TCN),
which retains the encoder-decoder architecture of ED-TCN
to capture long-range patterns and embeds a self-attention
mechanism to capture the long range dependencies between
those patterns. The overview of this architecture is shown in
Fig. 3 and consists of 3 main components: visual encoding,
encoder-decoder TCN, and self-attention block.

Figure 3. SA-TCN model. Given an untrimmed video, we rep-
resent each non-overlapping snippet by a visual encoding over 64
frames. This visual encoding is the input to the encoder-TCN,
which is the combination of the following operations: 1D temporal
convolution, batch normalization, ReLu, and max pooling. Next,
we send the output of the encoder-TCN into the self-attention
block to capture long-range dependencies. After that, the decoder-
TCN applies the 1D convolution and up sampling to recover a fea-
ture map of the same dimension as visual encoding. Finally, the
output will be sent to a fully connected layer with softmax activa-
tion to get the prediction.

3.1. Visual Encoding

The first step in our architecture is the extraction of a
visual encoding. As opposed to the other TCN-based meth-
ods [13, 6] that use multi-modal inputs (i.e. RGB+flow),
we attempted to use RGB only. To reduce the redundancy
coming from extracting background features, we apply
SSD [15] to detect the subjects and crop patches based on
those detections. The patches are then resized to 224× 224

and fed into an Imagenet pre-trained Resnet-152. We ex-
tract features from the penultimate layer of Resnet-152. We
group 64 contiguous extracted feature sets per snippet. The
temporal context of the video is handled by the aggregation
operator using max and min pooling across the snippets.
This pooling mechanism helps to choose salient values from
the feature map. The visual encoding that we obtain from
this step will be the input of encoder-TCN.

3.2. Improved Encoder-Decoder TCN

SA-TCN retains the encoder-decoder architecture
of [13], with the addition of some points of improvement.

As shown in Fig. 4, we have k layers for both the encoder
and the decoder. In the encoder part, each layer consists of
temporal convolutions, batch normalization, ReLU activa-
tion, and a temporal max pooling. We set a fixed convolu-
tion kernel size for all the layers. First, we applied temporal
convolution (Conv-1D) to extract high-level features. Sec-
ond, differently from ED-TCN, we applied batch normal-
ization to avoid vanishing or exploding gradients. Third,
we added a spatial dropout layer along with a ReLU non-
linearity to help controlling over-fitting and to speed up con-
vergence. Finally, we max pool the feature map across time
to halve the temporal dimension. Pooling enables us to ef-
ficiently compute activations over long temporal windows.

Our decoder is similar to the encoder, except for the fact
that we replace the pooling operation with up sampling.
This up sampling step is similar to [13]: each entry is re-
peated twice. After that, another temporal convolution is
performed to reduce the aliasing effect of up sampling. Fi-
nally, a snippet-wise fully-connected layer with softmax ac-
tivation is used to generate the class probabilities at each
time step.

3.3. Self-Attention Block

In this section, we introduce our temporal self-attention
block. We construct this temporal attention mechanism
based on the scoring system presented in [27].

The purpose of attention block is to build a one-to-one
association between all the temporal moments. We do not
rely on any outside information, so it is called self-attention.
To implement this, the input I is branched out into three
copies Query, Key and V alue. Through the calculation
of similarity between Query and each Key, we can get the
attention score s, which is the importance of different tem-
poral moments. This attention score is then normalized by
softmax to have a mask α. Finally, we multiply the V alue
by this mask to have the attention-weighted feature, and
then, add back the input to have our output result O.

Fig. 5 shows a diagram of the self-attention block, where
I ε RC×T denotes the input features from the previous hid-
den layer. I is first transformed into two feature spaces
Query, Key, where Query(I) = WQueryI , Key(I) =



Figure 4. Encoder-decoder architecture. This figure represents
the network structure of (a) encoder-TCN and (b) decoder-TCN.
As the architecture has k layers, it will have k iterations.

Figure 5. Structure of self-attention block between encoder-
TCN and decoder-TCN.

WKeyI . Both WQuery and WKey ε RC×C
8 . In this work,

V alue is computed from I with a 1 × 1 convolution layer.
Thus we have V alue(Ii) = WV alueIi, where WV alue ε
RC×C . The number of filters of V alue is same as the chan-
nel size of I . Query and Key are similar to V alue, except
for the fact that the number of filters is one-eighth of V alue.
If αj,i indicates the extent to which the model attends to the
ith location when synthesizing the jth region, we have:

αj,i =
exp(sij)∑T
i=1 exp(sij)

, (1)

where sij = Query(Ij)Key(Ii)
T .

Then the output of the weighted attention map is Att =

(Att1, Att2, ..., Attj , ..., AttT ) ε RC×T , where,

Attj =

T∑
i=1

αj,iV alue(Ii) (2)

Finally, we add back the input feature map to assign weight
to non-local evidence. Therefore the output Oi is given by:

Oi = γ ×Atti + Ii (3)

where γ represents a learnable parameter. The outputO will
be fed into decoder-TCN.

4. Experiments and Results
In this section, we describe the datasets and the base-

line methods used in our study. We provide a comparative
analysis of our method against other activity detection ar-
chitectures. In all experiments, frame-wise accuracy(FA1),
F-score, Intersection over Union(IoU) and mean Average
Precision(mAP) are reported.

4.1. Datasets

In this work, we performed experiments on two datasets:
DAHLIA and Breakfast.

DAHLIA [26] is one of the biggest public ADL dataset
for detection. Contrary to some widely used datasets,
in which labeled activities are very short and with low-
semantic level, DAHLIA focuses on high-semantic level
longer activities. It contains 8 ADL activity classes per-
formed by 51 subjects on 3 camera views. The duration of
videos ranges from 24 mins to 64 mins. In each video, an
average of 6.7 activities are performed. The mean duration
of activities is 6 mins. We performed experiments using the
cross-subject protocol described in [16]. The final result is
obtained as the average of the results on the 3 camera views.

Breakfast [12] features over 1.7k video sequences of
cooking in a kitchen environment. The overall duration is
66.7h. The dataset contains 48 activity classes. In each
video, an average of 4.9 activities are performed. The mean
duration of activities is about 30s. Activities are thus shorter
than those in DAHLIA, but they are more diverse. We per-
formed our experiments using the protocol described in [6].

4.2. Implementation Details

We implemented our model in Keras 2.0.8 with Tensor-
flow as back-end. The experiments were performed on a
GTX 1080 Ti GPU with 11 GB memory. For the visual
encoding, we performed experiments using both Resnet-
152 [9] and I3D [3] as the feature extractor. With Resnet,
we extracted the features as described in detail in section
3.1 leading to 8192 features per snippet. With I3D, we
chose the Kinetics pre-trained I3D. First, we added a fully



connected layer with 1024 units before the classification
layer. Secondly, we fine-tuned the architecture on the NTU-
dataset[19] and extracted features from the new fully con-
nected layer (1024 features per snippet). We ran experi-
ments with both Resnet-152 and I3D on DAHLIA. The re-
sults obtained with the two feature extractors are similar. On
the Breakfast dataset, we use the features provided on the
dataset’s website. The length of these features is 64/snip-
pet.

In our model, the attention operation does not change
the dimension of the feature map. Besides, we assign the
parameters of the encoder-decoder TCN so that the size of
the feature map before the first encoder layer is the same
as the output of the last decoder layer: we set the pooling
and up sampling rate to 2, the number of filters in the three
layers to {48, 64, 96} and {96, 64, 48} for encoder and
decoder respectively. Finally, we compared several kernel
sizes for the 1D convolution, and found that a size of 25 for
every layer gives the best results.

The training was conducted with RMSprop with a learn-
ing rate of 0.001 and batch size 8 for both DAHLIA and
Breakfast datasets. On DAHLIA, we split the train and val-
idation set with 15% validation rate. We trained the model
for 100 epochs and measured detection performance on the
test set.

4.3. State-of-the-Art Methods

Several activity detection methods have been applied
to DAHLIA. For our evaluation, we chose the two better-
performing ones: DOHT [4] utilizes both skeleton and
dense trajectory modalities along with a voting-based sys-
tem. Each frame codeword has a certain weight in the
vote for assigning the label of neighboring frames, and the
weighting function is learned using a novel optimization
method. Negin et al. [16] utilize a sliding window ap-
proach. This method obtains features from Resnet-152 [9]
for each frame to form a code-book and then trains a SVM
classifier.

Additionally, we applied the following methods as our
baseline on both DAHLIA and Breakfast: GRU, imple-
mented following the modifications described in [18]. This
model enables temporal alignment and inference over long
sequences. We selected GRU to measure the performance
of a RNN-based method in long-term activity detection.
ED-TCN is the original activity detection model proposed
in [13]. TCFPN [6] is an extension of ED-TCN which fea-
tures a pyramid structure with lateral connections to reduce
computation cost. We selected these two TCN baselines to
compare our method against TCN-based models.

4.4. Results Analysis

In this section, we analyze the results of our method and
of the other state-of-the-art baselines.

Table 1. Activity detection results on DAHLIA dataset with the
average of view 1, 2 and 3. ∗marked methods have not been tested
on DAHLIA in their original paper.

Model FA1 F-score IoU mAP
DOHT [4] 0.803 0.777 0.650 -
GRU∗ [18] 0.759 0.484 0.428 0.654
ED-TCN∗ [13] 0.851 0.695 0.625 0.826
Negin et al. [16] 0.847 0.797 0.723 -
TCFPN∗ [6] 0.910 0.799 0.738 0.879
SA-TCN 0.921 0.788 0.740 0.862

Table 2. Activity detection results on Breakfast dataset.
Model FA1 F-Score IoU mAP
GRU [18] 0.368 0.295 0.198 0.380
ED-TCN [13] 0.461 0.462 0.348 0.478
TCFPN [6] 0.519 0.453 0.362 0.466
SA-TCN 0.497 0.494 0.385 0.480

Table 3. Average precision of ED-TCN on DAHLIA.
Activities Background House work Working Cooking

AP 0.36 0.65 0.95 0.96
Activities Laying table Eating Clearing table Wash dishes

AP 0.90 0.97 0.80 0.97

Table 4. Combination of attention block with other TCN-based
model: TCFPN. (Evaluated on DAHLIA dataset)

Model FA1 F-score IoU mAP
TCFPN [6] 0.910 0.799 0.738 0.879
SA-TCFPN 0.917 0.799 0.748 0.894

Figure 6. Detection visualization. The detection visualization of
video ’S01A2K1’ in DAHLIA: (1) ground truth, (2) GRU [18], (3)
ED-TCN [13], (4) TCFPN [16] and (5) SA-TCN.

Table 1 and 2 show the results of all the methods con-
sidered on DAHLIA and Breakfast datasets, respectively.
Our method achieves state-of-the-art performance on both
datasets.

DOHT and Negin et al.’s method, which train a SVM
with deep or hand-crafted feature encoding, do not perform



well on DAHLIA. This is because approaches based on a
sliding window can only capture window-size patterns. Al-
though a post-processing step is used to filter noise, these
approaches still fail at capturing long temporal information.

Compared to TCN-based networks, GRU does not per-
form well on DAHLIA. Fig. 6 shows that GRU fails at dis-
tinguishing short activities performed between long activi-
ties (i.e. laying table and clearing table). Moreover, GRU
produces noise while detecting long activities due to the fact
that RNN-based networks can not focus on long temporal
information.

ED-TCN lacks precision in detecting the activity bound-
aries. As CNNs have a limited receptive field for each
layer, they fail in detecting the dependencies between long-
distanced features. The results obtained by ED-TCN on
DAHLIA are reported in Table 3. The low precision
achieved on the ’Background’ activity is due to the shorter
duration of this activity compared to the others, which re-
sults in a lower number of training samples.

Both TCFPN and our SA-TCN outperform ED-TCN.
The pyramid structure with lateral connections helps
TCFPN to make use of both low-level and high-level fea-
tures. The temporal attention block of our SA-TCN enables
a better understanding of the dependencies between the dif-
ferent activities performed in the video.

To understand if our solution can be integrated with other
temporal models, we embedded our temporal self-attention
block in TCFPN to obtain SA-TCFPN. As reported in Ta-
ble 4, SA-TCFPN outperforms TCFPN on all the metrics
on DAHLIA. This shows that our temporal attention block
is general and can be effectively integrated with other tem-
poral models.

5. Conclusions
In this paper, we proposed a novel temporal convo-

lutional framework for long-term activity detection: SA-
TCN. We improved the encoder-decoder architecture from
the ED-TCN and introduced a temporal self-attention block.
On one hand, the TCN structure makes the model capable
of learning long-term data with complex spatio-temporal
patterns. On the other hand, the temporal attention block
can well capture the dependencies between these patterns.
Moreover, we have shown that this attention block can be
integrated with other temporal models and improve their
performance. Our experiments prove that the SA-TCN can
be fast-trained and achieve state-of-the-art performance on
two ADL datasets: DAHLIA and Breakfast. However, this
model still has limitations. For example, the system cur-
rently cannot be trained end-to-end and cannot process data
online. As future work, we plan to extend our model to on-
line processing. Finally, we want to be able to deal with
even more challenging datasets such as those containing
overlapping activities[21, 11].
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