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Crystal plasticity modeling of the cyclic behavior of polycrystalline
aggregates under non-symmetric uniaxial loading: Global and local analyses

Harris Farooq, Georges Cailletaud, Samuel Forest∗, David Ryckelynck∗

MINES ParisTech, PSL University, Centre des matériaux, CNRS UMR 7633, BP 87 91003 Evry, France

Abstract

When a sample is cyclically loaded under a mean stress or strain, incremental strain ratcheting or
mean stress relaxation phenomena are usually observed. Experiments show that for metallic materials
there is generally no full mean stress relaxation as well as saturation of macroscopic strain ratcheting. In
contrast, most macroscopic constitutive models produce both quantities in excess, and complex sets of
additional internal variables must be introduced to improve the modeling. Little attention has been paid to
model such phenomena using polycrystal aggregates especially going up to the regime of cyclic mechanical
stability. In this work based on an elementary crystal plasticity model for FCC crystals and large scale finite
element, it is be shown that the interaction between different grains is sufficient to cater for such complex
phenomena. Light is shed on how different regions of the polycrystal accommodate each other and how
the classical definition of constant rate strain ratcheting or a zero mean stress is nearly impossible to apply
to a polycrystalline aggregate. In addition, it is shown that even if a macroscopic stable hysteresis stress
strain loop is observed, ratcheting phenomena can still be observed at the local scale. The distributions of
different constitutive quantities within a polycrystal are also analyzed which gives a new insight into what
is happening inside a polycrystal in terms of stress and strain redistribution. In particular, the existence
of evolving bimodal distributions of stress and accumulated plastic strain is evidenced and related to the
occurrence of plastic shakedown and incomplete mean stress relaxation. Two numerical criteria to detect
strain ratcheting are finally proposed and discussed.

Keywords: Multiscale modeling, Crystal plasticity, Finite Element, CPFEM, Ratcheting, Mean stress
relaxation, Strain distribution, Fatigue

1. Introduction

Most metallic materials have a heterogeneous microstructure, and this local disorder results in specific
mechanical properties. Several studies have been undertaken to link micro-macro properties of metals (Barbe
et al., 2001; Dunne et al., 2007; Zhang et al., 2007, 2016; Guilhem et al., 2018), but how local properties
affect macroscopic properties is still not fully understood. In particular, the behavior of metallic materials5

under cyclic loading conditions is the subject of considerable attention (Ghorbanpour et al., 2017; Smith
et al., 2018; Yu et al., 2013). The present paper explores two topics, namely ratcheting and mean stress
relaxation in polycrystalline aggregates under cyclic loading. Both phenomena result from asymmetric cyclic
loading conditions. In this context, elastic shakedown refers to the material deforming plastically during the
first few cycles and the subsequent response becomes elastic. Plastic shakedown refers to an open stabilized10

stress-strain hysteresis loop which does not move forward or backward on the strain axis. Asymmetric stress-
controlled uniaxial cyclic loading can result in strain ratcheting, i.e. a progressive, incremental inelastic
deformation leading to a shift of the stress-strain hysteresis loop along the strain axis (Fournier and Pineau,
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1977; Jiang and Sehitoglu, 1994; Hassan and Kyriakides, 1994a,b; Ohno et al., 1998; Portier et al., 2000;
Kang et al., 2010). Mean stress in this article is defined as (Σmax + Σmin)/2 where Σmax and Σmin are the15

maximum and minimum applied stresses in a cyclically loaded component. The stress amplitude is defined as
Σmax−Σmin/2. With regards to asymetric strain controlled cyclic loadings, it is also known that under a given
stress amplitude, increasing the mean stress, or increasing the applied mean stress under constant amplitude,
both increase the rate of ratcheting (Goodman, 1984). On the other hand, experimental observations indicate
levels of mean stress for which there is very low ratcheting and the mechanical state of the material converges20

towards plastic shakedown (Pellissier-Tanon et al., 1982). Similarly, for asymmetric strain controlled loading
conditions, a cyclic mean stress is observed, and several experimental studies (Wehner and Fatemi, 1991;
Nikulin et al., 2019; Prithivirajan and Sangid, 2018) have deciphered the corresponding physical mechanisms.
These observations show that for a given positive mean strain, and a low strain amplitude, the mean stress
does not completely relax to zero. Also, increasing the strain amplitude leads to a nonlinear decrease of the25

mean stress until it finally vanishes (Arcari et al., 2009). From a modeling perspective, the mechanical cyclic
response is sensitive to the strain path and is driven by the Bauschinger effect, as modeled by Chaboche
(1986, 1989). Classical macroscopic models (Chaboche, 1989) predict an excess of strain ratcheting as well
as mean stress. Some researchers have proposed to introduce additional kinematic and isotropic hardening
terms (Chaboche et al., 2012), resulting in numerous material parameters to be calibrated. Any change in30

the material requires recalibration of parameters. Also, no microstructural characteristics of the underlying
material are captured by such phenomenological models, which inhibits further inspection of the physics of
deformation of the material. Crystal plasticity models coupled with computational homogenization, on the
other hand, offer a way to link cyclic micro-macro properties of metallic materials (Shenoy et al., 2008).
The deformation behavior of a single crystal at the slip system level is used to determine the properties of35

polycrystalline aggregates using representative volume elements. This procedure, although phenomenological
at constitutive single crystal level, provides a realistic insight into what is happening within a polycrystal
as shown by comparison between simulations and strain field measurements (Zhao et al., 2008b; Zaafarani
et al., 2006).
Xie et al. (2004) and Sinha and Ghosh (2006), followed by Dingreville et al. (2010), were among the first40

authors to use polycrystalline aggregates coupled with CPFEM to model ratcheting. These researchers
simulated the first few cycles and then extrapolated their results to larger cycle numbers. More recently,
Hennessey et al. (2017) and Cruzado et al. (2017) proposed to change the kinematic hardening law from an
Frederick and Armstrong (2007) formulation to a modified Ohno and Wang (1993) type law. Hennessey et
al. use an accelerated simulation and run the simulation for a hundred cycles, while Cruzado et al. resort to45

a cycle jump technique (Cruzado et al., 2012; Azzouz et al., 2010; Mary and Fouvry, 2007) to extrapolate the
constitutive response. Both groups focus on the macroscopic properties of the aggregate rather than on local
stress and strain distributions. The main limitations of all the conducted studies are that local heterogeneity
and the physics behind these phenomena are neglected in favor of focusing on the macroscopic stability of
the stress-strain hysteresis loop. Attention is paid essentially to matching simulation and experimental50

results at the macroscopic level. In the recent contribution by Colas et al. (2019) the authors evidence
local ratcheting phenomena in a polycrystalline aggregate under symmetric strain loading conditions. Local
ratcheting phenomena are found to be more pronounced at a free surface than in the bulk. The analysis is
however limited to one single realization, without statistical considerations.

The objective of the present work is to show that simulations of polycrystalline aggregates based on the55

most simple crystal plasticity laws can reproduce the main phenomenological features of asymmetric cyclic
uniaxial plasticity and to correlate them with the stress and strain distributions inside the aggregates.
As stated earlier, the driving force for strain ratcheting and cyclic mean stress relaxation is the Bauschinger
effect, which in a modeling perspective is governed by kinematic hardening. Kinematic hardening controls the
ratcheting behavior as well as mean stress relaxation in structural components. Isotropic hardening, on the60

other hand, decreases the rate of plastic strain evolution per cycle. Single crystal behavior exhibits isotropic
hardening effects due to multiplication and interaction of dislocations, as well as kinematic hardening as
a result of polarization of dislocation structures. In a polycrystal, the cyclic response results from these
two hardening components inside the grains and from the intergranular interactions. Hence, to assess these
complex mechanisms, a very simple constitutive law is retained at the single crystal level for the systematic65
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study of the present work. It is first limited to purely kinematic hardening. This is a simplification which
complies with usual observations that isotropic hardening remains very limited in metallic alloys used for
engineering purposes such as nickel-based superalloys under cyclic loading, which is the target material class
of the present work (Chaboche et al., 2012). A rate–independent crystal plasticity model formulation is
used to avoid the contamination of the final results by viscosity effects. The selected crystal plasticity model70

by (Forest and Rubin, 2016) exhibits a smooth elasto-plastic transition and is strictly rate-independent. In
what follows, finite element simulations of polycrystalline aggregates will be shown to provide a realistic
description of ratcheting and mean stress relaxation in face centered cubic (FCC) metals, without resorting
to complex memory variables in contrast to macroscopic approaches. Two types of materials are taken into
account, one with a low hardening limit and high yield strength similar to Nickel base superalloys, and a75

second one with stronger hardening and a low yield strength as seen in copper based alloys as a reference
(Siska et al., 2007). Finally, the results are analyzed along two lines, i.e. at the macroscopic scale first and
then at the local scale looking at field variables influencing the phenomena.

Three main original contributions discussed in this work must be pointed out: (1) the evidence that
simulations of grain to grain interactions based on most simple single crystal model can predict limited80

ratcheting and mean stress relaxation phenomena, as observed in experiments; (2) the existence of bimodality
in the stress-strain distribution functions inside the polycrystal and its relations to the overall cyclic behavior;
(3) the results are supported by large scale finite element simulations of polycrystalline aggregates up to
large cycle number, namely 100 for the statistical analysis, more than 1000 for validation.

The paper is organized in the following manner. In Section 2 the crystal plasticity material model is85

formulated. Section 3 presents the finite element model, material parameters, as well as the physical aspects
of the microstructure. Results and discussions are provided in Sections 4, regarding macroscopic aspects,
and 5, regarding local stress and strain fields. They are followed by the conclusions in Section 6.

2. Crystal plasticity model

In the present work a small strain crystal plasticity formulation is used for the computation as most local
strains remain below 5%. Each grain is considered as an initially homogeneous single crystal. To ease the
interpretation of the numerical results, a rate–independent formulation is selected, using the single crystal
plasticity model recently proposed by Forest and Rubin (2016). An advantage of using a rate–independent
model coupled with a small strain assumption is the numerical efficiency which is crucial when simulating
hundreds of cycles under various load amplitudes. In addition, it has been decided to use exclusively
kinematic hardening because it governs ratcheting and mean stress relaxation. Face centered cubic (fcc)
single crystal metallic materials comprising n plastic slip systems, each having a slip system direction `s

and a normal to the slip plane ns are considered. The partition of the strain tensor introduces elastic and
plastic parts:

ε = εe + εp (1)

The Hooke law relates the stress tensor to the elastic strain tensor. For cubic elasticity, a fourth rank tensor
of elastic moduli C, involving three independent parameters, governs the elastic behavior:

σ = Cεe (2)

The plastic strain rate results from the slip processes with respect to all active slip systems,

ε̇p =

n∑
s=1

γ̇sms (3)

with ms being the Schmid orientation tensor defined as

ms =
1

2
(`⊗ ns + n⊗ `s) (4)
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The amount of slip on each slip system is denoted by the variable γs. The driving force for plastic slip on
slip system s is the resolved shear stress, computed using the Cauchy stress tensor σ according to:

τs = σ : ms = σijm
s
ij (5)

The yield criterion is a generalization of Schmid’s law involving scalar hardening variables rs and xs according
to Méric et al. (1991).

fs(σ, xs, rs) = |τs − xs| − rs (6)

Here, rs denotes the radius of the elastic domain and xs is a scalar back-stress characterizing the center of
the elastic range in the one-dimensional space of resolved shear stresses. In slip based crystal plasticity, there
are n such elastic ranges. Plastic slip can occur only if the function fs becomes positive. The viscoplastic
flow rule given by Méric and Cailletaud (1991), is proposed in terms of the viscosity parameters, K and n:

γ̇s =

〈
fs

K

〉n
sign(τs − xs) (7)

with the Macaulay brackets < x >= Max(x, 0). In the present work following Forest and Rubin (2016), the
rate of slip on each slip system is replaced by a rate-independent formulation of the form:

γ̇s = ε̇

〈
fs

K

〉
sign(τs − xs) (8)

where K is a positive constant having now the unit of stress and ε̇ is a non-negative homogeneous function
of order one in the total strain rate. In this model, ε̇ is taken to be the total equivalent distortional strain
rate:

ε̇ =

√
2

3
ε̇′ : ε̇′, ε̇′ = ε̇− 1

3
(trace(ε̇))1 (9)

where ε′ is the deviatoric part of the total strain rate tensor ε̇ and 1 the unit. Since the rate of inelasticity is
linear in the total equivalent strain rate ε̇, all the evolution equations in the proposed theory are homogeneous
of order one in time, characterizing a rate-independent response. Also, the rate of inelasticity is used for
all states entailing no need for special treatment of loading and unloading conditions. In particular no
consistency condition is needed in contrast to standard rate–independent plasticity. The amplitude of the
overstress is controlled by the value of parameter K. It tends to zero for vanishing values of K. There is no
indeterminacy in the selection of active slip systems according to the present model. The functional form
of f and the evolution equations for isotropic (rs) as well as kinematic (xs) hardening remain unchanged
compared to the original model (Méric and Cailletaud, 1991). The accumulated slip variable vs is defined
for each slip system by the following evolution equation:

v̇s = |γ̇s| (10)

The evolution equations for the kinematic hardening variable is taken from Méric et al. (1991) and Busso
and Cailletaud (2005) without modification. The nonlinear kinematic hardening evolution law

ẋs = Cγ̇s −Dv̇sxs (11)

depends on two material parameters, C and D. In the present paper, there is no isotropic hardening so90

that the variable rs has a constant value R0, which corresponds to the initial resolved shear stress. Under
monotonic loading the Eq. (11) can be integrated into an exponential function with maximal value x = C/D
(Besson et al., 2009), called saturated value. As a result, the satured value of the critical resolved shear
stress is R0 + C/D.
Two crystal plasticity parameter sets were chosen, as stated in table 2, where the saturated resolved shear95

stress is the same (i.e. R0 + C/D = 420 MPa for both parameter sets); The difference however lies in
the flipping of kinematic hardening and initial critical resolved shear stress. Parameter set ’LK’ has a low
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kinematic hardening but a high initial critical resolved shear stress resembling aerospace alloys such as
Inconel where the saturated value of the kinematic hardening variable is around one third of the initial yield
stress. Parameter set ’HK’ resembles an alloy with a low yield stress and a strong hardening such as copper100

where the saturated value of the kinematic hardening variable is three times that of the initial yield stress
(Siska et al., 2007). Both parameter sets pertain to unit cells made of FCC crystals deforming plastically on
octahedral slip systems {111}〈110〉. The slip systems, as ordered in the implicit simulation software Z–set
package (2013), are given in table 1.

Slip system Slip plane normal Slip direction

1 (111) [101]
2 (111) [011]
3 (111) [110]
4 (111) [101]
5 (111) [011]
6 (111) [110]
7 (111) [011]
8 (111) [110]
9 (111) [101]
10 (111) [110]
11 (111) [101]
12 (111) [011]

Table 1: The 12 octahedral FCC slip systems numbered in the same order as they are defined in the code

3. FE model description105

Literature findings show that the macroscopic representation of a micro-heterogeneous metallic material
can be achieved with as few as one hundred grains (Barbe et al., 2001; Kanit et al., 2003; Bouchedjra et al.,
2018), but matching macroscopic properties is not the goal. The goal here is to have a large enough statistical
database so that local material response can be analyzed. The question of choice of number of grains to
be considered in the polycrystal is important in mechanics of heterogeneous media. Following guidelines by110

Kanit et al. (2003), about the definition of a Representative Volume Element (RVE) for random composite
materials, a statistical approach is used consisting in selecting several realizations of the microstructure with
a finite number of grains. Such polycrystal geometries are called Volume Elements (VE). Due to extremely
long simulation times under cyclic loading, only 2 such volumes are considered. This is sufficient for a first
estimate of the scatter of our predictions. It will be checked that both VEs give very close mechanical115

responses both at the macroscopic (overall curves) and local scales (strain distribution functions). In that
sense, our method can be called an RVE approach. Two aggregates containing equiaxed grains, respectively
called VE1 and VE2, were generated using the Voronoi tessellation technique with the help of the software
VORO++ (Rycroft, 2009). A periodicity constraint was applied to obtain periodic microstructures. The
software Gmsh was used to mesh both geometries, enforcing conditions of periodicity for the obtained120

meshes. Both aggregates contain 300 grains and reduced quadratic tetrahedral elements C3D10. The mesh
of VE1 contains 194903 nodes and 130171 elements whereas the mesh of VE2 is made of 192042 nodes and
128166 elements (see figure 1 (a) and (d)). Each tetrahedral finite element has 10 nodes and 4 Gauss points.
The grain sizes in both VEs (as seen in figure 1 (b) and (e)), have a normal distribution with the crystal
orientations uniformly distributed in the polycrystal (figure 1 (c) and (f)).125

5



- Parameter set LK Parameter set HK

Cubic elasticity
C1111 = 259600 MPa C1111 = 259600 MPa
C1122 = 179000 MPa C1122 = 179000 MPa
C1212 = 109600 MPa C1212 = 109600 MPa

Critical resolved shear stress R0 = 320 MPa R0 = 100 MPa

Kinematic hardening
C = 100000 MPa C = 320000 MPa

D = 1000 D = 1000

Overstress K = 9 MPa K = 9 MPa

Table 2: Crystal plasticity parameters used for both parameter sets. The saturated critical resolved shear stress is the same for
both parameter sets; The only difference being that parameter set LK has a low kinematic hardening and high critical resolved
shear stress and vice versa.

Figure 1: 300 grain polycrystals for the FE simulations, along with the inverse pole figures of the crystallographic orientations
used in the VEs

Computational requirements

The implicit finite element solver (Z–set package, 2013) is used to solve the problem. The global equi-
librium is solved using a Newton-Raphson algorithm. Integration of constitutive equations at the Gauss
points is performed using the second order Runge-Kutta method with automatic time stepping (Besson
et al., 2009). For a crystal plasticity simulation, loading one job of the present size requires 31.5 gigabytes130

RAM. The MPI parallel computing algorithm implemented in Zebulon is used with 4 processors for each
job. Each job requires around 24 hours to complete one cycle and to run one hundred cycles, it required 100
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days each. More than 320 simulations are being post-processed for this paper, while the actual number of
calculated test cases is at least fifty times more than this. Given the number of degrees of freedom of each
mesh and the cyclic nature of the problem, data of more than 20 TBytes were generated.135

Boundary conditions

In the article, ε will be used to refer to the local strain tensor, and E will point to the macroscopic
symmetric second-rank strain tensor defined as the average strain over the whole volume:

< ε >=
1

V

∫
V

εdV = E (12)

Similarly, σ will be the local stress tensor and the macroscopic stress Σ will be defined as its spatial average
as follows:

< σ >=
1

V

∫
V

σdV = Σ (13)

Periodic boundary conditions were prescribed on the VEs such that the displacement vector field u over the
entire volume takes the form:

u = E ·x + v ∀x ∈ V (14)

where the fluctuation v is periodic. This fluctuation takes the same value for each pair of homologous
points at ∂V . Anti-periodic boundary conditions are prescribed to the traction vector σ.n where n is the
outer normal to ∂V at x . The displacement and traction vectors are assumed to be continuous at the grain
boundaries. For strain ratcheting, the macroscopic stress component Σ11 was imposed, whereas for mean140

stress relaxation the macroscopic strain component E11 was controlled. In both cases, all remaining volume
averaged stress components are fixed to zero i.e. Σ22 = Σ33 = Σ12 = Σ23 = Σ31 = 0.

4. Results at macroscopic scale

This section presents the results obtained at a global level by averaging the stress and strain fields on
the whole aggregate. Two loading types are investigated leading to ratcheting and mean stress relaxation145

respectively. In each case, the response obtained with a single crystal is given as an elementary reference.

4.1. Ratcheting in single crystals

The simulations of this subsection are performed at the material point level assuming homogeneous
deformation. A uniaxial cyclic stress was imposed on the material element. Depending on the stress
amplitude (∆Σ/2) and the mean stress Σ̄, the resulting cyclic behavior can be broken down into three150

distinct responses i.e. elasticity, elastic shakedown and ratcheting. These three regions depend on the
single crystal hardening parameters i.e its yield stress, and the kinematic and isotropic hardening parts.
For a single crystal, yield stress in tension refers to the critical resolved shear stress divided by the Schmid
factor. Figure 2 depicts these regimes in a stress amplitude (∆Σ/2 = (Σmax − Σmin)/2) vs mean stress1

(Σ̄ = (Σmax + Σmin)/2) diagram. This figure is schematic in the sense that the actual values on the two155

axes will depend on the crystal orientation. However, in the simplied model considered in this work where
isotropic harening is neglected, the general shape of the diagram will always be the sage. From figure 2, it
can be seen that elastic shakedown refers to the material deforming plastically during the first few cycles
and the subsequent response being elastic. Ratcheting in a single crystal is the progressive accumulation of
strain per cycle without stopping, as signified by the red region. So depending on the loading type, a single160

crystal is bound to either ratchet or elastically shakedown. A missing region, as opposed to experimental
observations, is that of plastic shakedown, which refers to an open stress-strain hysteresis loop which does
not move forward on the strain axis. These three regimes can be classified as follows:

1This definition is classical in fatigue but should not be confused with the same name given to the ratio between hydrostatic
stress/divided by von Mises stress used in modeling ductile fracture.
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• Elastic if ∆Σ/2 is smaller than the yield stress

• Shakedown if ∆Σ/2 is smaller than the combination of the yield stress and the saturated isotropic165

hardening

• Ratcheting if ∆Σ/2 is greater than the combination of the yield stress and the saturated isotropic
hardening

0
0

0

0

0
0

Figure 2: Under asymmetric load control, the single crystal response which shows three distinct regions i.e. elastic, shakedown
and ratcheting

4.2. Ratcheting in polycrystals

A periodic macroscopic stress (Σ11) was imposed on polycrystalline volume element periodic boundary170

conditions. Two stress strain curves pertaining to the two parameter sets are shown in figure 3. The
boundary conditions for both simulations are kept the same where Σmax = 1020 MPa and RΣ = −0.7.
RΣ = Σmin/Σmax is the stress controlled loading ratio. To avoid clutter only the first ten cycles are plotted
for both simulations. From the plot it can be seen that the curve for parameter set HK ratchets much more
than the curve for parameter set LK because of the presence of a much higher kinematic hardening in the175

former.
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Figure 3: For an asymmetric load controlled test, stress (Σ11) vs strain (E11) curves for both parameter sets. The loading
conditions are kept the same for both i.e. Σmax = 1020MPa and RΣ = −0.7. Only the first ten cycles are plotted in each case.

Both simulations ratchet at a different rates and comparing the accumulated axial strain can give a mis-
leading estimation of what is ratcheting and what is shakedown. The same argument is valid for tests done
at different amplitudes or loading ratios. Also, for a polycrystal, no matter how high the applied loading,
the increment in accumulated strain ∆E = En+1 − En always tends to decrease. This calls for the formula-
tion of a robust test for discriminating ratcheting from shakedown. A test is proposed such that the delta
accumulated strain per cycle is plotted (∆E11) against the number of cycles and identified with a power law
series in the form:

E11(N) = A

N∑
n=1

1

nα
(15)

where α is the slope of the series. The condition α < −1 is required for the power law series to converge. It
follows that

the test series

{
converges, if α < −1.

diverges, if α ≥ −1.
(16)

The left plot in figure 4 shows 3 simulations that were run for parameter set LK for three different stress
amplitudes. For comparison, a slope of -1 is also plotted on the left corner. The series test was performed
after running the simulations for a hundred cycles each. There is a clear difference between a curve that will
converge (shakedown) or one that will diverge (ratchet). As a second criterion, the second derivative at cycle180

100 is also computed for all curves which indicates the convexity (ratcheting) or concavity (shakedown) of the
curves. After applying the convergence or divergence criteria, the converging test cases are broken into two
parts depending on whether or not the width of the stress strain loop is open or closed at cycle 100. An open
loop signifies that there is plastic shakedown, whereas a closed loop points to elastic shakedown. A small
offset of tolerance is needed to establish what is meant by a closed loop. In the present work, the tolerance185

for the width of the loop at its mean stress is set to be δ = 1.0×10−6. The right hand plot in figure 4 shows
the macroscopic stress vs strain response for three selected cases at the first and at the hundredth cycle. It
can already be established that the red curves are diverging while the green and blue curves are converging.
Multiple simulations are run, on the polycrystal aggregates, at various load amplitudes and mean stresses
for a hundred cycles each. Then the evolution of macroscopic strain in each simulation is assessed using190
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the series comparison test, and a diagram similar to that of figure 2 is drawn for four cases i.e. for both
VEs and for both parameter sets. Figure 5 shows that this diagram differs from the single crystal case.
Four regions can be seen i.e. elastic, elastic shakedown, plastic shakedown and ratcheting instead of three
in the single crystal case. The elastic region is determined using the plasticity criterion for metals of a yield
strength of 0.2% plastic strain Ep, and is characterized by the gray region. The maximum stress limit for195

the polycrystal is computed by applying a macroscopic strain of 4%, the resulting stress being taken to be
the limit above which the material cannot be loaded i.e. the top and bottom right corner of each plot in
figure 5. In the same figure, the dots are found to segregate into three regions, namely elastic shakedown,
plastic shakedown and ratcheting respectively. For parameter set LK, the region in which ratcheting and
plastic shakedown occur is very small because of the low kinematic hardening. Parameter set HK, on the200

other hand, leads to a much larger region for plastic shakedown and ratcheting. It should however be noted
that the diagrams of figure 5 (a) and (b), as well as (c) and (d) are very similar signifying that it is both
VEs can be regarded as representative microstructures capable of reproducing the typical cyclic mechanical
behavior of the material.

0.0 0.5 1.0

750

500

250

0

250

500

750

1000

0.0 0.5 1.0 1.5 2.0 2.5
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0
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1000

101 102
10 8

10 7

10 6

10 5
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Figure 4: For asymmetric load controlled tests, the left figure shows the evolution of the ratcheting strain increment as a
function of cycle number for 3 polycrystal simulations using parameter set LK, with three different stress amplitudes. The
macroscopic stress (Σ11) vs strain (E11) plot is shown on the right for three simulations showing the cyclic response at cycles
1 and 100. The simulations selected illustrate the elastic shakedown, plastic shakedown and ratcheting phenomena.
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Figure 5: Ratcheting maps in polycrystals (a) VE 1 and parameter set LK, (b) VE 2 and parameter set LK, (c) VE 1 and
parameter set HK, (d) VE 2 and parameter set HK. The blue, green and red dots respectively denote elastic shakedown, plastic
shakedown and ratcheting.

4.3. Mean stress relaxation in single crystals205

Under asymmetric cyclic strain control, the mean stress relaxes to a certain value when increasing the
cycle number. At the macroscopic level, this mean stress Σ̄11, defined as (Σmax + Σmin)/2, where Σmax

and Σmin are the maximum and minimum stresses under peak strains. In this case, a single crystal cyclic
response can be broken down into three distinct scenarios which are represented in figure 6 (a) and (b).
Focusing on figure 6 (a), the first scenario shows the elastic regime where cyclic loading will have no effect on
the cyclic mean stress redistribution. To remain in this regime plasticity has to be avoided i.e. the applied
maximum strain (Emax) should be:

Emax <
Σy
Y
, (17)

where Σy is the stress at which yielding starts and Y is the Young’s modulus of the single crystal in the
loading direction. Next, in the second scenario plasticity is observed only during the first tensile loading but
upon unloading immediately after, elastic response is observed in the following cycles. To characterize the
second scenario, the loading ratio RE is defined as:

RE =
Emin

Emax
, (18)
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where Emin is the minimum applied strain. Then, the maximum applied strain Emax in the second regime
should be in the following interval:

Σy
Y

< Emax <
2Σy

Y (1−RE)
, (19)

in the absence of isotropic hardening. Finally in the last regime, the mean stress relaxes to zero and the
maximum applied strain should be:

Emax >
2Σy

Y (1−RE)
. (20)

Fig. 6 (b) then depicts the curve of the mean stress at saturation vs maximum applied axial strain. The first
scenario corresponds to the initial straight line with a slope of Y (1− RE)/2; The second scenario depends
on the type of kinematic hardening, and finally in the third scenario, a zero mean stress is found.

Figure 6: For a single crystal under asymmetric strain controlled loading, (a) stress vs strain plot showing the three scenarios
of cyclic mean stress relaxation, and (b) mean stress at saturation vs maximum axial strain plot.

4.4. Mean stress relaxation in polycrystals

The boundary conditions applied to the meshes of figure 1 were periodic with a periodic stress E11210

imposed on all elements. Figure 7 shows the stress (Σ11) vs strain (E11) response for the two parameter sets
on VE 1. Both VEs were submitted to the same loading conditions E11 = 0.85% and RE = -0.2. It can be
seen that at cycle 100, the curve for parameter set LK stabilizes to a mean stress of 40 MPa, whereas the
curve for parameter set HK relaxes to less than 0.5 MPa.
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Figure 7: Under asymmetric strain controlled boundary conditions on VE 1, stress (Σ11) vs strain (E11) plot for both parameter
sets with RE = -0.2, and E11 = 0.85%. Responses were extracted at cycles 1 and 100 for both parameter sets. Cyclic mean
stresses (Σ̄11) are also given for each case respectively.

According to Fig. 8, the response of the polycrystal can be characterized by the mean stress vs maximum215

axial strain diagram. Each point represents one simulation, with 100 cycles each, and a total of 21 simulations
were run ranging from E11 = 0.3% to 1.3% with R = −0.2 for parameter set LK and VE 1. Similarly, 21
simulations ranging from E11 = 0.11% to 1.31% with R = −0.2 were performed for parameter set HK and
VE 1. Figure 8 (a) and (b) show the response for parameters set LK and HK. It can be seen how the cyclic
mean stress relaxes with the number of cycles. The response of a single crystal oriented at 〈001〉 is also220

plotted for both parameter sets for comparison. In both cases, it was found that a steady state was achieved
at cycle 100. Figure 8 (c) and (d) shows the response of both VEs for each parameter set at cycle 1 and
100. It can be seen that parameter set LK does not lead to mean stress relaxation to zero even at a high
maximum axial strain. In contrast the material with parameter set HK relaxes to zero for E11 = 0.5%. It
can be seen that, when compared to a single crystal, the polycrystal response displays a smooth transition225

between the three scenarios which conforms to experimental findings (Chaboche et al., 2012). In addition,
both VEs produce a similar response suggesting that the considered volume elements are representative with
respect to this macroscopic response.
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Figure 8: Mean stress relaxation in polycrystals (a) VE 1, parameter set LK, (b) VE 1 parameter set HK, (c) comparison of
VE 1 and 2 for parameter set LK and HK at cycle 1, (d) comparison of VE 1 and 2 for parameter set LK and HK at cycle 100.
Comparison with single crystal response with lattice orientation < 001 >, for figures (a) and (b).

5. Analysis of local results

Attention is now focused on intragranular response of the material. Two types of local results are230

considered here, namely contour plots of stress and plane strain fields, as well as Gauss point statistics. For
the contour plots, VE 1 and 2 are sliced at x = 0.5, as depicted in figure 9.
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Figure 9: A slice of VE 1 and 2 along the 2-3 plane, at x = 0.5

5.1. Local ratcheting behavior

The results of one stress controlled simulation up to 100 cycles with Σ11 = 1021 MPa and RΣ = −0.7 for
both VE 1 and 2 are analyzed. They are plotted in figure 10 at the time step corresponding to the tensile235

peak of the one hundredth cycle. An overlay of the grain boundaries is also superimposed on top of each
contour map to make the observations easier to interpret. Eight contour plots are shown for the following
field variables:

• von Mises strain εvM =

√
2

3
ε′ijε

′
ij , where ε′ is the deviatoric part of the local strain tensor,

• equivalent plastic strain εpeq =

√
2

3
εpijε

p
ij240

• accumulated plastic strain εacc =

∫ t

0

√
2

3
ε̇ij ε̇ijdt,
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• von Mises stress σvM =

√
3

2
σ′ijσ

′
ij , where σ′ is the deviatoric part of the local stress tensor,

• stress triaxiality σtri =
σii/3√
3
2σ
′
ijσ
′
ij

,

• number of active slip systems:

(
N∑
s=1

|γs|
)
/ max
s=1,N

(|γs|), where s is the slip system,

• maximum axial Schmid factor per grain mmax = max
s=1,N

(|ms|), where ms = (ns.t)(ls.t), t being the245

tensile direction and s the slip system. This factor is computed assuming uniaxial tension.

• total axial Schmid factor per grain mtotal =

N∑
s=1

|ms|.

For both VEs, the von Mises strain and equivalent plastic strain maps in Fig. 10 show that these quantities
have very similar maps and it can be seen that they segregate in some regions of the microstructure. These
regions do not specifically conform to any specific grain or orientation. Similar observation is made for250

the accumulated plastic strain map. One important feature from the accumulated plastic strain map is
the extreme heterogeneity with locations experiencing very little plastic strain accumulation, and regions of
accumulated plastic activity as high as 55%. Looking at the von Mises stress plot, it can be seen that there
is much less heterogeneity, at least when compared to the strain plots. The von Mises stress scale begins at
800 MPa and even at this scale, not many regions can be seen to have such low stresses. Nonetheless, the255

von Mises stress seems to obey morphological constraints such as grains and grain boundaries, in contrast
to other quantities. The same holds for the stress triaxiality plot. The map of the number of active slip
systems is also given in Fig. 10. This variable ranges in principle from 1 to 12. However, it can be seen
that the estimated number of activated slip systems does not reach such large values but mostly remains
between 1 and 3. The plot shows that a value of 1 is observed mostly at the core of the grains where a single260

slip system is active. On the other hand, darker regions of the active slip system plot exist at the grain
boundaries where different grains interact and multislip is likely. Lastly, two plots for the Schmid factors
are provided in Fig. 10: the maximum axial Schmid factor mmax and the total axial Schmid factor mtotal.
A high value of mmax indicates that the grains are rather soft, meaning that they experience low stress
values. No clear correlation can be seen between the mmax map and the previous stress and strain maps.265

In contrast, interesting observations can be made from the mtotal map. The variable mtotal is the sum of all
Schmid factors for unixial tensile direction. This quantity, is another indicator of multislip activity. A clear
correlation can be seen between the mtotal map and the field of von Mises stress. Wherever there is a high
value of the von Mises stress, mtotal is low and vice versa.

16



2.00

2.75

3.50

4.25

5.00

0.00

13.75

27.50

41.25

55.0

800.0

1000.0

1200.0

1400.0

1600.0

0.000

0.175

0.350

0.525

0.700

0.3100

0.3575

0.4050

0.4525

0.4998

1.770

2.175

2.580

2.985

3.390

1.000

1.375

1.750

2.125

2.500

1.0

2.0

3.0

4.0

5.0

Figure 10: (a) For VE 1, contour plots of a simulation with Σ11 = 1021 MPa, and asymmetric load with RΣ = −0.7 after
running one hundred cycles, extracted at the maximum stress of the one hundredth cycle. The contour plots show the von
Mises strain, accumulated plastic strain, equivalent plastic strain, von Mises stress, stress triaxiality, maximum slip divided by
total slip, and the axial highest Schmid factor, and the total Schmid factor.
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Figure 10: (b) For VE 2, contour plots of a simulation with Σ11 = 1021 MPa, and asymmetric load with RΣ = −0.7 after
running one hundred cycles, extracted at the maximum stress of the one hundredth cycle. The contour plots show the von
Mises strain, accumulated plastic strain, equivalent plastic strain, von Mises stress, stress triaxiality, maximum slip divided by
total slip, and the axial highest Schmid factor, and the total Schmid factor.
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Observation of local ratcheting phenomena270

Up till now the series comparison test to detect ratcheting or shakedown has been applied to the macro-
scopic averaged results. In this section the test is applied to each element of the finite element mesh in order
to detect local ratcheting phenomenon. In the VE, the elements which ratchet are then displayed in red
while those which exhibit shakedown are shown in blue. For the application of this test, three simulations
are selected for from the asymmetric stress controlled batch (VE 1, parameter set LK) after running 100275

cycles. All three have the same loading ratio of RΣ = -0.7 while the maximum applied stress varies as
follows:

(1) Σ11 = 849 MPa, macroscopic shakedown, 1.9% of ratcheting volume

(2) Σ11 = 983 MPa, macroscopic shakedown, 29.0% of ratcheting volume

(3) Σ11 = 1021 MPa, macroscopic ratcheting, 53.8% of ratcheting volume280

Using the series comparison test for ratcheting and shakedown, the first two cases display macroscopic
shakedown while the third exhibits macroscopic ratcheting. Figure 11 elaborates this further where the
three aforementioned cases are shown. The first line shows the whole VE. In the second line of the figure,
only the finite elements of the volume which undergo ratcheting can be seen for all three loads. The third
line shows a 2D slice with the ratcheting and shakedown regions. It seems that the regions that ratchet do285

not conform to grain morphology or any particular locations and are rather random in nature.
It can be seen that the ratcheting zones of the polycrystal tend to percolate to form a connected ratcheting
domain when increasing the applied stress and before macroscopic ratcheting is observed. The volume
fraction of the percolating ratcheting zone has been determined following the method proposed in Kanit
et al. (2006) and was found to reach full percolation for the two higher loads illustrated in Fig. 11. In290

contrast, in the left column of Fig. 11 for lower load values, isolated islands of ratcheting are observed. No
direct link could be derived between the corresponding percolation threshold and the occurrence of plastic
shakedown or ratcheting.
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Figure 11: Three different asymmetric stress controlled simulations with Σ11 = 849 MPa, Σ11 = 983 MPa, and Σ11 = 1021
MPa, and RΣ = -0.7 for all cases (VE 1, parameter set LK). Macroscopically, the first and second shakedown while the third
ratchets. Local regions for ratcheting and shakedown (per finite element) are respectively shown in red and blue for each case.

Probability density distributions

Figure 12 presents Gauss point distribution plots for Σ11 = 1021 MPa, and RΣ = -0.7. Both VEs are295

considered: The solid line represents VE 1, while the dotted line represents VE 2. To show the evolution
of each variable with respect to cycle number, the statistics are collected at the tension peak of cycles 1,
10 and 100. In figure 12(a), the histogram plot of von Mises stress shows a multi-modal distribution where
the peaks can be seen to progressively split as the number of simulated cycles increases. This point will be
analyzed in the next paragraph and in the next two figures. With regards to the accumulated plastic strain300

according to Fig. 12(c), it can be seen that for the first cycle, the distributions are first unimodal but as
the cycle number increases, a hump is produced in the left part of the curves. This will be characterized
later in this article. Looking at the von Mises strain distribution, it can be seen that, with an increase in
the number of cycles, the curves translate along the strain axis, as a result of the ratcheting phenomenon.
The standard deviation of von Mises strain is found to increase with the cycle number. Regarding the stress305

triaxiality, the standard deviation similarly increases with the cycle number. Lastly, the number of active
slip systems can be seen to be less than six and with the progression of cycles, single slip starts to dominate.
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The representativity of the results is confirmed by the fact that all the dotted and solid lines corresponding
to VE 1 and 2 are close to each other. An exception is the von Mises strain distribution plots for which slight
deviations are observed, which shows a slightly different ratcheting intensity of each volume. The intensity310

of ratcheting surely is a very sensitive result of polycrystalline material response. More precise estimates
would require the consideration of additional volume elements.

Evidence of bimodal stress distribution

As seen in figure 12, the von Mises stress probability distribution curves exhibit a multimodal distribution.
This fact has already been observed by several authors using crystal plasticity simulations (Osipov et al.,315

2008; Schwartz et al., 2013; Lee et al., 2011; Choi et al., 2012). What is missing is a detailed analysis
showing the origin of this phenomenon. Figure 13 shows the von Mises stress distribution curve taken at
the tensile peak of the 100th cycle for Σ11 = 1021 MPa and RΣ = -0.7. Two distinct peaks can be seen
in the distribution arbitrarily separated by a dashed line. This separation makes it possible to split the
polycrystalline volume into two parts, the first (resp. second) one containing the Gauss point displaying a320

von Mises equivalent stress lower (resp. larger) than this separation value. The volume fractions in each
peak are then shown in the 3D and 2D views of Fig. 13, with a gray (resp. black) color corresponding to
the first (resp. second) peak. It can be noted that the black and grey regions contain mostly full grains,
i.e. each grain is either completely black or grey. Of course there are some exceptions where some grains
are split into grey and black zones. They reflect the fact that the distribution curve of von Mises stress325

was split arbitrarily and the region between the two black dotted lines in the histogram of Fig. 13 has
overlapping points. The observation of the total axial Schmid factors plot of figure 10 indicates that the
black regions correspond to hard grains, and the grey regions correspond to soft grains. It is concluded that
the polycrystal aggregate progressively splits into main regions of high and low stresses strongly correlated
with the hard/soft character of the grains.330
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Figure 12: Distribution curves of Gauss point variables for an asymmetric stress controlled test using parameter set LK, RΣ

= -0.7 and Σ11 = 1021 MPa. The variables shown are (a) von Mises stress (b) von Mises strain, (c) accumulated slip, (d)
accumulated plastic strain, and (e) stress triaxiality.
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Figure 13: For both VE 1 and 2, von Mises stress distribution at the tensile peak of the 100th cycle for Σ11 = 1021 MPa
and RΣ = -0.7. The distribution curve has been broken down into two parts and the associated regions are shown in the
microstructure respectively. All Gauss points in the first part of the distribution curve are colored gray in the microstructure,
while all Gauss points in the second part of the distribution curve are colored black.

Evidence of bimodal accumulated plastic strain distribution

Bimodality is also observed in the distribution of accumulated plastic strain or accumulated slip in figure
12(c,d), when the number of simulated cycles increases. This is not always the case. Figure 14 shows the
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Gauss point results from five simulations. These simulations pertain to parameter set HK, Σ11 = 284,
368, 452, 536, 620 MPa, and RΣ = 0. The trend that can be seen in log accumulated plastic strain plot335

distribution curves of these plots is that the first and last plots (Σ11 = 284 and 620 MPa) are unimodal
regardless of the number of simulated cycles while the other three plots start with one peak and then split
into two peaks. This bimodality reveals the existence of two regions that develop inside the polycrystal: A
first where elastic or plastic shakedown occurs and the second where ratcheting takes place. It can also be
seen that the volume of these regions depends on the applied load.340

Most importantly, it is noted that this bimodality does not always arise depending on loading values. It is
therefore possible to draw a map of the existence domain of bimodal accumulated plastic strain distribution
depending on the applied stress amplitude and mean stress. This is done in Fig. 15 taking the already
performed simulations for VE 1 and parameter set HK. The obtained modality diagram of Fig. 15 can
be compared to the ratcheting diagram of Fig. 5 based on the series criterion. It is remarkable that345

the domain of bimodality is found to almost coincide with the domain of plastic shakedown. This major
finding suggests that stable bimodal plastic strain distributions correspond to a transition regime between
shakedown (elastic or plastic) and ratcheting material response. This feature can be also be used as a
criterion for the detection of plastic shakedown replacing or in addition to the series convergence criterion.
This conclusion is confirmed by the results of VE 2 (modality map not provided here for conciseness). Note350

that the distribution of equivalent plastic strain is not bimodal. It looks rather very similar to the von Mises
strain distribution plots.
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Figure 14: Probability distribution curves for the accumulated plastic strain in five simulations with RΣ = 0 and Σ11 = 284 -
620 MPa, using parameter set HK.
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Figure 15: Modality diagram for parameter set HK, VE 1. It characterizes the existence of unimodal or bimodal distributions
of accumulated plastic strain.

5.2. Mean stress relaxation

The analysis of the local results must also be performed for other loading conditions. Such an analysis is
performed in this section in the case of strain controlled tests in order to characterize some microstructural
features associated with mean stress relaxation. For the next three figures a strain controlled simulation for
VE 1 with parameter set LK and RE = -0.2 and E11 = 0.85% is considered. The results plotted pertain to
the tensile peak of the 100th cycle. The contour plots of figure 16 can be compared with those of figure 10 (a)
(stress controlled compared to strain controlled). It can be seen that both are very similar. In particular, the
map of the von Mises strain shows that the most deformed grains are almost the same for both simulations,
except that the strain controlled simulation leads to much lower strain values. The following definition of a
local mean stress is proposed:

((σt11 + σt22 + σt33) + (σc11 + σc22 + σc33))/2 (21)

where the subscripts t ans c indicate that the variables were collected at the macroscopic tensile or com-
pressive peak of their cycle. The observation of the mean stress plot indicates that it segregates at the grain355

boundaries or at triple junctions, and is less prone to be high within the grains. It is hypothesized that this
intergranular interaction prevents the mean stress from relaxing to zero in a polycrystal.
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Figure 16: Contour plots of a simulation with asymmetric strain of E11 = 0.85% and RE = −0.2 after running one hundred
cycles, extracted at the maximum strain of the one hundredth cycle (VE 1, parameter set LK). The contour plots show the
von Mises strain, accumulated plastic strain, von Mises stress, stress triaxiality, maximum slip divided by total slip, and the
local mean stress.
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Figure 17: Distribution curves of Gauss point variables for an asymmetric strain controlled test using parameter set LK, RE =
-0.2 and E11 = 0.85%. The variables shown are (a) von Mises stress (b) von Mises strain, (c) accumulated slip, (d) accumulated
plastic strain, and (e) stress triaxiality.

The distribution curves for Gauss point variables are plotted in figure 17. The solid lines represent VE 1
while dotted lines represent VE 2. Both VEs exhibit a matching response which signifies good representativ-
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ity of the material. The von Mises stress plot shows the distributions curves translating back on the stress360

axis which reflects the decrease of the average mean stress per cycle. Again, multi-modality is observed for
the strain based loading conditions as it was observed for stress control in the previous section with regards
to ratcheting. Von Mises strain and stress triaxiality plots display somewhat similar distributions. The
plot of the number of active slips systems indicates that single slip gets more dominant as the number of
cycles increases. Accumulated slip and accumulated plastic strain exhibit bimodal distributions as in the365

stress controlled case. The next figure sheds some light on the development of bimodality in the context of
mean stress relaxation test. Figure 18 shows the breakdown of bimodality in accumulated plastic strain for
parameter set LK, VE 1 and 2. It can be seen that for the first two cases (a) and (b), the curves start as a
unimodal distribution but then split into bimodal distributions. Just like in the stress controlled case, these
curves indicate that a hundred cycles are not enough to reach a saturated response, as the bimodal peaks are370

still splitting. The two peaks that form imply that the microstructure splits into two regions, one in which
plastic activity stops after some cycles (the first stagnant peak), and the other accommodating all plastic
deformation (the second peak which keeps moving forward). At high strains, as shown in figure 18 (d), the
whole microstructure undergoes plastic activity resulting in a unimodal distribution. It is hypothesized from
the present observations that when the plasticity distribution becomes unimodal, mean stress will relax to375

zero.
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Figure 18: For VE 1 and 2, parameter set LK, distribution curves for the accumulated plastic strain per Gauss point for four
maximum axial strain values. (a), (b) and (c) show a bimodal while (d) shows a unimodal distribution. (e) gives the mean
stress for different maximum axial strains at cycle 100.

6. Simulations at high cycle numbers

The previous observations have been made from the hundred cycle response of the polycrystalline ag-
gregates. The objective of this last section is to check the validity of the drawn conclusions at higher cycle
numbers. Using crystal plasticity for low cycle fatigue, some authors have already simulated thousands380

of cycles (Joseph et al., 2010; Zhang et al., 2015), but the results provided here for the first time pertain
to a finely meshed polycrystal aggregate under asymmetric loading conditions. The mesh is fine enough
to provide detailed distribution of local stress and strain fields as illustrated in the previous sections. For
instance the present finite element meshes contain almost 600000 degrees of freedom for 300 grains to be
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compared with 150000 d.o.f. and 250 grains considered by Colas et al. (2019) where more than 1000 cycles385

were simulated. Two cases are reported in this section where the first case pertains to one simulation on VE
1 under asymmetric strain controlled periodic boundary conditions with RE = -0.2, and E11 = 0.7 % run
for 1500 cycles. Fig. 19 (a) and (b) illustrate the global mean stress relaxation over the 1500 cycles. It can
be seen that the cyclic mean stress does not relax to zero even after 1500 cycles, and seems to have reached
a saturated value signified by the saturating curve of mean stress in (b). The accumulated plastic strain plot390

of Fig. 19 (c) further confirms the bimodal distribution with one part of the aggregate experiencing further
plastic activity whereas the first peak corresponds to an elastically accommodated region of the crystal. The
same trend was observed after 100 cycles and is continuing further after 1500 cycles.
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Figure 19: Long cyclic simulation with asymmetric strain controlled boundary conditions for VE 1, parameter set LK: E11 =
0.7 %, RE = -0.2. (a) The stress strain hysteresis loops for cycles 1, 10, 100 and 1500. (b) Macroscopic mean stress plotted
against the number of cycles. (c) Gauss point distribution of the accumulated plastic strain for different cycles.

It is instructive to compare the obtained results with a simulation involving a larger number of grains at
the expense of a coarse mesh. The objective is to confirm the representativity of the presented results even395

though this feature was supported by the consideration of VE 1 and 2. A new VE with 153 = 3375 grains
and with one single hexahedral quadratic element per grain is generated, see Fig. 20(a). Using parameter
set LK, asymmetric periodic strain loading of 0.6% and RE = -0.2 is imposed. The simulation is run for
6000 cycles. Fig. 20(b) shows the macroscopic stress strain response while (c) shows the accumulated plastic
strain at the first, hundredth and six thousandth cycles. It can be seen that the macroscopic stress strain400

response does not change from the hundredth to the thousandth cycle but the accumulated slip has the
same bimodal response as observed in the previous simulations. Just as before, the microstructure divides
into two distinct regions: one that stops accumulating plasticity, and the other which takes all the plastic
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deformation indicating that these results are consistent with the study presented in this paper.
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Figure 20: Using asymmetric strain controlled boundary conditions, with E11 = 0.6% and RE = -0.2 and parameter set LK:
(a) a coarse meshed volume element with 3375 grains and one quadratic element per grain, (b) The macroscopic stress vs strain
loops for cycles 1, 100 and 6000. (c) Accumulated plastic strain after the three cyclic instances.

7. Discussion405

The motivation of the present work is to show the capabilities of the crystal plasticity model to reproduce
the types of asymmetric cyclic responses observed for engineering metallic materials. The contents of the
work are therefore of computational nature and experimental confirmation of some evidenced phenomena,
like statistical distributions of field variables is an open question. The objective of the present work is not to
match macroscopic curves for a particular material but to prove that the different experimentally observed410

regimes, namely ratcheting, elastic shakedown, plastic shakedown, and a complete or incomplete mean stress
relaxation, are properly accounted for by full field polycrystal simulations. The simulation results are now
discussed with respect to experimental evidence from the literature.

Regardind asymmetric stress controlled simulations, Fig. 5 illustrates different cyclic regimes experienced
by polycrystals. These regimes i.e. ratcheting, plastic shakedown and elastic shakedown, depend on the415

applied stress amplitude and mean stress. For 316 stainless steels Pellissier-Tanon et al. (1982) have presented
experimental evidence for plastic shakedown and ratcheting. Similarly, with an increasing mean stress,
Park et al. (2007) present experimental data for ratcheting in Inconel 718, and Lim et al. (2009); Das and
Chakraborti (2011) for ratcheting in copper. For 316 and 304 steels, an important feature found by Goodman
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(1984) and recently Taleb and Keller (2018), is that increasing the stress amplitude under a constant non-420

zero mean stress or increasing the applied mean stress under a given stress amplitude, both increase the
rate of ratcheting. Figure 5 in the present article numerically characterizes these complex cyclic phenomena
and gives an insight of how a little variation in the applied stress can result in a switch between shakedown
and ratcheting.

In contrast, under asymmetric strain controlled loadings, depending on the applied strain amplitude,425

experiments usually exhibit a non-zero cyclic mean stress. For Inconel 718, this has been demonstrated
experimentally by Prithivirajan and Sangid (2018); Gribbin et al. (2016) whereas for steels Wehner and
Fatemi (1991); Nikulin et al. (2019) have reported such behaviour. In addition, asymmetric strain con-
trolled experiments show that the mean stress relaxes to progressively lower values with an increasing strain
amplitude as found for Inconel 718 by Chaboche et al. (2012) and aluminum by Hao et al. (2015). Fig-430

ures 7 and 8 show a qualitative replication of such behaviors where increasing the applied strain amplitude
leads to smooth decreasing of mean stress until complete relaxation. Using literature findings to validate
the qualitative results on mean stress relaxation, two simulations were run using parameter set LK and
compared with the experimental data reported by Gribbin et al. (2016) for Inconel 718. The plots of figure
21 show that the full field polycrystal simulations predict non complete stress relaxation as observed in the435

corresponding experiments. The model however overestimates the amount of stress relaxation. A calibration
of the parameters to the IN718 behavior is necessary to deliver more precise predictions.
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Figure 21: Using asymmetric strain controlled tests, evolution of mean stress for two different strain amplitudes: εa = 0.6 and
0.8 %. Simulation are presented with solid lines while experiments are shown with dotted lines. The experimental curves are
taken from Gribbin et al. (2016)

After establishing that the crystal plasticity model can reproduce generic macroscopic responses, the next
step is to check what had happen inside the microstructure at the grain scale. The motivation behind this
scrutiny is that full field crystal plasticity simulations are known to predict strong local strain heterogeneities440

induced by incompatibilities at grain boundaries (Barbe et al., 2001). Some authors have already been able
to model asymmetric cyclic responses using mean-field homogenization models like the self-consistent scheme
(Krishna et al., 2009; Sai and Cailletaud, 2007; Zecevic and Knezevic, 2018; Zecevic et al., 2016). In addition
to that, full field simulations also provide local heterogeneities that play an essential role in fatigue crack
initiation.445
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At the local level, two types of simulation results were presented, namely contour maps as well as
probability distribution plots of several constitutive variables. For intragranular strain localization several
experimental observations are available either using in-situ SEM DIC (Stinville et al., 2016; Stein et al., 2014;
Zhao et al., 2008a; Walley et al., 2012), or for sub-grain strain fields (Di Gioacchino and Quinta da Fonseca,
2013; Kammers and Daly, 2013). These findings though important are mostly reported after applying450

monotonic tensile loadings. Measurements by Abuzaid et al. (2012) reveal the experimental distribution of
the accumulated plastic strain after a monotonic tensile load. A major finding of our simulations is that
under asymmetric cyclic loads, the accumulated plastic strain splits into a bimodal distribution, see Fig. 12
and 17. It must be noted also that the distribution curves in the present paper pertain to the bulk of the
polycrystal whereas experimental findings usually adhere to surface measurements. Interestingly, crack size455

distributions in a nickel-based superalloy under HCF loading conditions were experimentally determined by
Shenoy et al. (2007). Such damage distributions can be correlated with the distribution of Fatigue Indicator
Parameters directly linked to plastic activity in the grains. However, such papers deal with symmetric loading
conditions which also in computations result in a unimodal plastic strain distribution. To this extent, no
experimental evidence of bimodal strain distributions has been found in literature. It is hoped that the new460

features of plastic behavior found in the present study will give incentives for future experimental works
including strain field measurements for non-symmetric cyclic loading conditions.

8. Conclusions

Using rate-independent crystal plasticity with kinematic hardening, the cyclic response of FCC polycrys-
talline materials has been characterized both at the macroscopic and local levels. The macroscopic response465

was summarized by appropriate mean stress / stress amplitude maps whereas the mechanisms underlying
each type of material response were explored using local statistics. Two sets of materials parameters with
various amounts of yield stress and hardening were considered in order to illustrate the capability of the
polycrystal model to capture complex loading behavior under strain or stress loading control. All simulations
were run for a hundred cycles each, and more than 1000 cycles for some of them, and then the response was470

analyzed. The single crystal material model was kept as simple as possible because it is sufficient to explain,
at least qualitatively, most features of the observed polycrystal behavior. Evaluation of the results reveals
the following major findings:

• For stress controlled asymmetric simulations:

(1) Strain ratcheting in a single (resp. poly) crystal is characterized by three (resp. four) regimes.475

Elastic accommodation and ratcheting regimes are common to single and polycrystals. In con-
trast, plastic shakedown takes place only in polycrystals.

(2) A series comparison test as well as the bimodality of accumulated plastic strain distribution
criterion were proposed to detect ratcheting or plastic shakedown. A remarkable result of the
analysis is the evidence of a correlation between the existence of a bimodal distribution and overall480

plastic shakedown.

(3) A theoretical diagram for ratcheting in single crystals is built in terms of the stress amplitude ver-
sus mean stress. Several simulations were run and a similar diagram was filled for the polycrystal
showing different regimes of elastic and plastic shakedown as well as ratcheting.

(4) Gauss point statistics indicate that the von Mises stress in polycrystals is bimodal. These two485

modes become more prominent under progressive cyclic loading and they correspond to different
regions of the polycrystal respectively made of soft and hard grains in the sense of Schmid factor.

(5) Local ratcheting events were observed in polycrystals experiencing plastic shakedown at the
macroscopic scale.

(6) Evolution of the number of activated slip systems during cycling shows a trend towards single490

slip occurring in the core of the grains while multislip is observed mostly at grain boundaries.

• For strain controlled asymmetric simulations:
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(1) Cyclic mean stress relaxation in a single crystal can be broken down into three distinct regimes:
Purely elastic response, elastic accommodation after a first elastoplastic period and plastic shake-
down with vanishing mean stress. Instead, in a polycrystal, a smooth transition between these495

scenarios is observed. Mean stress relaxation towards stabilized finite values was observed for
polycrystals.

(2) Cyclic mean stress relaxes to near zero for parameter set HK (high kinematic hardening), whereas
it does not relax to zero for parameter set LK (high yield strength).

(3) Distribution curves of the accumulated plastic strain are found to be bimodal under some loading500

conditions. One part of the microstructure undergoes purely elastic accommodation whereas the
remaining part of the polycrystal experiences continuing plastic activity. From these observations,
it is conjectured that the mean stress in a polycrystal will relax to zero when the distribution
becomes unimodal.

(4) Contour plots reveal that the high cyclic mean stress is more susceptible to segregate at grain505

boundaries or at triple junctions and this local interaction causes a nonzero mean stress in a
polycrystal.

These results show that the grain to grain interactions induce cyclic responses that strongly differ from
that of the single crystal. In particular these interactions are responsible for the existence of plastic shake-
down regimes under stress control and of incomplete mean stress relaxation under strain control. This work510

contributes to the understanding of complex stress-strain redistribution phenomena at work in cyclically
loaded polycrystals using standard crystal plasticity models. These crystal plasticity models are uses exten-
sively and their capability to mimic real polycrystals has been scrutinized in this article. The macroscopic
responses of both stress and strain controlled tests are in good agreement with experimental results for engi-
neering FCC alloys where a plastic shakedown as well as a non-zero mean stress are frequently observed, for515

example in nickel-based superalloys. It remains that the present work is limited to computational analyses
and should serve as an incentive for experimental observations of the evidenced features of asymmetric cyclic
plasticity in FCC polycrystalline aggregates.

Other methods of statistical analysis could be used to dig into the huge amount of data produced in this
work. Machine learning techniques have also been used in recent works to find out some meta-models for520

fatigue crack initiation. The potential of such methods is considered by Rovinelli et al. (2014) to predict
the initiation of small fatigue cracks in polycrystals.

The current ongoing work compares the presented results with both the predictions from mean field poly-
crystal models and those from multiaxial macroscopic loading conditions. Consideration of rate-dependence
in future simulations could shed some light on the cyclic-creep behavior of alloys at higher temperatures525

(Taleb and Keller, 2018). The evidence of local ratcheting in the complex simulated fields can be used to
define fatigue indicator for damage initiation (Pécheur et al., 2012; Lu et al., 2014; Colas et al., 2019).
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AppendixA. Analysis of mesh sensitivity

Selecting the appropriate mesh density for finite element polycrystal simulations is not straightforward.
A start can be taken by refining the mesh until a converged macroscopic tensile curve is obtained but finding
macroscopic properties is not the only goal of the work. If macroscopic properties were the main goal, then535

macroscopic models could have been used or even mean field models which take into account a lot of local
information and are much faster to perform as well as require considerably less computational resources.
The goal here is also to assess local responses inside the grains. This requires large number of degrees
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of freedom in each grain. Also there is considerable difference in the solutions obtained using different
boundary conditions. In this article two types of boundary conditions are used: Periodic strain control or540

periodic stress control. Periodic stress boundary conditions are anticipated to produce more convergence
issues as compared to periodic strain because in metal plasticity, a small increment in stress produces a large
increment in strain. This effect is even more pronounced at the local level because of severe heterogeneity
in crystal plasticity simulations. With regards to VE 1 which contains 300 grains, three mesh densities were
tested for this paper:545

(1) coarse mesh with 112565 nodes and 74270 quadratic elements

(2) mesh in use with 194903 nodes and 130171 quadratic elements

(3) fine mesh with 270670 nodes and 181905 quadratic elements

A tensile test on these meshes was performed and three responses were compared i.e. the macroscopic
averaged stress strain response, the von Mises equivalent stress and strain at each Gauss point at the550

maximum traction/displacement. For periodic strain control a 2% macroscopic strain was imposed while
for periodic stress a macroscopic stress of 1110 MPa was imposed in the tensile direction. Figures A.22 and
A.23 show the three responses for both loading conditions. For strain controlled loading, all three meshes
provide a somewhat converged solution, both at the macroscopic level and at the local level. Apart from
some mismatch in the local von Mises stress distribution curve there even the coarse mesh seems to do the555

job. This is not the case for stress based loading conditions. At the macroscopic scale, the three meshes
do not lead to the same value of the mean strain at the final loading point, see Fig. A.23(a). The largest
discrepancies are found for the equivalent stress distribution, Fig. A.23(b). This shows that load controlled
asymmetric simulations require a very fine mesh to obtain converged local strain distributions. Also, even
if there is a small error in the applied stress at each increment, it can result in a significant error in the560

calculated strains. Using 24 parallel cores for each job, the time needed to run one tensile load controlled
test on each mesh was 10, 33 and 60 hours respectively. Although differences can be observed in the load
controlled simulation, hundreds of tests were required for this study and hence the intermediate mesh size
with 130171 elements was selected.
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Figure A.22: Using parameter set LK, tensile test simulations for three finite element meshes under a macroscopic periodic
strain of 2%: (a) macroscopic averaged stress strain plot,(b) and (c) von Mises equivalent strain and stress distributions at the
peak macroscopic strain.
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Figure A.23: Using parameter set LK, tensile test simulations for three finite element meshes under a macroscopic periodic
load of 1100 MPa: (a) macroscopic averaged stress strain plot, (b) and (c) show the von Mises equivalent strain and stress at
the peak macroscopic stress.

Abuzaid, W.Z., Sangid, M.D., Carroll, J.D., Sehitoglu, H., Lambros, J., 2012. Slip transfer and plastic strain accumulation565

across grain boundaries in hastelloy x. Journal of the Mechanics and Physics of Solids 60, 1201 – 1220.
Arcari, A., Vita, R.D., Dowling, N.E., 2009. Mean stress relaxation during cyclic straining of high strength aluminum alloys.

International Journal of Fatigue 31, 1742 – 1750.
Azzouz, F., Cailletaud, G., Chaboche, J.L., Ostoja-Kuczynski, E., Quilici, S., 2010. Cyclic calculations and life estimation in

thermomechanical fatigue, in: 9th International conference on multiaxial fatigue and fracture, pp. 785–793.570

Barbe, F., Forest, S., Cailletaud, G., 2001. Intergranular and intragranular behavior of polycrystalline aggregates. Part 2:
Results. International Journal of Plasticity 17, 537 – 563.

Besson, J., Cailletaud, G., Chaboche, J.L., Forest, S., Blétry, M., 2009. Non–Linear Mechanics of Materials. Solid Mechanics
and Its Applications 167, Springer-Verlag Berlin Heidelberg. doi:10.1007/978-90-481-3356-7.

Bouchedjra, M., Kanit, T., Boulemia, C., Amrouche, A., Belouchrani, M.E.A., 2018. Determination of the RVE size for575

polycrystal metals to predict monotonic and cyclic elastoplastic behavior: Statistical and numerical approach with new
criteria. European Journal of Mechanics - A/Solids 72, 1 – 15.

Busso, E.P., Cailletaud, G., 2005. On the selection of active slip systems in crystal plasticity. International Journal of Plasticity
21, 2212 – 2231. Plasticity of Heterogeneous Materials.

Chaboche, J., 1986. Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity 2, 149 –580

188.
Chaboche, J., 1989. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity 5,

247 – 302.
Chaboche, J.L., Kanout, P., Azzouz, F., 2012. Cyclic inelastic constitutive equations and their impact on the fatigue life

predictions. International Journal of Plasticity 35, 44 – 66.585

Choi, Y., Groeber, M., Turner, T., Dimiduk, D., Woodward, C., Uchic, M., Parthasarathy, T., 2012. A crystal-plasticity FEM
study on effects of simplified grain representation and mesh types on mesoscopic plasticity heterogeneities. Materials Science
and Engineering: A 553, 37 – 44.

Colas, D., Finot, E., Flouriot, S., Forest, S., Mazière, M., Paris, T., 2019. Local ratcheting phenomena in the cyclic behavior
of polycrystalline tantalum. JOM Journal of the Minerals, Metals & Materials Society .590

Cruzado, A., LLorca, J., Segurado, J., 2017. Modeling cyclic deformation of Inconel 718 superalloy by means of crystal plasticity

38

http://dx.doi.org/10.1007/978-90-481-3356-7


and computational homogenization. International Journal of Solids and Structures 122-123, 148 – 161.
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