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Abstract: Purpose: Cone beam computed tomography (CBCT) became increasingly popular
over the last years. In fact, it allows more accurate diagnosis and treatment planning
with, potentially, a lower effective radiation dose. However, volume reconstruction
algorithms require a very precise knowledge of the imaging geometry. Due to
mechanical instabilities which significantly alter the source and the detector from a
regular circular trajectory and lead to non-reproducible motions from run to run, mobile
C-arms are incompatible with existing tomography algorithms. Therefore, C-arm on-line
calibration is essential in order to achieve an accurate volume reconstruction.

Methods: We present an on-line calibration method for mobile C-arms. It is based on
tracking the detector and the X-ray source of the C-arm using three-axis gyroscopes
and accelerometers. It aims to be precise, non-invasive and suitable for every C-arm.
The performance of the calibration algorithm is evaluated in regard to the precision of
the measurements and to whether or not dynamic models of the C-arm are considered.
In addition, we present an algorithm which allows us to propagate the errors from the
pose (position and orientation) estimates to 2D projections on the detector plane. Thus,
we can evaluate the impact of those errors on the acquired image.

Results: The experiments are conducted on an experimental platform. The reached
accuracy is ≈0.3° for orientation and ≈3.2mm for position. These errors propagates as
an error of a few millimeters for the 2D projections on the detector plane.
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Conclusions: the required angle accuracy by our CBCT algorithms is reached.
However, several improvement to dynamic model and to estimation method are
needed to achieve the position precision required by CBCT. Furthermore, we notice
that the detector angles and the source-to-detector and source-to-reconstruction
distances impact the projections less significantly than the in-plane translations of the
X-ray source and the detector.
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Abstract Purpose Cone beam computed tomography (CBCT) became in-
creasingly popular over the last years. In fact, it allows more accurate diagno-
sis and treatment planning with, potentially, a lower effective radiation dose.
However, volume reconstruction algorithms require a very precise knowledge
of the imaging geometry. Due to mechanical instabilities which significantly
alter the source and the detector from a regular circular trajectory and lead
to non-reproducible motions from run to run, mobile C-arms are incompatible
with existing tomography algorithms. Therefore, C-arm on-line calibration is
essential in order to achieve an accurate volume reconstruction.
Methods We present an on-line calibration method for mobile C-arms. It
is based on tracking the detector and the X-ray source of the C-arm using
three-axis gyroscopes and accelerometers. It aims to be precise, non-invasive
and suitable for every C-arm. The performance of the calibration algorithm is
evaluated in regard to the precision of the measurements and to whether or
not dynamic models of the C-arm are considered. In addition, we present an
algorithm which allows us to propagate the errors from the pose (position and
orientation) estimates to 2D projections on the detector plane. Thus, we can
evaluate the impact of those errors on the acquired image.
Results The experiments are conducted on an experimental platform. The
reached accuracy is ≈ 0.3◦ for orientation and ≈ 3.2mm for position. These
errors propagates as an error of a few millimeters for the 2D projections on
the detector plane.
Conclusions the required angle accuracy by our CBCT algorithms is reached.
However, several improvement to dynamic model and to estimation method
are needed to achieve the position precision required by CBCT. Furthermore,
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we notice that the detector angles and the source-to-detector and source-to-
reconstruction distances impact the projections less significantly than the in-
plane translations of the X-ray source and the detector.

Keywords Mobile C-arm · CBCT · Pose estimation · Online calibration ·
IMU · Error propagation

1 Introduction

Cone beam computed tomography (CBCT) offers important advances in nu-
merous medical procedures including orthopedic and trauma surgery [12]. For
tomographic reconstruction, a sequence of images is captured during the C-
arm rotation around the patient and the precise projection geometry has to be
determined for each image (submillimetric precision). Many fixed angiography
systems are designed to allow 3D tomography [15]. However, those systems are
expensive and their use is mainly restricted to major surgery.
Meanwhile, thanks to their size, flexibility and price, mobile C-arms are a
widely used tool in trauma and orthopedic surgery. They are fluoroscopic
imaging devices composed of a C-shaped arm which connects an X-ray source
and a detector. However, they suffer from mechanical instabilities and gravita-
tional effects during orbital rotation which significantly alter the source and the
detector from a regular circular trajectory [21] and lead to non-reproducible
motions from run to run. As there is a significant deterioration of the recon-
structed image quality when the real poses of the scan differ from the poses
of the initial calibration scan [16], mobile C-arms appear to be incompatible
with existing volume reconstruction algorithms.
The geometric characterization of a C-arm consists in the determination of
a projection matrix described by three intrinsic parameters and six extrinsic
parameters [14]. The classical approach to acquire the projection geometry of
the C-arm is off-line calibration [18, 4]. It assumes the reproducibility of the
C-arm movement. Due to the geometric non-idealities of the source-detector
orbit, maximum departures from the average semicircular orbit of the projec-
tion matrix parameters is important, even short-term (≈ 4h): up to 16mm for
distances and to 2◦ for angles for a modern mobile C-arm [5]. Therefore, an
on-line recovery of the projection geometry seems necessary to conduct CBCT
with mobile C-arms.
The first approach towards on-line calibration consists in using fiducial mark-
ers [17, 10]. It is inexpensive, potentially precise (1−3mm translation accuracy
and 1−2◦ orientation accuracy) [19, 23] and applicable for every C-arm. How-
ever, the markers based on-line calibration is invasive and the markers occupy
valuable place in the image. Another method of on-line calibration involves
external tracking of the mobile C-arm [13]. Optical cameras have been used
to track the C-arm pose accurately (3.1mm±1.3%). However, the drawback
is the need of a precise setup and direct line sight between the mobile C-arm
and the camera, leading to major modification in the process of performing
surgical acts.
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Even if accelerometers have already been used as tilt sensors for non-motorized
C-arms [8, 22], a precise estimation of the attitude of the X-ray source and the
detector of a mobile C-arm in a surgical environment using inertial sensors,
eventually combined with additional models, is still to be made.
In this paper, we are going to discuss the implementation feasibility of a precise
and affordable on-line calibration approach for existing mobile C-arms using
inertial sensors (gyroscopes and accelerometers). It has to be non-invasive and
suitable for every mobile C-arm even those with highly non-reproducible tra-
jectories. Moreover, it should not significantly modify the surgical routine. We
are also going to introduce an algorithm which propagates the errors from the
pose estimates of the X-ray source and the detector to the 2D projections and
evaluate the performance of our calibration algorithm.

2 Material and methods

2.1 Mobile C-arms

Geometry description: The C-arm geometry is detailed in Fig. 1 and the used
notations are described in Tab. 1. This geometry is defined by four right-
handed Cartesian coordinate systems: the navigation frame {w} which is a
fixed frame around which the C-arm gantry rotates and within which the
reconstruction volume is computed, the real detector frame {d}, the virtual
detector frame {d′} which has the same orientation as {d} but is centered at
wo, and the source frame {s}.

Fig. 1 (Right) The mobile C-arm. (Left) Mobile C-arm geometry and motion compared
to the motion of a perfect circular geometry represented by {di} and {si}. The mobile
C-arm is provided with four coordinate systems: the reconstruction fixed frame {w}, the
detector frame {d}, the virtual detector frame {d′} and the source frame {s}. swd is the
source-to-reconstruction distance and sdd the source-to-detector distance.
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Table 1 Table of notations.

Notation Meaning

a scalar
a vector
A matrix
q quaternion
ȧ time derivative of a
At/at transpose of the matrix A/vector a
diag(a) square diagonal matrix with the elements of vector a on the main diagonal
I identity matrix of the appropriate size
{a} frame or coordinate system
na vector a expressed in frame {n}
ak vector a for the sample k
b
nq unit quaternion describing the rotation from frame {n} to frame {b}
b
nR rotation matrix of frame {b} with respect to frame {n}

C-arm motion: In order to compute CBCT, multiple 2D projections are ac-
quired under a continuous rotation of the C-arm gantry. In our study, the
motion of the gantry about a single axis wy is studied. This rotation is usually
operated manually. Due to the imperfections of machine manufacturing, to the
gravitational effects and to the mechanical flex, the trajectory of the detector
and the X-ray source deviate significantly from a circular path. The gantry
may be deviated in 3 translation directions and 3 rotation directions due to
the crude tilting of the detector. These perturbations are non-reproducible.
Given its maximum tilt angles, the X-ray source is supposed to be isotopic.
Thus, its orientation can be neglected for the calculation of the projection
matrix Seq. 2.4. However, the orientation of the X-ray source must be deter-
mined in order to estimate its position from the accelerometer measurements.
Also, the C-arms support armature is assumed to be fixed with respect to the
reconstruction frame {w}.

2.2 Inertial sensors

An inertial measurement unit (IMU) combining a three-axis gyroscope and
a three-axis accelerometer is mounted on both the detector and the source
of the C-arm. The X-ray source and the detector poses are supposed to be
independent. Therefore, two separate and similar studies will be conducted
for the source and for the detector. We are going to develop the problem of
estimating the relative pose of the moving detector frame {d} at time k∆t
(∆t is the sampling period of the sensor and k the sample id) with respect to
the reconstruction frame {w}. The problem is illustrated in Fig. 2. The same
reasoning applies to the X-ray source.

Reconstruction frame {w}: frame where the 3D tomographic reconstruction is
conducted. As the measurements are acquired over short acquisition times
(< 1min), the reconstruction frame is supposed to be fixed with respect to
the earth.
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Fig. 2 The inertial sensors measure acceleration and angular velocity with respect to the
reconstruction frame {w}. The sensors frames are confounded with the detector frame {d}.

Detector frame {d}: frame of the moving IMU. Its origin is supposed to be
located at the center of the accelerometer triad and aligned to the casing.
All the inertial measurements are resolved in this frame.

2.2.1 Measurement models

Gyroscope measurement model: The gyroscope gives us the angular velocities
of the detector frame {d} with respect to the reconstruction frame {w} ex-
pressed in the detector frame {d}. The angular velocities measured by the
three-axis gyroscope at time k∆t are denoted by the three-dimensional vec-
tor b

nωk. The three-axis gyroscope measurements are affected by bias and
noise. We assume that the chosen gyroscopes ensure an adequate bandwidth
for the motion. The gyroscopes are usually sensitive to linear acceleration (or
g-sensitivity), vibration rectification (or g2-sensitivity) [7] and temperature
fluctuations. However, the C-arm operating time is usually short (< 1min)
and the typical deviation of temperature is about 0.01◦C within similar dura-
tion which makes temperature fluctuations negligible. Acceleration sensitivity
is also negligible in our case, the gyroscope measurements yω,k are expressed
as

yω,k = Mω
d
wωk + dδω + dnω,k, (1)

where:

– Mω is the gyroscope measurements scaling factors and misalignment ma-
trix,

– dδω is the gyroscope constant bias,
– dnω,k is the noise in the gyroscope. It is modeled as an additive zero-mean

Gaussian noise with a covariance matrix: Σω = diag(σ2
ω,x, σ

2
ω,y, σ

2
ω,z). We

write
dnω,k ∼ N (0,Σω) . (2)
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Accelerometer measurement model: An ideal accelerometer measures the phys-
ical acceleration of an object. The physical acceleration is the sum of the rela-
tive acceleration wa and the contribution of the physical forces applied to the
accelerometer:

wam = wa + wag + wac, (3)

where:

– wam is the acceleration measured by the three-axis accelerometer,
– wa is the relative acceleration which results of the movement of the body,
– wag is the local acceleration due to gravity,
– wac is the Coriolis acceleration.

A numerical application shows that wac ≈ 10−4m/s2. Because this value is
lower than the accelerometer noise level, we consider that wac = 0. Follow-
ing the same reasoning as for the gyroscope, we express the accelerometer
measurements ya,k as

ya,k = Ma
d
wRk(wak − g) + dδa + dna,k, (4)

where:

– Ma is the accelerometer measurements scaling factors and misalignment
matrix,

– d
wRk is the rotation matrix from {w} to {d},

– g is the gravitational force, here directed along the wy-axis,
– dδa is the accelerometer bias,
– dna,k is the noise in the accelerometer. It is modeled as an additive zero-

mean Gaussian noise with a covariance matrix: Σa = diag(σ2
a,x, σ

2
a,y, σ

2
a,z)

2.3 Attitude estimation

2.3.1 Dead-Reckoning

One of the simplest methods for pose estimation is dead reckoning (DR). It
is the process of estimating the present position and orientation of an object,
based on a previously known position and orientation. This method is based
on inertial sensors measurements only. DR can make very accurate estimates if
the speeds and directions of the object are accurately measured at all instants.
However, inertial sensors measurements are noisy and biased Seq. 2.2.1. Hence,
the DR estimates are subject to significant errors.

Principle: Since the measurements are resolved in the detector frame {d}, the
position dp can be evaluated from the measured acceleration dam using double
integration. As well as, the quaternion for orientation d

wq can be evaluated by
integrating the angular velocity d

wω. This algorithm is illustrated in Fig. 3.
The accuracy of DR estimates can be increased significantly by taking into
account suitable dynamic models. Therefore, a method which compares the
inertial sensors readings with a pose predicted using the current estimate and
simple dynamic models is also implemented.
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Fig. 3 The block diagram of DR implementation for IMUs.

2.3.2 Extended Kalman filtering

In order to simplify the formulation of the pose estimation problem, we drop
the frame subscripts and superscripts, for example wak is written ak and d

wωk

is written ωk.

Principle: The Kalman filter [1] (KF) operates in two distinct phases: pre-
diction and correction. In the prediction phase, the detector’s current pose is
predicted from the old pose according to the dynamic models. A new pose es-
timate and a new covariance are calculated. Next, in the correction phase, the
inertial sensors measurements and their uncertainties are used to correct the
prediction. These uncertainties and the predicted covariance (from the previ-
ous phase) determines how much the measurements will affect the prediction.
The Extended Kalman Filter (EKF) is an extension of the traditional Kalman
filter to non linear systems such as rotations. The principle of the Kalman
filtering is described in the diagram Fig. 4. As second order Taylor expan-

Fig. 4 the KF is an algorithm that uses measurements and process models to produce
estimates that tend to be more accurate than those based on the measurements only. This
is a two-step algorithm: prediction and correction. It also predicts the estimate uncertainties.
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sion lead to a more accurate estimation in our case than first order, we use
second order Taylor expansion to linearize the EKF models. Over our short
acquisition time (< 1min), it also appears to be more efficient to estimate ori-
entation based on the angular velocity measured by the gyroscope only. The
inverse estimated orientation is then used to rotate the detector frame {d} in
order to estimate the position into the reconstruction frame {w}. Since the
Coriolis acceleration is negligible and the angular rate is independent from
linear acceleration Seq. 2.2.1, we implement two separate EKF for orientation
and position estimation.

Quaternions: The implemented EKF fuses attitude estimations in quaternion
form. Quaternions [11] are widely used in orientation estimation algorithms.
They have no singularities and are simpler to compose than Euler angles.
Moreover, they are more compact and numerically stable than rotation matri-
ces. A quaternion is denoted

q =
[
q0 q1 q2 q3

]t
. (5)

Here, q0 is the scalar component and qv = [q1 q2 q3]
t

is the vector com-
ponent of the quaternion. The unit quaternion representing the rotation from
frame {w} to frame {d} is written d

wq. This quaternion corresponds to the
rotation matrix d

wR. Assuming that q = d
wq, the rotation from frame {d} to

frame {w} can be represented by the conjugate quaternion defined as

q∗ =
[
q0 − q1 − q2 − q3

]t
. (6)

In this paper, the identity quaternion has the following components

qI =
[
1 0 0 0

]t
. (7)

Successive rotations about local axes are composed using quaternion multipli-
cation. For example d

iq = d
wq

w
iq represents a rotation from frame {i} to {d}

followed by a rotation from frame {w} to frame {d}. Quaternion multiplication
is calculated as

qp =


p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 − p1q3 + p2q0 + p3q1

p0q3 + p1q2 − p2q1 + p3q0

 . (8)

Orientation estimation dynamic model: The state vectors for orientation esti-
mation xk is

xk =
[
qk ωk

]t
. (9)

The continuous process model equation is described by

q̇ =
1

2
Ωq, (10)
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with Ω the relative rotation matrix written

Ω =

[
0 ωt

−ω −ω×
]
, (11)

where ω =
[
ωx ωy ωz

]t
is the angular rate for the dx, dy and dz-axis of the

detector frame {d} and ω× is the angular rate skew matrix 0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0

 . (12)

The discrete-time system process equation at time k∆t is

qk+1 = exp(Ωk∆t)qk + uk. (13)

Here, ∆t is the system sampling period and uk is the orientation estimation
process noise. As we work with high sample rates, Ωk∆t is supposed small be-
tween two consecutive samples. Hence, we can approximate exp(Ωk∆t) using
the second order Taylor expansion,

qk+1 =

(
I +

1

2
Ωk∆t−

1

2!

(
1

2
Ωk∆t

2

))
qk + uk (14)

Position estimation dynamic model: The state vectors for position estimation
x′k is

x′k =
[
pk vk ak

]t
, (15)

where pk, vk and ak are the positions, velocities and acceleration at time
k∆t respectively. The continuous process model equations are described by
the basic continuous time dynamic spatial relations

v = ṗ, (16a)

a = v̇. (16b)

The process equations are discretized using the explicit midpoint discretization
method [2] which can be summarized by the equations

vk+1 = ∆f

(
tk +

∆

2
,vk +

∆

2
ak

)
, (17a)

pk+1 = ∆f

(
tk +

∆

2
,pk +

∆

2
vk

)
. (17b)

Here, ṗ(t) = f(t,p(t)) and tk = t0 + k∆t with t0 the initial time. The same
applies for v. To keep the dynamic model simple, we model the motion as a
uniform circular motion around wy. We write a = −ω2p.
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2.4 Projective geometry

C-arms are modeled after a pinhole camera model [6]. The 3D projective
space is represented by 4-dimensional vectors of homogeneous coordinates

x =
[
x1 x2 x3 x4

]t
where at least one of the component is nonzero.

Within this model, the X-ray projection geometry is represented by a (3× 4)
homogeneous projection matrix P. As displayed in Fig. 5, in order to calculate
the coordinates of the 2D projection d

dp2D of a 3D voxel w
wp3D on the detec-

tor plan, four changes of frames and affine transformations are operated. As

Fig. 5 To map a 2D detector image projection d
dp2D to the corresponding 3D voxel w

wp3D:
(1) The voxel coordinates are rotated to the virtual detector coordinate system. (2) Then,
they are translated to the source frame. (3) The voxel is projected. (4) Finally, the projection
coordinates are expressed in the detector frame.

shown in the matrix expression (18) and Fig. 1, the C-arm projective geome-
try is characterized by nine parameters. Six extrinsic parameters combined in
E, which describe the position of the mobile C-arm with respect to the recon-

struction frame. These parameters are the detector orientation
[
dφ dθ dψ

]t
and the source position in the reconstruction frame

[
sx sy swd

]t
. And also,

three intrinsic parameters combined in I, that refer to the relative distance be-
tween the source and the detector sdd (focal distance) and the piercing point

coordinates
[
sx− dx sy − dy

]t
. The piercing point, Fig. 1, is the projection

of the origin of the source coordinate system on the detector plane.

P3×4 = IE =


sdd 0 sx− dx 0

0 sdd sy − dy 0

0 0 1 0




d
wR

−sx

−sy

−swd

0 0 0 1

 (18)

Error propagation to the 2D projections: As the inertial sensors measurements
are noisy and biased Seq. 2.2.1, we calculate the projection matrix parameters
with uncertainties. We denote δx the uncertainty for x. The upper limit value
of the uncertainty for the projection matrix P3×4 is

δP3×4 ≤
∣∣∣∣ ∂P

∂sx

∣∣∣∣ δsx+

∣∣∣∣ ∂P

∂sy

∣∣∣∣ δsy +

∣∣∣∣ ∂P

∂dx

∣∣∣∣ δdx+

∣∣∣∣ ∂P

∂dy

∣∣∣∣ δdy +

∣∣∣∣ ∂P

∂sdd

∣∣∣∣ δsdd
+

∣∣∣∣ ∂P

∂sdd

∣∣∣∣ δswd+

∣∣∣∣ ∂P

∂dφ

∣∣∣∣ δdφ+

∣∣∣∣ ∂P

∂dθ

∣∣∣∣ δdθ +

∣∣∣∣ ∂P

∂dψ

∣∣∣∣ δdψ. (19)
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In order to calculate the partial derivatives, we assume that the geometric
parameters are independent.

3 Results

3.1 Experimental setting

Our first tracking experiments are carried out a on full-size mock-up of a
mobile C-arm. The mock-up displayed in Fig. 6 is a turntable rotated by a
brushless motor and equipped with a wooden arm on which are located several
IMUs with different characteristics.

3.1.1 Rotated-arm

The rotated-arm is a simple mock-up to simulate either the detector or the X-
ray source of a mobile C-arm. It is an isocentric rotation system with a gantry
axis slightly inclined with respect to the gravity vector. It is also subject to sig-
nificant reproducible mechanical vibrations. The rotated-arm exhibits a good
repeatability (up to 99% in all directions). This allows us to simulate realistic
trajectories. In order to evaluate the tracking algorithms and to propagate the
errors to the 2D projections, the experimental estimates will be compared to
the corresponding simulated trajectory.

Fig. 6 The experimental rotated-arm. The mock-up aims to reproduce the behavior of
the detector or the X-ray source of a mobile C-arm. The figure displays diagrams and
photographs of the rotated arm.
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3.1.2 Measurement units

The experimental platform is equipped with two different IMUs:

The MPU6050 from TDK-Invensense [9] which is a low-cost IMU. It must be
calibrated manually and is subject to significant nonlinearities. However,
the MPU6050 is a flexible component with a large choice of acquisition fre-
quencies and measuring ranges. For this IMU, the standard deviations (SD)
of noise as defined in (2) are [σω,x σω,y σω,z] = [1.1 1.0 0.90]× 10−3

(rad/s)2 and [σa,x σa,y σa,z] = [36 30 40]× 10−3 (m/s2)2.

The NavChip ISNC02 from THALES-Intersense [20] which is a superior per-
formance factory calibrated sensor with temperature and axis misalignment
compensation. It returns integrated values of angular velocity and accel-
eration which has been previously filtered. However, it is not tunable and
is provided with one acquisition frequency and fixed measurement ranges.
The measurements SDs are [σω,x σω,y σω,z] = [0.81 0.94 0.92]×10−3

(rad/s)2 and [σa,x σa,y σa,z] = [9.1 6.2 11]× 10−3 (m/s2)2.

3.2 Pose estimation errors

We rotate the wooden arm by a continuous rotation of θ = 120◦ with a velocity
of 10◦/s. The sample rates of the MPU6050 and the ISNC02 are 200Hz and
166Hz respectively.
The acquired data are converted into physical units and analyzed using the
DR Seq. 2.3.1) and the EKF Seq. (2.3.2) algorithms and then compared to the
simulated data. The KFs are tuned empirically. We run 5 similar acquisitions.
The absolute maximum mean error (AME) between the simulated data and the
estimates and the SDs are presented in Tab. 2 for orientations and in Tab. 3 for
positions. For attitude estimates, the different filters perform greatly with an

Table 2 Errors on the attitude estimates for 120◦ acquisitions.

Filter Roll φd [◦] Pitch θd [◦] Heading ψd [◦]

ISNC02 with EKF
ISNC02 with DR
MPU6050 with EKF
MPU6050 with DR

AME SD
0.16 0.0018
0.22 0.0020
0.27 0.0029
0.29 0.0032

AME SD
0.12 0.0018
0.07 0.0019
0.13 0.0021
0.17 0.0022

AME SD
0.20 0.0016
0.19 0.0027
0.25 0.0032
0.27 0.0035

AME< 0.3◦ for a 120◦ gantry angle. However, differences can be seen when we
have discontinuous motions. In this case, the most accurate estimates are made
by the ISNC02 (AME of 0.12◦) and the EKF for MPU6050 (AME of 0.16◦)
compared with the DR for MPU6050 (AME of 0.41◦) for a given acquisition.
For position estimates, the MPU6050 (AME of≈ 1cm for the EKF and AME of
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Table 3 Errors on the position estimates for 120◦ acquisitions.

Filter dpx [mm] dpy [mm] dpz [mm]

ISNC02 with EKF
ISNC02 with DR
MPU6050 with EKF
MPU6050 with DR

AME SD
2.9 0.032
3.0 0.039
12 0.097
96 0.093

AME SD
1.7 0.025
1.6 0.039
9.1 0.080
61 0.084

AME SD
2.9 0.036
3.2 0.041
14 0.093
102 0.10

≈ 1dm for the DR) performs poorly compared to the ISNC02 (AME ≤ 3.2mm
for both algorithms). However, the EKF appears to reduce the tracking error
of the C-arm equipped with the poorly calibrated IMUs by ≈ 80%. Note that
the pose estimation errors increases with the acquisition time.

3.3 2D-projections errors

In order to propagate the attitude estimation errors to the 2D projections, we
simulate the following scenario. We project a square grid of 5 by 5 markers
on the detector screen. The source-to-detector distance is sdd = 1.5m and
the source-to-grid distance is swd = 0.7m as shown in Fig. 7. We empirically
choose |sx− dx| = |sy − dy| = 0.1m. In order to compare the influence of the

Fig. 7 The simulation scenario for error propagation. (0, 0) represents the center point of
the grid and (10, 10) represents the upper left corner. The projection magnification factor
is 2.14.
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errors on the different projection matrix parameters, we simulate comparable
and significant uncertainty values of these parameters: δ dφ = δ dθ = δ dψ =
0.075 rad(≈ 4.3◦) and δsx = δsy = δdx = δdy = δsdd = δswd = 50mm. The
error is propagated for one parameter at a time using the (19). We display the
obtained error bars for some geometric parameters in Fig. 8. The errors on dx
and sx lead to horizontal error bars on the 2D projections of lengths of 35mm
and 40mm respectively. When the errors on dy and sy lead to vertical error
bars of the same lengths (35mm and 40mm respectively). An error on swd
propagate as a uniform error of (5mm, 5mm) on the grid. The first term of the
parenthesis refers to the length of the error bar according to dx and the second
to the length according to dy. The errors induced by the other parameters as
a function of the grid point are indicated in Tab. 4.
The errors on the detector angles and the out-plane translations depend on

Table 4 The errors obtained for different points of the projected grid depending on the
error for a given parameter. All the errors are given in mm and in the form (a, b), where a
and b are the lengths of the error bars according to dx and to dy respectively.

Point sdd dφ dθ dψ

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 5) (0, 2.5) (0, 0) (0.39, 0.39) (0, 0.39)
(0, 10) (0, 5) (0, 0) (0.79, 0.79) (0, 0.79)
(5, 0) (2.5, 0) (0.39, 0.39) (0, 0) (0.39, 0)
(5, 5) (2.5, 2.5) (0.39, 0.39) (0.39, 0.39) (0.39, 0.39)
(5, 10) (2.5, 5) (0.39, 0.39) (0.79, 0.79) (0.39, 0.79)
(10, 0) (5, 0) (0.79, 0.79) (0, 0) (0.79, 0)
(10, 5) (5, 2.5) (0.79, 0.79) (0.39, 0.39) (0.79, 0.39)
(10, 10) (5, 5) (0.79, 0.79) (0.79, 0.79) (0.79, 0.79)

the values of the differences |sx−dx| and |sy−dy|. Under experimental condi-
tions, the errors obtained for the different detector angles are comparable. The
impacts of the out-plane translations sdd and sid are also similar. The errors
for the detector angles and sdd increase as we move from the piercing point
(here located in (0.07m, 0.07m)) to grid borders. These parameters have also
little influence on the 2D projections compared to the in-plane translations dx,
dy, sx and sy. If we propagate the errors obtained using the EKF algorithm
in Seq. 3.3, we obtain a total absolute maximum error on the 2D projections
of (7.4mm, 4.7mm)for the ISNC02 and of (29mm, 23mm) for the MPU6050.
They are displayed in Fig. 9.

4 Conclusions and discussion

During a continuous rotation of the C-arm mock-up, the required angle accu-
racy by our CBCT algorithms is reached by the three-axis gyroscopes from the
two brands (absolute mean error < 0.3◦ for all sensors). Taking into account
a dynamic model of the C-arm provides slightly better attitude estimates.
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Fig. 8 Impact of the errors on different projection parameters on the 2D projected grid.

For position estimation, the maximum accuracy is reached for the factory
calibrated sensors (position error ≤ 3.2mm). It is not sufficient for CBCT
which requires a precision of 0.1mm to 0.5mm. However, it can be suitable
for other clinical uses where a high spatial accuracy is needed such as 2D/3D
registration. The inexpensive and manually calibrated accelerometer performs
poorly with an error > 1cm. Therefore, sensors calibration appears to be crit-
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Fig. 9 Impact of the pose estimation errors for a continuous rotation of the rotated-arm
by 120◦ on the 2D projections.

ical in order to achieve sufficient accuracy. Taking into account a suitable
dynamic model appears to slightly reduce the tracking errors of the C-arm
equipped with the accurately calibrated accelerometers. It also reduces by
≈ 80% the tracking errors of the biased ones. However, in order to achieve a
sufficient accuracy for CBCT while using simple pose estimation algorithms
the measurement errors must not exceed 1.5×10−4 m/s2 during the scan. The
parameters of the C-arm’s projective geometry that have the greatest impact
on the 2D projections are the in-plane translations of the X-ray source sx and
sy and of the detector dx and dy. These translations determine the position of
the piercing point [sx−dx sy−dy] and uniformly affect the entire projected
image. Therefore, the in-plane translations are the most critical parameters to
be efficiently tracked in order to avoid artifacts in the 3D volume reconstruc-
tion. Compared to the in-plane translations, the out-plane translations swd
and sdd and the orientation of the detector have little influence on the 2D
projections. Since CBCT is performed off-line, it can be interesting to imple-
ment a smoother such as Rauch-Tung-Striebel [3] rather than a filter in order
to achieve a better accuracy. It can also be interesting to improve the dynamic
models or to fuse the information from multiple inertial sensors.
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