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Introduction

Understanding biodiversity changes in time is crucial to promptly provide management practices against diversity loss (Gaston, 2008).

This has been proven for various part of the globe, considering dierent biomes and habitat types like dry [START_REF] Rocchini | Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges[END_REF] and humid [START_REF] Somers | Mesoscale assessment of changes in tropical tree species richness across a bioclimatic gradient in Panama using airborne imaging spectroscopy[END_REF] tropical forests, savannas [START_REF] Rocchini | Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges[END_REF], grasslands (Feilhauer et al., 2013), among the others. This is overall true when considering global scales, since human-induced global change is expected to make signicant changes on the Earth's biota (Moreno et al., 2017). This is explicitly taken into account by the Sustainable Development Goals of the United Nations (https://www.un.org/ sustainabledevelopment/sustainable-development-goals/), with Goal 15 explicitly aiming to halt biodiversity loss.

However, biodiversity management and planning is mainly based on eld observations related to community diversity, considering dierent taxa, under the assumption of robust statistical sampling and proper methods of analysis (e.g. Chiarucci et al. (2017)). Such a method is time and cost consuming and does not allow in most cases to get temporal replicates.

This led to the urgent need of developing worldwide research and stake- In this framework, remote sensing has been proposed as a straightforward operational tool providing a wide data coverage in a short period of time [START_REF] Rocchini | Relief eects on aerial photos geometric correction[END_REF][START_REF] Skidmore | Environmental science: agree on biodiversity metrics to track from space[END_REF], helping to save costs and time. Furthermore, measures of diversity from remotely sensed vs.

eld data showed a positive relationship, leading to consider remote sensing diversity as a direct proxy of the variation of biodiversity in space [START_REF] Gillespie | Measuring and modelling biodiversity from space[END_REF][START_REF] Lausch | Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives[END_REF].

Most of the remote sensing-based measures of spectral diversity have been widely based on i) the spatial variability of pixel values by measuring pairwise distances in a spectral space (Feret and Asnaer, 2014;[START_REF] Somers | Mesoscale assessment of changes in tropical tree species richness across a bioclimatic gradient in Panama using airborne imaging spectroscopy[END_REF] or on ii) measures of relative abundance of values based on information theory (Ricotta, 2005).

Recently, [START_REF] Rocchini | Measuring Rao's Q diversity index from remote sensing: an open source solution[END_REF] proposed the use of Rao's Q diversity as a measure of spectral diversity which explicitly takes into account dierences in a neighbourhood relying on abundance and relative distance among pixels, extending for the rst time to 2D-matrices (satellite images) the measure rstly proposed by Rao (1982).

This might allow the so called continuous eld mapping which in most cases has been applied to land cover classication [START_REF] Mathys | Evaluating eects of spectral training data distribution on continuous eld tainty of fuzzy thematic maps[END_REF] but it is also a valuable tool for diversity mapping over wide geographical regions, mainly based on moving window methods. Basically, starting from the spectral mixing space of a satellite image, one can measure the continuous variability of pixel values in space by local-based measures, which maximise the contrast in spectral diversity highlighting hotspots of diversity, mainly related to transition zones in space [START_REF] Small | A global analysis of urban reectance[END_REF].

The temporal dimension, coupled with spatial approaches, might help inferring biodiversity change over large areas. While this has been widely acknowledged in some ecological modelling practices, like in environmental niche modelling (Feng and Papes, 2017), it has rarely been explicitly considered when dealing with remotely sensed diversity measurements, over wider temporal scales. In this view, most of the research eorts have been devoted to phenology [START_REF] He | Linking variability in species composition and MODIS on beta diversity measurements[END_REF] without an explicit spatial approach to measure spectral turnover in space and time.

The aim of this paper is to present an innovative approach to calculate the temporal change of remotely sensed diversity. We will rst introduce the theoretical background of the diversity calculation in time and then provide an empirical example based on MODIS data, by also providing the complete R code (Appendix 1 or https://gitlab.com/danidr/temporal_rs_ biodiversity/blob/master/RocchiniEtAl_2019_slopes.R). 

Q = d ij × p i × p j (1) 
where d ij = pairwise distance between pixels attaining to reectance val-ues i and j, p i = relative abundance of pixels attaining to reectance value i, and p j = relative abundance of pixels attaining to reectance value j. As proposed by [START_REF] Rocchini | Measuring Rao's Q diversity index from remote sensing: an open source solution[END_REF], given an input 2D matrix (image) 

I =             P 1,
            (2) 
where P =input pixel, Rao's Q can be calculated by a moving window (spatial

kernel or 2D matrix) M =         P 1,1 P 1,2 P 1,3 P 2,1 P 2,2 P 2,3 P 3,1 P 3,2 P 3,3         (3)
using n × n pixels in a neighbourhood of a given site (pixel) by returning an output map of local alpha-diversity hotspots.

Rao's Q diversity value applied to remotely sensed images allows one to discriminate among environmental situations with low or high evenness, as the mostly used Shannon's H does, but also including distance among pixel vaues. Given an image I, Figure 1 shows four dierent situations, starting from the lowest diversity in the environment (Figure 1A), with pixels which are similar to each other (low distance) and with one value dominating the landscape (low evenness). On the contrary, Figure 1D 

O t0 =             P 1,
            (4) O t1 =             P 1,
            (5) 
O tn =             P 1,
            (6) 
In other words, the present manuscript seeks to nd a method to account for the change in time of Rao's Q diversity.

Let Q P 0 t 0 be the Rao's Q value at a given site (pixel P 0 ) in a certain moment (time t 0 , Figure 2). The Q P 0 tx value can be viewed in a linear time space from t 0 to t n . Once such values have been plotted, a locally weighted scatterplot smoothing (LOWESS) function, also referred to as LOESS [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF][START_REF] Cleveland | Locally weighted regression: an approach to regression analysis by local tting[END_REF], can be estimated, which reduces to a linear function y ∼ x in case of linear variability. LOESS ts a function to a subset of the data, generally splitting the explanatory variable and giving a higher weight to points near the point where the response is being estimated.

The mean slope (trend) of the LOESS is expected to represent the change of Rao's Q diversity in time. In order to get a pixel-wise approximation of the slope we extracted the derivative of the Rao's Q diversity smoothed temporal function at each t i , computing the y/ x. Then, the descriptive statistics over the whole time series were calculated, giving information on the smoothed function trend.

As a proxy of the variation of the Rao's Q diversity values over the whole time series, a temporal coecient of variation index (CV) was computed following [START_REF] Hijmans | Arc Macro Language (AML) version 2.1 for calculating 19 bioclimatic predictors: Berkeley, Calif, Museum of Vertebrate Zoology[END_REF]. This index, expressed as a percentage, is the ratio between the standard deviation and the mean of all the Rao's Q diversity values. Larger percentages represent a higher spectral-turnover, providing a beta-diversity quantication.

Summarising, the average slope of the LOESS curve is expected to represent the amount of mean diversity along a temporal trend, while its coecient of variation would represent the temporal turnover in the spectral Rao's Q.

Temporal diversity can thus be calculated pixel-wise in terms of both slope and coecient of variation and further plotted over the whole matrix / image.

In order to implement an empirical example of the method being proposed, we made use of the free set of Rao's Q data based on MODIS NDVI images at a resolution of 5km provided in [START_REF] Rocchini | Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study[END_REF]. A sketch of the original MODIS NDVI input set is provided in Appendix 3. In order to rely on a high complexity landscape we decided to focus on the italian peninsula, which guarantees a high ecological gradient from the sea to high 

Results

Rao's Q temporal diversity considering LOESS mean slope (mean temporal diversity) and LOESS coecient of variation (temporal turnover) showed a discriminant pattern among dierent areas (Figure 4). Both measures detected a higher temporal diversity in areas with higher landscape morphological complexity detected by the spatial Rao's Q (see Figure 3) with an enhancement in the relative temporal beta-diversity (turnover) detected by the coecient of variation of the LOESS function.

Spatial Rao's Q showed a high value in Italy in topographically and ecologically complex mountain areas, including Alps and Appennines (central italy) (Figure 3). However, once considering the temporal dimension, alpine areas showed a higher relative value of Rao's Q temporal variation, considering both mean and turnover in temporal diversity (Figure 4). This pattern has also been hypothesized, but never specically tested until now, by [START_REF] Rocchini | Landscape complexity and spatial scale inuence the relationship between remotely sensed spectral diversity and survey-based plant species richness[END_REF] who stressed the possibility of a higher variation in space and time of top mountainous areas (in particular, Alps) which are expected to show a high amount of ecologically contrasting traits, from agricultural areas to conifers and broadleaf forests, to pastures, grasslands and bare rocks (Pelorosso et al., 2011).
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Discussion

Estimating values of diversity over an area given a sample is crucial for a number of dierent ecological tasks [START_REF] Granger | Mapping diversity indices: not a trivial issue[END_REF] In this view, the variability of diversity over space has been investigated at dierent spatial scales and with dierent approaches (refer to [START_REF] Rocchini | Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges[END_REF] for a review). As stressed by [START_REF] Leitao | Mapping beta diversity from space: Sparse Generalised Dissimilarity Modelling (SGDM) for analysing high-dimensional data[END_REF], it might be crucial to nd methods readily available to deal with time series data, in order to potentially account for the time axis in the analysis of beta-diversity change.

Our method represents a powerful approach to estimate remotely sensed beta-diversity in time, at large spatial extents. Once coupled with hierarchical methods to also account for dierent scales of diversities, e.g. with Bayesian hierarchical modelling [START_REF] Zhang | Partitioning of alpha and beta di[END_REF], our approach might represent a benchmark for modelling the variability in space and time of diversity at multiple spatial scales. It is far beyond the aim of this paper to test the sensitivity of the method to dierent spatial grains and spectral resolutions, but since it is based on pixel distances and relative abundance we expect that it can be applied to any kind of multi-or hyper-volumes like multi-or hyper-spectral images at dierent spatial and spectral resolutions from high (e.g. Quickbird, Ikonos) to medium (e.g. Sentinel-2 or Landsat data) and low grains (like MODIS data in our case).

Furthermore, our method might help measuring not only spatial variations in beta-diversity to be related directly to the eect of ecosystem dynamics [START_REF] Wang | Ecosystem stability in space: alpha, beta and gamma variability[END_REF], but also supply a synthesis of temporal variations in beta-diversity thus implicitly incorporating such dynamcis.

In some cases, spatial non-stationarity has been advocated as one of the major problems when the variability of a certain variable is non-uniform in space (Osborne et al., 2007). In our case, we would promote our approach to also account for potential anomalies, or simply spots of diversity variation in time, when measuring beta-diversity from satellites. As an example, [START_REF] Mathys | Evaluating eects of spectral training data distribution on continuous eld tainty of fuzzy thematic maps[END_REF] proved that, when dealing with land cover continuous variability over space, adding spectral diversity derived from remotely sensed images could improve modelling performance.

There are intrinsic diculties related to the estimate of biodiversity changes in time (temporal beta-diversity) mainly related to the sampling replication in the same location with the same sampling protocol. Permanent plots arranged in networks like the Long Term Ecosystem Research in Europe (LTER, http://www.lter-europe.net/) have been explicitly implemented to solve the problem. However, they represent sporadic and spatially scattered locations in local areas. Once zones with high spatial and temporal variability have been detected, the attained information could be a powerful tool for guiding eld based surveys of species diversity (Rocchini et al., 2005). This is overall true when considering ancillary models specically dedicated to the development of ecient sampling designs, based on e.g. sampling optimisation based on synthetic maps [START_REF] Schweiger | Optimizing sampling approaches along ecological gradients[END_REF] or on virtual species sets (Garzon-Lopez et al., 2016).

Landscape metrics (e.g., patch area and connectivity) have been widely used as tools for identication of areas with higher biodiversity, but they mostly refers to categorical maps such as land cover [START_REF] Katayama | Landscape heterogeneitybiodiversity relationship: eect of range size[END_REF]Morelli et al., 2018). However, land cover maps are generally an oversimplication of habitat variability [START_REF] Amici | A multitemporal approach in Max-Ent modelling: A new frontier for land use/land cover change detection[END_REF] and should be used with care to avoid the underestimation of the continuous ecological variability over the landscape [START_REF] Austin | Models for the analysis of species' response to environmental gradients[END_REF]Palmer et al., 2002;[START_REF] Rocchini | Eects of spatial and spectral resolution in estimating ecosystem alpha-diversity by satellite imagery[END_REF].

In this paper, the continuous variability of spectral pixel values, coupled with the temporal dimension provided for additional information on the vari-ation of ecosystems, allowing a better detection of highly diverse spot in space and in time, considering dierent time spans t0, t1, ..., tn. Strictly speaking, including temporal variation in the analysis of diversity from remote sensing might provide additional information to spatial kernels measured at t0.

Obviously, the variability of the spectral signal is not the only proxy of diversity, and in some cases (e.g. in urban areas) a high environmental variability is not necessarily related to a high amount of biodiversity in the eld [START_REF] Ricotta | Patterns of native and exotic species richness in the urban ora of Brussels: rejecting the 'rich get richer' model[END_REF]. However, in case of natural and seminatural areas, spectral variability might represent one of the main proxies of diversity [START_REF] Skidmore | Environmental science: agree on biodiversity metrics to track from space[END_REF][START_REF] Schmeller | A suite of essential biodiversity variables for detecting critical biodiversity change[END_REF]. Hence, in order to measure spatial and temporal changes in diversity, it could be coupled with additional variables such as: i) climatic predictors [START_REF] Zellweger | Advances in microclimate ecology arising from remote sensing[END_REF], ii) soil properties [START_REF] Tuomisto | Dispersal, environment, and oristic variation of western amazonian forests[END_REF], iii) topographical complexity [START_REF] Badgley | Biodiversity and topographic complexity: modern and geohistorical perspectives[END_REF]. Furthermore, in this manuscript we made use of a spectral index like the inter-annual NDVI as an example dataset to calculate spatial heterogeneity, as in Oindo and Skidmore (2002) or Gillespie (2005) and more recently [START_REF] Feilhauer | Modeling species distribution dry forests: a case study from South Florida, USA[END_REF], by deriving the Rao's Q diversity on a continuous data matrix to monitor heterogeneity changes through time, although the annual inter-variation of productivity could be related to several factors, and not just to niche-based diversity changes. We refer to the debate between [START_REF] Krishnaswamy | Quantifying and mapping biodiversity and ecosystem services: Utility of a multiseason NDVI based Mahalanobis distance surrogate[END_REF] and [START_REF] Rocchini | Commentary on Krishnaswamy et al. -Quantifying and mapping biodiversity and ecosystem services: Utility of a multi-season NDVI based Mahalanobis distance surrogate[END_REF] about problems related to Conclusion

In this paper we presented a robust and reproducible approach to estimate the temporal ecosystems' beta-diversity based on a locally weighted scatterplot smoothing. We applied it to the spatial Rao's Q diversity proposed by [START_REF] Rocchini | Measuring Rao's Q diversity index from remote sensing: an open source solution[END_REF], but the method could be ported to any spatial diversity measure made in a spectral space.

Being based on open source coding, we expect a high reproducibility of the proposed approach, and stimulate researchers to test it in dierent habitats, by varying spatial grains and extents and potentially making use of dierent

sensors.

The open source code provided will guarantee the robustness and reproducibility of the method. In fact, we are expecting that such a code will be used by other researchers to further develop additional algorithms on temporal variability measurement from satellite images.

From an ecological and operational point of view, for species inventorying maximisation in biodiversity protection, advocated by the Sustainable Development Goal 15 (halt biodiversity loss) and scientically proposed by Rocchini et al. (2005) and more recently reviewed by [START_REF] Schmeller | A suite of essential biodiversity variables for detecting critical biodiversity change[END_REF], the temporal variability, together with the spatial one, could be benecial in order to plan more ecient conservation practices starting with those diversity hotspots detected in space and time by remote sensing techniques.

Attempts have been made to measure the spatial sensitivity of the relation between species and spectral diversity [START_REF] Wang | The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland[END_REF] which might impact further management practices if disregarded. However, as far as we know, nothing has been done to project it also in time. Our method represents a potential benchmark for applying such a variation measurement in time, which could be extended i) not only to other types of sensors in satellite images but to every kind of 2D matrices including species-plot arrays, ii) to other methods such as the measure of spatial and temporal autocorrelation (Guelat and Kery, 2008), iii) to additional ecospaces (sensu [START_REF] Dick | Fuzzy Ecospace Modelling[END_REF]) by fuzzy modelling. Both measures detected a higher temporal diversity in areas with higher landscape morphological complexity detected by the spatial Rao's Q. 

  mountain alps (until 4000 metres). Based on the open source code provided in Appendix 1, the method can be straightfowardly extended to other areas, habitats, or biomes. The nal stack of layers consisted of 17 Rao's Q images gathered from 2000 to 2016 in June (Figure3).Each pixel was projected in a temporal space according to Figure2from 2000 to 2016, and a LOESS function with automatic smoothing parameter selection through bias-corrected Akaike information criterion (AICc) was tted relying on the r package fANCOVA[START_REF] Wang | fANCOVA: Nonparametric Analysis of Covariance[END_REF], building a global set of N functions where N = number of pixels in the image. The mean slope and the coecient of variation along the temporal gradient of the LOESS function was calculated for each pixel and further spatially plotted.

Figure 1 :Figure 2 :

 12 Figure 1: Synthetic example showing four dierent environmental situations and their relative Shannon's H and Rao's Q indices. (A) Lower diversity in terms of both evenness and distance among pixel values; (B) and (C) intermediate situations; (D) higher diversity in terms of both evenness and distance among pixel values. Refer to the main text for additional information and to Appendix 2 for the mathematical calculation.

Figure 3 :

 3 Figure 3: Spatial representation of the free set of Rao's Q data based on MODIS NDVI images at a resolution of 5km provided by Rocchini et al. (2017). The nal stack of layers consists of 17 Rao's Q images gathered from 2000 to 2016 in June.

Figure 4 :

 4 Figure 4: Rao's Q temporal diversity considering LOESS mean slope (mean temporal diversity) and LOESS coecient of variation (temporal turnover).
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where N =number of input pixels (in this case 9), as: and p j , hence by 1 9 × 1 9 = 1 81 = 0.0123.

Extracting all these terms and applying the sum as in Equation 1will lead to a nal value of Q = 102.963, as in Figure 1D.

In the additional Supplementary Material we also provide a spreadsheet with the calculation of Shannon's H and Rao's Q indices for the four environmental situations reported in Figure 1.