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Biosketch 54 

This study is performed in the framework of (1) the Mountain Invasion Research Network 55 

(MIREN, www.mountaininvasions.org), a global consortium of plant ecologists focussing on 56 

species redistributions in mountain regions, and (2) SoilTemp (https://soiltemp.weebly.com), 57 

a global effort to create a database of in-situ soil temperature measurements for use in 58 

ecology. 59 

 60 
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Abstract 64 

Aim: While species distribution models (SDMs) traditionally link species occurrences to free-65 

air temperature data at coarse spatiotemporal resolution, the distribution of organisms might 66 

rather be driven by temperatures more proximal to their habitats. Several solutions are 67 

currently available, such as downscaled or interpolated coarse-grained free-air temperatures, 68 

satellite-measured land surface temperatures (LST) or in-situ measured soil temperatures. A 69 

comprehensive comparison of temperature data sources and their performance in SDMs is 70 

however currently lacking.  71 

Location: Northern Scandinavia 72 

Time period: 1970 - 2017 73 

Major taxa studied: Higher plants 74 

Methods: We evaluated different sources of temperature data (WorldClim, CHELSA, 75 

MODIS, E-OBS, topoclimate and soil temperature from miniature data loggers), differing in 76 

spatial resolution (1’’ to 0.1°), measurement focus (free-air, ground-surface or soil 77 

temperature) and temporal extent (year-long vs. long-term averages), and use them to fit 78 

SDMs for 50 plant species with different growth forms in a high-latitudinal mountain region. 79 

Results: Differences between these temperature data sources originating from measurement 80 

focus and temporal extent overshadow the effects of temporal climatic differences and 81 

spatiotemporal resolution, with elevational lapse rates ranging from -0.6 °C per 100 m for 82 

long-term free-air temperature data to -0.2 °C per 100 m for in-situ soil temperatures. Most 83 

importantly, we found that the performance of the temperature data in SDMs depended on 84 

species’ growth forms. The use of in-situ soil temperatures improved the explanatory power 85 
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of our SDMS (R² on average +16%), especially for forbs and graminoids (R²: +24% and 86 

+21% on average, respectively) compared to the other data sources. 87 

Main conclusions: We suggest future studies using SDMs to use the temperature dataset that 88 

best reflects the species’ ecology, rather than automatically using coarse-grained data from 89 

WorldClim or CHELSA. 90 

 91 

Keywords: bioclimatic variables, climate change, growth forms, microclimate, mountains, 92 

land surface temperature, bioclimatic envelope modelling, soil temperature, species 93 

distribution modelling   94 
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Introduction 95 

Species distribution models (SDMs) are widely used to describe and forecast the spatial 96 

distribution of species (Elith & Leathwick, 2009). SDMs relate species occurrence data with 97 

information about the environmental conditions at these locations (Guisan & Thuiller, 2007; 98 

Elith & Leathwick, 2009; Jiménez-Valverde et al., 2011). The most common strategy is to 99 

work with long-term (e.g. 30 years) interpolated averages of a set of bioclimatic variables at 100 

30’’ resolution (ca. 1 × 1 km at the equator), e.g. WorldClim or CHELSA (Hijmans et al., 101 

2005; Warren et al., 2008; Sears et al., 2011; Slavich et al., 2014; Gonzalez-Moreno et al., 102 

2015; Karger et al., 2017). While such macroclimate data might be sufficient to capture the 103 

conditions on flat terrains, many environments host a heterogeneous topography (e.g. across 104 

steep elevational gradients in mountain regions) that make the microclimate near the ground 105 

vary noticeably over short distances (Gottfried et al., 1999; Holden et al., 2011; Scherrer & 106 

Körner, 2011; Sears et al., 2011; Opedal et al., 2015; Stewart et al., 2018). In order to make 107 

realistic forecasts of species distributions and distribution shifts in such heterogeneous 108 

environments, it has been suggested that climate data at finer spatiotemporal resolutions are 109 

needed (Illan et al., 2010; Scherrer & Körner, 2011; Graae et al., 2012; Lenoir et al., 2013; 110 

Opedal et al., 2015; Graae et al., 2018). Such new climate datasets including in-situ logging 111 

and remote sensing are now increasingly becoming available (Bramer et al., 2018). Yet, an 112 

evaluation of their performance in species distribution models is necessary to provide 113 

guidance for future studies, in particular those predicting species responses to climate change 114 

(Stewart et al., 2018). 115 

In the high-latitude and high-elevation areas of northern Europe, local temperatures have been 116 

found to vary up to 6° C within 1 km² spatial units, reflecting the local topography (Lenoir et 117 

al., 2013). This high temperature variation depends for instance on the interaction between 118 

temperature and snow distribution, and consequently affects the length of the local growing 119 
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season (Körner, 2003; Aalto et al., 2018). Local temperatures also vary strongly between 120 

seasons, and short-term extreme weather conditions have been shown to be more relevant for 121 

species distributions than the average climatic conditions (Ashcroft & Gollan, 2012). 122 

Including this variation into SDMs is likely to be crucial, for instance in the context of 123 

stepping stones, holdouts or microrefugia (Dobrowski, 2011; Opedal et al., 2015; Meineri & 124 

Hylander, 2017). Stepping stones refer to areas with microclimates that facilitate species’ 125 

range shifts, e.g. upward or poleward movement during climate change or after non-native 126 

species introductions (Pauchard et al., 2009; Hannah et al., 2014; Lembrechts et al., 2017). 127 

Holdouts and microrefugia on the other hand are areas with a relatively stable microclimate 128 

where isolated populations can persist for a certain time (Ashcroft, 2010; Hannah et al., 2014; 129 

Lenoir et al., 2017; Meineri & Hylander, 2017). Climatic variability within an area can indeed 130 

considerably buffer climate warming effects (Lenoir et al., 2013; Lenoir et al., 2017), which 131 

often remains undetected using macroclimate data, possibly leading to the overestimation of 132 

rates of extinction and range expansion (Willis & Bhagwat, 2009).  133 

Moreover, many organisms (particularly small-stature plants, certain types of insects and soil 134 

microbes) experience temperatures at ground or sub-surface level, which can differ strongly 135 

from ambient air temperatures that are usually measured at 2 m above the soil surface (Poorter 136 

et al., 2016; Aalto et al., 2018; Körner & Hiltbrunner, 2018). Especially in high-latitude and 137 

high-elevation regions, snow cover for example acts as an insulator, thereby strongly 138 

decoupling soil and air temperatures (Pauli et al., 2013; Poorter et al., 2016; Thompson et al., 139 

2018), while biophysical processes due to vegetation cover may also decouple upper 140 

atmospheric conditions from boundary layer conditions (Geiger, 1950). 141 

In order to overcome this spatiotemporal mismatch between climate data and species ecology 142 

and to improve predictions of species’ current and future distributions, four main approaches 143 

are commonly used: (i) to downscale existing coarse-grained (i.e. 1000 x 1000 m resolution) 144 
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climate data (McCullough et al., 2016); (ii) to interpolate climate station data (Aalto et al., 145 

2017), (iii) to gather local climate data through field measurements (Potter et al., 2013; 146 

Slavich et al., 2014; Lenoir et al., 2017); or (iv) to monitor climatic conditions continuously 147 

in space and time through remote sensing technologies (e.g. satellite-measured land surface 148 

temperatures) (Wan, 2008; Metz et al., 2014; Neteler et al., 2014). In the first two approaches, 149 

a high spatial resolution can be obtained using topographic variables derived from digital 150 

elevation models which are available at much finer resolutions (e.g. 1’’, which is about 30 × 151 

30 m at the equator). Such downscaled or interpolated climate data has been found to be a 152 

significant improvement over macroclimatic variables for modelling species distributions 153 

(Randin et al., 2009b; Dobrowski, 2011; Slavich et al., 2014; Meineri & Hylander, 2017). 154 

In the third approach, one uses actual in-situ  measurements to provide fine-grained climatic 155 

conditions with high spatial accuracy (microclimate) (Opedal et al., 2015; Meineri & 156 

Hylander, 2017). Such field measurements can also be interpolated to the level of regional 157 

climate using topographical information (Ashcroft et al., 2008; Maclean et al., 2017; Greiser 158 

et al., 2018), yet usually cover short temporal and small geographical extents only. In addition 159 

to a fine spatial resolution, in-situ measurements provide the opportunity to adapt the 160 

measurement focus to the ecology or life form of the species, e.g. by measuring near-surface 161 

soil temperature instead of air temperature. Gathering in-situ  temperature data, however, 162 

requires considerably more resources than the previously mentioned downscaling approaches 163 

(Opedal et al., 2015; Meineri & Hylander, 2017). Increasing the spatiotemporal resolution and 164 

extent of such field measurements generally refines the predictions, but also presents a 165 

logistical challenge (Wundram et al., 2010; Meineri & Hylander, 2017). 166 

Finally, the fourth approach, i.e. using remotely sensed data, is now more frequently used in 167 

SDMs (Pottier et al., 2014), for instance through remotely sensed snow cover data or by using 168 

the normalized difference vegetation index (NDVI) (Yannic et al., 2014). One such remotely 169 
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sensed source of data of which the spatiotemporal resolution, extent and accuracy is rapidly 170 

improving is satellite-based land-surface temperatures (LST) (Wan, 2008; Wan et al., 2015). 171 

Remotely-sensed LST are now freely available at the global scale at the vegetation canopy or 172 

land surface level, with a temporal resolution of days over a period of decades and with a 173 

spatial resolution ranging from 30’’ (ca. 1000 × 1000 m at the equator) to as fine as 1’’ (ca. 30 174 

x 30 m) (Cook, 2014). This type of data does have the advantage over free-air temperature 175 

datasets like WorldClim or CHELSA of being a direct and contiguous measurement in space 176 

and time, as opposed to data interpolation and temporal averaging from a network of weather 177 

stations, yet might be strongly affected by land surface characteristics and cloud cover in the 178 

area (Zellweger et al., 2019). Thanks to the increasing availability of these long-term and 179 

accurate time series, such satellite-based LST-datasets offer very promising research avenues 180 

to fill the gap between local temperature measurements and global-scale climatic datasets. 181 

These different approaches to obtain suitable climate data have been extensively explored  182 

and applied in SDMs (Bramer et al., 2018), yet a comparative study of all of these 183 

(downscaled and interpolated macroclimate data, field measurements, and satellite-based 184 

LST) together – both concerning their inherent characteristics and their role in SDMs - has up 185 

till now been missing. Such a comparison is nevertheless urgently needed in order to quantify 186 

the progress that can be made by replacing the traditional global climate models with other 187 

temperature data sources. We hypothesize in that regard that the best result depends in large 188 

on two critical factors: a) the climatic characteristics of the study region, and b), the growth 189 

forms of the study organisms.  Here, we use a case study along steep climatic gradients in the 190 

Northern Scandes, a mountain range in northern Scandinavia, to assess both factors and to 191 

provide guidelines for the use of temperature data in SDMs in topographically challenging 192 

regions. We compare the characteristics of different temperature datasets within the region, as 193 

well as the descriptive and predictive power of SDMs for 50 plant species with different 194 
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growth forms: forbs, graminoids, (dwarf) shrubs and trees. We compare global climate 195 

datasets (i.e. WorldClim and CHELSA) with datasets of remotely-sensed LST (MODIS), a 196 

topographic downscaling and interpolation approach, and soil temperature obtained with 197 

miniature data loggers, and use three widely applied and ecologically relevant (i.e. 198 

bioclimatic) temperature variables: (i) mean annual temperature and mean temperature of the 199 

(ii) warmest and (iii) coldest quarter.  We hypothesize a significant effect of the spatial 200 

resolution of the climate data, as well as of measurement focus (free-air, surface, or soil) and 201 

temporal extent on temperature patterns across topographic gradients. Increasing 202 

spatiotemporal accuracy of temperature data, especially through the use of in-situ 203 

measurements, is expected to improve the descriptive and predictive power of the SDMs, 204 

despite the associated loss in temporal extent. The optimal resolution, extent and 205 

measurement focus are, however, likely to depend on the growth forms of the assessed 206 

species, i.e. the spatiotemporal framework in which they operate. 207 

Methods 208 

Study region 209 

The study was conducted in the Northern Scandes mountain range in Norway and Sweden, 210 

between N 67°46’23.5” / E 16°30’52.6” (south west) and N 68°40’33.6” / E 18°58’40.4” 211 

(north east), covering an area of 100 × 100 km and an elevation range from 0 up to 2097 m 212 

a.s.l. The area ranges from the Norwegian coast, with a relatively mild and wet climate 213 

dominated by birch forests with heathland understory, to the significantly drier and colder 214 

eastern side of the Northern Scandes, typically vegetated by subarctic, alpine dwarf shrub 215 

vegetation (Lembrechts et al., 2014). The region was chosen for its strong climatic gradient, 216 

with large macro- and microclimatic variation due to a distinct topography and high latitude 217 
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location (Scherrer & Körner, 2011; Graae et al., 2012; Lenoir et al., 2013). In total, 106 218 

temperature measurement locations were spread across the study area (Fig. 1). 219 

Climate data 220 

For this area, we obtained eight different types of climate data encompassing a wide range of 221 

measurement foci, spatiotemporal resolutions and temporal extents (Table 1). For each of 222 

these datasets, we extracted or calculated the mean annual temperature and mean temperature 223 

of the warmest and coldest quarter (bioclimatic variables Bio1, Bio10 and Bio11, following 224 

the definition of WorldClim, Hijmans et al., 2005, hereafter called mean annual, summer and 225 

winter temperature, respectively). These ecologically relevant variables belong to the set of 226 

physiologically most pertinent bioclimatic determinants of spatial plant species distribution 227 

and are thus commonly used in SDMs (e.g. Austin & Van Niel, 2011; Cord & Rödder, 2011; 228 

Distler et al., 2015), and they allow us to accurately take into account seasonal differences in 229 

climate. The different datasets are discussed in detail below. 230 

a) WorldClim 231 

The WorldClim database (Version 2.0) provides globally interpolated free-air temperature 232 

conditions over a 30-year time period (1970-2000) at a spatial resolution of 30’’ (ca. 1000 × 233 

1000 m at the equator) (Fick & Hijmans, 2017). The studied bioclimatic variables were 234 

directly downloaded from the website (www.worldclim.org). 235 

b) CHELSA 236 

The climatologies at high resolution for the earth’s land surface areas (CHELSA, Version 1.2) 237 

is a global dataset based on quasi-mechanistical statistical downscaling of free-air 238 

temperatures from the ERA Interim (ECMWF) global circulation model (Dee et al., 2011), 239 

over a period of 34 years (1979-2013) and with the same spatial resolution as WorldClim 240 
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(30’’, ca. 1000 x 1000 m at the equator), yet for a more recent time period (Karger et al., 241 

2017). Bioclimatic variables were again downloaded directly from the website (www.chelsa-242 

climate.org). 243 

c) Downscaled CHELSA-data (hereafter called ‘downscaled’) 244 

We used the bioclimatic variables downloaded from CHELSA, at an original resolution of 245 

30’’ (ca. 1000 x 1000 m at the equator), and downscaled them statistically even further, to a 246 

1’’ (ca. 30 × 30 m at the equator) resolution based on topographic variation, using a 247 

physiographically-informed model fitted with a geographically weighted regression (GWR) 248 

technique (Fotheringham et al., 2003). In short, GWR extends the traditional regression 249 

approach by allowing estimated regression parameters to vary across space. Therefore, GWR 250 

models are particularly relevant to explore the scale-dependent and spatial non-stationary 251 

relationships between free-air temperatures and physiographic variables (here: elevation, 252 

slope, eastness, northness, distance to the ocean and clear-sky solar radiation) (Su et al., 253 

2012). For more details, see Supplementary Material 1. 254 

d) Topoclimate 255 

Fine-resolution gridded climate data for the region was obtained from Aalto et al. (2017), who 256 

included topography-driven small-scale climate heterogeneity in a topoclimatic interpolation 257 

of weather station data across northern Scandinavia, using generalized additive modelling at a 258 

resolution of 1’’ (ca. 30 x 30 m at the equator). They modelled monthly average temperatures 259 

from 1981 till 2010 using geographical location, elevation, water cover, solar radiation and 260 

cold‐air pooling. Bioclimatic variables were calculated based on these monthly averages. 261 

e) MODIS LST 262 



12 
 

The moderate resolution imaging spectroradiometer (MODIS) satellite TERRA (Wan et al., 263 

2015) from the National Aeronatuics and Space Administration (USA) provides global land 264 

surface temperature (LST). We extracted data from MOD11A2: 8-day averages based on the 265 

clear sky day- and night-time records at a 30’’ (ca. 1000 × 1000 m at the equator) resolution, 266 

for a period of two years corresponding to the in-situ measurements (from August 2015 to 267 

July 2017, see below). Mean annual temperature was calculated in ArcGIS by averaging the 268 

temperature per pixel for 2015-2016 and 2016-2017, separately, from day of the year (DOY) 269 

209 in year n (e.g. July 27th for 2015) till DOY 208 in year n+1 (e.g. July 26th for 2016), 270 

which was the set of 8-day averages corresponding most closely with the period used for the 271 

in-situ temperature measurements described below (see sub-section h on Soil temperatures). 272 

Mean summer and winter temperatures were calculated similarly, yet for DOY 185 (e.g. July 273 

3th in 2015) till 272 (September 28th in 2015) and from DOY 1 (e.g. January 1st in 2016) till 274 

88 (March 28th in 2016), respectively. 275 

f)  EuroLST 276 

The EuroLST dataset is a gap-filled dataset at the European scale of LST derived from 277 

MODIS (see sub-section e focusing on MODIS LST) at a spatial resolution of 250 × 250 m 278 

and averaged over a temporal extent of 10 years (Metz et al., 2014). This dataset has been 279 

created using a combination of weighted temporal averaging with statistical modelling and 280 

spatial interpolation to fill in the gaps in the MODIS LST dataset, as well as to improve its 281 

spatial resolution. Relevant bioclimatic variables were downloaded directly from the website 282 

(courses.neteler.org/eurolst-seamless-gap-free-daily-european-maps-land-surface-283 

temperatures). 284 

g)  E-OBS 285 
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The E-OBS dataset (version 17.0) provides daily gridded climate data of free-air temperature 286 

for Europe at a 0.1° (ca. 10.000 × 10.000 m at the equator) spatial resolution, interpolated 287 

from weather stations (Haylock et al., 2008), used here over the study period from August 288 

2015 to July 2017 (as in sub-section e on MODIS LST). The gridded dataset is created by first 289 

interpolating the monthly mean temperature from the weather stations using three‐290 

dimensional thin‐plate splines, interpolating the daily anomalies using a spatial kriging 291 

approach with an external drift for temperature, and then combining these monthly and daily 292 

estimates. Temperature data was downloaded directly from the website 293 

(https://www.ecad.eu/download/ensembles/download.php) and subsequently used to generate 294 

the three studied bioclimatic variables in R. 295 

h) Soil temperatures 296 

Near-surface soil temperatures were logged every 1.5 or 2 hours (iButtons: DS1922L or 297 

DS1921G, with 0.5 °C accuracy, www.maximintegrated.com, San José, CA, USA) at a depth 298 

of 3 cm below the soil surface in 106 locations along several elevation gradients in Norway 299 

and Sweden (Fig. 1, Table 2). Loggers were wrapped in parafilm and put in a small zipper bag 300 

to prevent water damage. The loggers were originally established for several different projects 301 

(Lembrechts et al., 2014; Lembrechts et al., 2016; Lembrechts et al., 2017) along seven 302 

elevation gradients, together ranging from 0 to 1200 m a.s.l., of which three were in Norway 303 

and four in Sweden. The three bioclimatic variables were calculated in R (R Core Team, 304 

2015) for each 106 locations and for each year (from 2015 till 2017, corresponding to the 305 

periods used in sub-section e) from daily averages. Based on these soil temperature data, we 306 

made predictions for each bioclimatic variable for the whole study area of 100 × 100 km for 307 

the period August 2016 till July 2017 using GWRs (as in sub-section c featuring the 308 

downscaling approach) based on the same physiographic variables (i.e. elevation, slope, 309 

eastness, northness, distance to the ocean and clear-sky solar radiation). The models were 310 
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used to predict the bioclimatic variables for every 1’’ (ca. 30 x 30 m at the equator) pixel in 311 

the study area. For more details on the interpolation approach, see Supplementary Material 1. 312 

Plant species observations 313 

Plant species data were obtained during summer 2017 in the framework of the Mountain 314 

Invasion Research Network (www.mountaininvasions.org) long-term monitoring effort, and 315 

specifically as a follow-up of the survey of Lembrechts et al. (2014) in the Norwegian study 316 

plots (59 out of the 106 plots with in-situ soil temperature measurements, see Fig. 1, Table 2). 317 

Within the framework of this survey, three elevation gradients were selected (spanning on 318 

average 700 m in elevation). The elevation range covered by each gradient was divided into 319 

19 equally spaced elevation bands, resulting in 20 sampling sites per gradient. At each 320 

elevation, presence/absence of all vascular plant species was recorded in plots of 2 × 50 m in 321 

natural vegetation. At one end of each of these plots, the temperature logger (see dataset 322 

described in sub-section h above) was buried. We used data for the 50 most common plant 323 

species in the survey (i.e. at least 10 occurrences). Species were grouped based on their 324 

growth forms (Table S1): forbs (N = 25); graminoids (N = 7); dwarf shrubs (N = 15); and 325 

trees (N = 3). All species were native to the region. 326 

Direct comparison of climatic variables 327 

1) Relation to elevation 328 

To assess differences in the behaviour of the eight climate datasets along an elevation 329 

gradient, the three bioclimatic variables derived from these climate datasets were plotted 330 

separately against the elevation of the 106 locations of the in-situ soil temperature data 331 

loggers. For the gridded climate datasets, we extracted a value for each bioclimatic variable 332 

for each location. We used linear models (function lm in R, R Core Team, 2015) to assess the 333 

lapse rate (i.e. the slope, °C per 100 m) of temperature decrease with elevation. For MODIS 334 
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LST, E-OBS and the soil temperature measurements, data was plotted and modelled 335 

separately for the two study years (2015-2016 and 2016-2017). 336 

2) Paired comparisons 337 

For each of the 106 studied locations, we compared the values for each climatic dataset (and 338 

each of the three bioclimatic variables) against the others, to investigate consistent 339 

temperature deviations between datasets. Trends for each bioclimatic variable and each 340 

dataset were visualised with general additive models (GAMs) with a cubic regression line and 341 

without pre-set smoothing value (function gam, R package mgcv, Wood, 2006), following 342 

procedures described in Zuur et al. (2009). GAMs were used as we did not want to make 343 

restrictive assumptions about the relationships of the datasets with each other. 344 

3) Correlative dendrograms 345 

For all 106 locations, we made correlative dendrograms (distance = 1 –, where  is the 346 

Pearson’s product-moment correlation) to visualize correlations among and relationships 347 

between the different datasets, using the function hclust from the package spatstat (Baddeley 348 

et al., 2015). 349 

4) Regional climate predictions 350 

We generated regional maps for the different climate datasets (see the Climate data section as 351 

well as Supplementary Material 1 for more details on how the maps were generated for the in-352 

situ measurements), and calculated for each pixel the absolute temperature difference between 353 

the respective dataset and the regionally modelled soil temperature at a 1’’ (ca. 30 × 30 m at 354 

the equator) spatial resolution. 355 

5) Temporal correction 356 
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For a more formal comparison between the datasets with different temporal windows, we 357 

calculated for each climatic dataset its difference with the ‘background climate’, taken as 358 

temperatures for the window in question from the ERA Interim (ECMWF) 2 meter free-air 359 

temperature database (Dee et al., 2011). This is a time series of monthly means of daily means 360 

from 1979 up till 2018 (hence covering the time period for all studied datasets except 361 

WorldClim), for which we calculated average Bio1, Bio10 and Bio11 over the whole 100 × 362 

100 km study area (based on the original 0.75° × 0.75° resolution grid). We then re-ran the 363 

paired comparisons (see above) with the temperature off-set, i.e. the difference between the 364 

bioclimatic value (for each observation and for each dataset) and the average bioclimatic 365 

value from ERA Interim for the corresponding period, using paired t-tests to test for potential 366 

differences, e.g. differences between a) Bio1(soil temperature(2016-2017)) – Bio1(ERA 367 

Interim(2016-2017)) and b) Bio1(CHELSA(1979-2013)) – Bio1(ERA Interim(1979-2013)).    368 

Using this off-set of temperatures from a standardized and common time series allowed to 369 

correct to some extent for differences in the temporal scope among the climatic datasets, and 370 

thus climate change and inter-annual weather variation. While this does not take into account 371 

possible decoupling of climate change between soil, surface and air temperature, it does allow 372 

to estimate the size of the temporal effect in the dataset, and thus quantify the difference 373 

between in-situ soil temperature and the other datasets more precisely. 374 

Species distribution modelling 375 

The regional distribution of the 50 plant species was modelled using species-specific 376 

generalized linear mixed-effect models (GLMMs) (function glmer, package lme4 (Bates et 377 

al., 2013), family = binomial) as a function of mean annual, summer and winter temperature, 378 

and their quadratic terms. Gradient (plant data were available from three different elevation 379 

gradients; Table 2) was used as a random intercept term in these models to account for 380 
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structural variation between gradients. This was repeated for each climate dataset (except for 381 

E-OBS, as due to the limited measured climate variation within the region, species 382 

distributions could not be modelled), resulting in a total of 350 SDMs (50 species × 7 383 

datasets). For both MODIS LST and soil temperature, only the data from the measurement 384 

year prior to the species observations (2016-2017) were used, while the bioclimatic variables 385 

from 2015-2016 were highly correlated with those of 2016-2017 and thus excluded. The 386 

variance inflation factor (VIF, function vif, package car,  Fox & Weisberg, 2011) was 387 

calculated for each of the climatic datasets to test the correlation between the different 388 

bioclimatic variables. As the VIF (a value between 0 and infinity) exceeded 5 (indicating a 389 

strong correlation) for some datasets (specifically those with long-term climatic averages), 390 

separate models including only Bio1 as explanatory variables were made, and results 391 

compared between both approaches.  392 

The explained variance in the present distribution of the species (R² of the fixed effect, i.e. the 393 

marginal R², Nakagawa & Schielzeth, 2013) was then calculated for each model and 394 

compared across all species between the different datasets with an ANOVA and a post-hoc 395 

Tukey HSD test (R² ~ growth forms (factor with 4 levels), model assumptions were met). We 396 

also compared the increase in R² values obtained by using soil temperature versus the other 397 

climate datasets for the different growth forms (forbs, graminoids, shrubs and trees) 398 

separately. 399 

Finally, we assessed the predictive power of the different SDMs using a leave-one-out 400 

method, each time calibrating the model with 59 data points (plots) and predicting for the 401 

remaining one. We calculated the area under the curve (AUC) of the receiver operation 402 

characteristic (ROC), using the function performance from the package ROCR (Sing et al., 403 

2005), as well as the sensitivity (presences correctly predicted as presences) and the 404 

specificity (absences correctly predicted as absences) metrics. A value of 0.5 was used to 405 
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binarize predictions. This was repeated for each species and for each climate dataset, and 406 

differences in AUC, sensitivity and specificity between SDMs using the different climatic 407 

datasets were again assessed with an ANOVA and a post-hoc Tukey HSD test. We also 408 

compared the increase in AUC, sensitivity and specificity obtained by using soil temperature 409 

versus the other climate datasets for the different growth forms separately. Note that this 410 

predictive approach is limited for three reasons: First, the restricted dataset size likely 411 

constrains the predictive power of the models. Secondly, for comparison purposes, our SDMs 412 

are only calibrated using bioclimatic predictors, and thus predictive power (as estimated here 413 

using AUC-values) will be relatively low. Thirdly , when using predictive modelling in small-414 

sized plots (i.e. 100 m² here, vs. 1 km² traditionally), one can expect a high accuracy in 415 

correctly predicting presences as presence (i.e. if a species is observed, the model will also 416 

predict its presence), yet low accuracy in predicting absences as absence (i.e. if a species is 417 

absent, this could either be due to the plot falling outside its niche (correctly predicted 418 

absence), or due to random absences due to the limited plot size, or microscale non-climatic 419 

factors (incorrectly predicted absence)). Of course, incorrect absences can also be due to 420 

observation bias, identification uncertainties and incomplete detection, further lowering 421 

predictive power. We thus expect high sensitivity, yet relatively low specificity and AUC-422 

values, and encourage interpretation of these different evaluation metrics together to assess 423 

the predictive power of the models (Jiménez‐Valverde, 2012).  424 

All analyses were performed in R (R Core Team, 2015). 425 

Results 426 

Direct comparison of climatic variables 427 

All three studied bioclimatic variables (Bio1 = mean annual, Bio10 = mean summer and 428 

Bio11 = mean winter temperature) showed a consistent negative correlation with elevation in 429 
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almost all temperature datasets in the region, yet with large differences in lapse rate (Fig. 2). 430 

The latter ranged for mean annual temperature from around -0.6 °C per 100 m for CHELSA, 431 

downscaled CHELSA and Topoclimate, over around -0.4 °C per 100 m for WorldClim, 432 

EuroLST and MODIS LST to -0.2 °C per 100 m for soil temperature and -0.1 °C per 100 m 433 

for E-OBS. Mean annual temperatures were in both years consistently higher for the soil 434 

temperature than for all other datasets, i.e. both the long-term temperature data (WorldClim, 435 

CHELSA, downscaled CHELSA, Topoclimate and EuroLST, Fig. 3a-e) and the surface 436 

(MODIS LST, Fig. 3f) and free-air (E-OBS, Fig. 3g) temperature measurements from the 437 

same time period (p < 0.001 from a linear model), yet differences were larger at low than at 438 

high temperatures. Differences of 3 to 6 °C between soil temperature and all other datasets 439 

remained even after correcting for possible inter-annual and climate change effects (Table 3, 440 

Fig. S1a-f). Significant differences of up to 3 °C in mean annual temperature could also be 441 

observed between all other datasets (Table 4, Fig. S2). 442 

Despite the higher mean annual temperature in the soil, mean summer soil temperature was in 443 

both years similar (compared to WorldClim, Topoclimate, EuroLST and E-OBS) or even 444 

lower (CHELSA, downscaled CHELSA and MODIS LST) than air and surface temperature 445 

(Fig. 3h-n). After correcting for inter-annual and climate change effects, differences between 446 

soil temperature and most other datasets (except MODIS LST) remained limited to around 1 447 

to 1.5 °C (Table 4, Fig. S1g-l). Summer temperature recordings were highest in MODIS LST 448 

(Fig. 2n, Fig. S2i,k,l). The relationship with elevation was again the strongest for 449 

(downscaled) CHELSA (-0.6 °C per 100 m), and weakest for E-OBS and MODIS LST. 450 

Winter temperature showed the largest discrepancy between soil, free-air and surface 451 

temperatures (Fig. 3), with soil temperatures being close to 0 °C from sea level up to at least 452 

900 m a.s.l., and as such driving the higher mean annual temperatures in the soil (Fig. 2x). 453 

Part of this variation was due having relatively warm winters with plenty of snow in the area 454 
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in the period 2015-2017, yet the difference remained as high as 4 °C to 11 °C after correcting 455 

for the temporal mismatch (Table 4, Fig. S1n-r). Surface temperatures were in addition colder 456 

than free-air temperatures (Fig. S2n-r) due to an extended frost period (Fig. S3). Temperature 457 

differences between years were relatively small, except for mean annual and mean summer 458 

surface temperatures from MODIS (Fig. 2f,n). 459 

The above-mentioned differences along the elevation gradient, combined with additional 460 

effects from local topography, resulted in large regional differences between the different 461 

climate datasets in general (Fig. 4), and between interpolated soil temperature and the other 462 

datasets in particular (Fig. 5). The correlation analyses (Fig. 4) showed that the climate 463 

datasets were nested, with strongest relationships (across all bioclimatic variables) between 464 

the datasets with long-term averages: (downscaled) CHELSA, Topoclimate, WorldClim and 465 

EuroLST. The datasets with short-term measurements (in-situ soil, MODIS LST and free-air 466 

E-OBS) differed more from each other than from the long-term averages. Modelled mean 467 

annual temperature in the soil was, as expected, several degrees warmer than in all other 468 

datasets, especially at higher elevations (Fig. 5), while in summer soil temperature was 469 

warmer than CHELSA climate and MODIS LST at high elevations, yet colder at low 470 

elevations (Fig. 5). Winter temperature predictions were up to 17 °C higher in the soil than in 471 

the other datasets, except at the highest elevations. Due to the large local variation in snow 472 

cover, however, winter soil temperature predictions were unreliable (Fig. 5, Fig. S3), in 473 

contrast to annual and summer temperatures, for which the local R² (indicating the local 474 

spatial regression fit) of the regional interpolations was highly consistent across space, albeit 475 

only moderately high, i.e. on average 50% for Bio10 and 37% for Bio1. 476 

Species distribution modelling 477 
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SDMs using soil temperatures explained on average 80% of variance (48% if only Bio1 was 478 

used), which was on average 18% (15% for models with Bio1 only) more than the models 479 

using other climate datasets (Fig. 6, significant differences with most datasets after correcting 480 

for multiple testing). Differences in explained variance among SDMs based on these other 481 

datasets were much smaller. Differences in predictive power were not significant between 482 

models (highest for Euro-LST and downscaled CHELSA (AUC ≈ 0.70), and between 0.61 483 

and 0.64 for the other datasets (Fig. S5). As expected, sensitivity was high (≈ 0.85), yet 484 

specificity was low (≈ 0.27) for all datasets. Predictive modelling was nearly impossible with 485 

models with Bio1 only (AUC ≈ 0.5, specificity ≈ 0.20), even though sensitivity was still high 486 

(≈ 0.81). 487 

Model performances depended strongly on growth forms (i.e. forbs, graminoids, dwarf 488 

shrubs, trees, Fig. 6b-c). We observed a significant net improvement in marginal R² values (as 489 

an indicator of descriptive power of the models) for SDMs based on soil temperature in the 490 

case of forbs and graminoids compared to the other datasets (on average +24% and +21% for 491 

the full model, respectively, and 20% and 25% for the model with Bio1 only), and moderately 492 

so for shrubs (full model: +8%, Bio1: +25%). Yet there was no such net increase for trees 493 

(+2% and 8% only). On the contrary, we observed a significant net decrease in predictive 494 

values for shrubs and trees when using soil temperature compared to most of the other 495 

datasets (AUC on average -0.12 and -0.11 respectively for both models; -0.06 and -0.08  for 496 

Se), yet not so for forbs and graminoids (Fig. S5b-c).  497 

Discussion 498 

Our comparison of different climate datasets highlights that the use of a specific source of 499 

climate data is species- and region-specific and can have strong repercussions on the outcome 500 

of SDMs, as exemplified here for the distributions of 50 plant species along steep climatic 501 
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gradients in a cold-climate region. Our data indeed revealed a strong sensitivity of SDMs to 502 

the used climate dataset depending on the growth form of the species. In general, the use of 503 

in-situ soil temperature instead of surface or free-air temperature did improve the explanatory 504 

power of our SDMs. It did so much more for forbs and graminoids, to a lesser degree for 505 

shrubs, yet not for trees (Fig. 6). This outcome confirms recent studies arguing for the use of 506 

more local climate variables in distribution modelling (e.g. Ashcroft et al., 2008; Pradervand 507 

et al., 2014; Slavich et al., 2014; Opedal et al., 2015; Meineri & Hylander, 2017) and proofs 508 

the validity of this concept across a whole range of possible temperature data sources. Yet, 509 

our results also indicate that an increased accuracy of climate data does not necessarily 510 

improve distribution models for all species or in all circumstances (Bennie et al., 2014; 511 

Pradervand et al., 2014), as it will depend on the growth forms of the species and perhaps also 512 

the regional climate characteristics. The differences in SDMs’ explanatory power could result 513 

from differences in measurement focus and spatiotemporal resolution or extent, related to the 514 

different spatiotemporal framework in which different species groups operate, as discussed 515 

below. 516 

Measurement focus 517 

The most critical differences observed between the climate datasets in this study were likely 518 

driven by measurement focus (free-air, land surface or soil), with consistently higher average 519 

annual temperatures observed in the soil resulting to a large extent from differences in winter 520 

temperatures (Bio11). Even though free-air temperature predictions (WorldClim, CHELSA, 521 

E-OBS) for winter temperature easily dropped below -7 °C, and surface temperature 522 

measurements (EuroLST, MODIS LST) were even lower, winter temperatures just below the 523 

soil surface were close to 0 °C along most of the elevation gradient (Fig. 2). Only in those 524 

locations where global climate models predicted an average winter temperature below -10 °C, 525 

measured soil temperatures dropped below 0 °C (Fig. 2). These differences remained even 526 
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after correcting for the temporal mismatch in the different datasets (Table 4, Fig. S1). While 527 

some of the earliest studies on soil temperature reported a strong relationship with air 528 

temperature across all seasons (Shanks, 1956), it is clear that both a dense vegetation cover 529 

and a thick snowpack can provide effective insulation and protection against freezing events 530 

in the subnivium (Geiger, 1950; Dorrepaal et al., 2004; Pauli et al., 2013; Aalto et al., 2017; 531 

Thompson et al., 2018), and that snow in the Arctic is a crucial explanatory variable for the 532 

distribution of plant species (Randin et al., 2009a; Niittynen & Luoto, 2017). In northern 533 

Norway, especially, the relatively mild climate and humid air from the ocean result in thick 534 

winter snow packs that can provide a significant decoupling between air, surface and soil 535 

temperature (Pauli et al., 2013; Thompson et al., 2018). Such an insulating snow pack can 536 

affect plant life in several ways, through its effects on overwintering survival, productivity, 537 

reproductive success and nutrient and water availability (Niittynen & Luoto, 2017), with both 538 

positive (e.g. less frost events) and negative effects (e.g. limited growing season) observed. 539 

For many species in the region, especially low-growing forbs and graminoids, we have shown 540 

that using near-surface soil temperatures instead of free-air temperatures, which allows 541 

incorporating these snow cover effects, is crucial to accurately describe the distribution of 542 

small-stature plants (Randin et al., 2009a; Niittynen & Luoto, 2017). For trees, however, the 543 

absence of model improvement through the use of soil temperature might result from a 544 

stronger correlation with air than with soil temperature due to higher maximum canopy 545 

heights, at least in later life stages. In winter and early spring, trees are likely to be much more 546 

affected by air temperatures and freezing events affecting their buds above the snow than by 547 

temperatures in the soil (Körner, 2003).  548 

These results also indicate that the relative importance of using soil temperature in SDMs will 549 

depend on the topography and large-scale climate of the region. Most importantly, the amount 550 

of fresh snow in winter will define the strength of the discrepancy between winter (and thus 551 
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indirectly annual) mean temperatures in the soil and in the air (Cohen, 1994; Zhang, 2005). 552 

The mismatch is in our study indeed significantly larger in the warmer but snowier 553 

(Norwegian) plots at low elevations than in the colder yet drier (Swedish) plots at high 554 

elevations (Fig. 3).  For summer temperature, our data overall showed a more consistent 555 

match between the different datasets, although with minor buffering effects of the vegetation. 556 

Even though the discrepancy between measurement foci is thus region-specific (and likely 557 

even more different in e.g. tropical regions), we suggest that the use of climate data in close 558 

proximity to the study species is always recommended. Importantly, however, the use of soil 559 

temperature does not fully resolve this measurement mismatch, as only part of the plants are 560 

belowground. Although our data demonstrates a significant improvement in the use of soil 561 

temperature over free-air temperature data for species groups entirely covered by snow in 562 

winter, an optimal approach would incorporate in-situ climate measurements both above and 563 

below the soil surface. The latter can for example be achieved with the temperature and soil 564 

moisture plant simulator sensors as described in Wild et al. (2019), measuring temperatures 565 

at, above and below the surface. 566 

Despite the clear benefits of using soil temperature data in SDMs, a major drawback (next to 567 

the cost associated with obtaining in-situ soil temperature measurements) lies in the increased 568 

local-scale heterogeneity, especially in winter. The soil temperatures were in our study indeed 569 

hard to predict accurately using a 50 × 50 m DEM-based interpolation approach. More in-situ 570 

temperature measurements, as well as the inclusion of other microclimate-related variables 571 

like snow cover maps, might be needed to improve interpolations of microclimate at fine 572 

spatial resolution. This is also a prerequisite for better SDMs’ predictive performances. 573 

Follow-up studies with larger datasets and in-situ measurements of more environmental 574 

variables (e.g. soil moisture, air temperature, precipitation, or snow cover) are thus 575 

recommended to investigate this further.  576 
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While satellite-measured land surface temperature data (MODIS LST and EuroLST) resulted 577 

in mean annual temperatures within the same range as those obtained with free-air 578 

temperature measurements, the land surface temperatures were, throughout the measurement 579 

period, significantly higher in summer and lower in winter, thus resulting in an increased 580 

overall annual temperature range (Fig. 2, Fig. S1, Table 4). These extremes were however 581 

smoothed out when using the EuroLST temperature averages over a ten-year period. While 582 

the use of satellite-based land surface temperature for SDMs has until now been largely 583 

underexplored, our study adds to the growing list of recent studies indicating the potential of 584 

these untapped data resources for accurately predicting species distributions (see e.g. Cord & 585 

Rödder, 2011; Bisrat et al., 2012; Neteler et al., 2013). We expect that LST-timeseries with an 586 

even higher spatial resolution, such as Landsat (Cook, 2014) will as such turn out the crucial 587 

link between local-scale temperature measurements and global climate models. Our results 588 

however indicate that smoothed, long-term averages like EuroLST are preferable above short-589 

term measurements, especially for predictive modelling. Similar to the issue of spatial 590 

heterogeneity for in-situ soil temperature data, averages over long-term time series are, by 591 

nature, more likely to increase the predictive performances of SDMs compared with more 592 

erratic fluctuations based on short-term data.  593 

Temporal - extent 594 

Differences between the used climate datasets could also be attributed to variation in temporal 595 

extent, with the datasets building on long-term historic averages (WorldClim, CHELSA, 596 

Topoclimate and EuroLST) showing the strongest correlation with each other (Fig. 4). 597 

Correlations were however weakest for the three datasets with only two years of data, yet with 598 

different measurement foci as described above (MODIS LST, E-OBS and soil temperature). 599 

While patterns over time for these datasets were relatively consistent between measurement 600 

years (Fig. 2), they did reveal more variation between air and surface temperature than 601 
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between EuroLST and the other datasets with long-term climatic averages. The discrepancy in 602 

temporal extents might also explain why the performance of our predictive models decreased 603 

in some cases for shrubs and trees when using short-term soil (or surface) temperatures (Fig. 604 

S4 and 5). These long-lived species are indeed likely to be relatively inert towards short-term 605 

changes in their environment (Körner, 2003), which might make it harder to predict their 606 

distribution based on locally-measured short-term temperatures (Ashcroft et al., 2008). Long-607 

lived organisms like most arctic-alpine species in the study region could also persist outside 608 

their niche for considerable parts of their life (Bond & Midgley, 2001), adding to the 609 

complexity of predicting their distribution using short-term temperature data.  610 

Spatial resolution 611 

Our comparative approach indicates that the downscaling or interpolation of climate data – as 612 

applied here respectively to global datasets like CHELSA and  the in-situ soil temperature 613 

data and topoclimatic dataset from Aalto et al. (2017) – was rather successful. Downscaling 614 

of CHELSA from 1000 × 1000 m to 30 × 30 m based on the physiography worked well, as 615 

indicated by the high local R²-values (0.90 ± 0.06 for Bio1 and Bio10, 0.89 ± 0.06 for Bio11, 616 

Fig. S4), yet nevertheless only resulted in minor improvements of the regional SDMs 617 

compared to coarse-grained CHELSA-data (3.7% and 0.035 for the R2 and AUC values, 618 

respectively). This lack of improvement is in disagreement with several other studies (e.g. 619 

Gillingham et al., 2012; Slavich et al., 2014). Part of this could be due to the inherent 620 

limitations in the original CHELSA dataset: unlike elevation, small-scale topographic 621 

variables like slope and aspect are not taken into account into the original CHELSA model, 622 

and their inclusion in the downscaling approach is thus unlikely to have major effects. Small-623 

scale topographic effects on microclimate are more correctly taken into account in the 624 

topoclimatic dataset from Aalto et al. (2017), however, making the latter approach 625 

recommendable above the former. The fact that the topoclimatic dataset did not perform 626 
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significantly better in the SDMs than CHELSA either (ΔR² = -7% and +5%, and AUC = -0.01 627 

and +0.06, depending on the model), might suggest again that an increased level of detail is 628 

not better by default, yet depends on the context of the study (Bennie et al., 2014). The most 629 

likely explanation for this lack of improvement in model performance in this case thus is that 630 

the distribution of the studied alpine species might be less driven by small-scale topoclimatic 631 

variation in air temperature than by snow-cover induced variation in soil temperature.  632 

Interpolation of the soil temperature data worked well across the whole study region, except 633 

for winter temperature, where probably the strong local variation and the highly non-linear 634 

correlation with elevation resulted in inaccurate predictions (Figure 4, Fig. S3, Ashcroft et al., 635 

2008). The large differences in winter temperatures between measurement locations – and the 636 

low predictability of soil winter temperature in the region – thus suggest that caution is 637 

needed, as in many regions winter temperatures are likely crucial for the distribution of 638 

species (Williams et al., 2015). A larger dataset and more accurate predictor variables, e.g. 639 

related to snow cover duration (Niittynen & Luoto, 2017), might be needed to improve these 640 

interpolation efforts.  641 

Implications 642 

The observed differences in the climate datasets and SDMs at the regional scale advocate for 643 

a careful selection of the climate data source when modelling species distributions, based on a 644 

priori ecological assumptions about the relationship of the studied organism with the regional 645 

environment, and the comparison – or joint use – of different datasets (Buermann et al., 2008; 646 

Rebaudo et al., 2016). Measurement focus, temporal extent and spatiotemporal resolution 647 

should all be taken into account with regard to the studied species and area: is the species 648 

affected by snow cover; is it an annual or a perennial species; is the focal species mobile or 649 

sessile; does the study area reach above the treeline; is it in topographically challenging 650 
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terrain, etc. Our study highlights the importance of growth forms: soil temperature was highly 651 

important for forbs and graminoids, and to a certain extent for shrubs, yet not so for trees. 652 

Only when making ecologically meaningful a priori decisions, and when comparing the 653 

performance of different datasets – and perhaps their interactions, one can be sure that the 654 

observed trends relate to the actual (micro)climate experienced by the study species or species 655 

group(s) in the study region. Understanding these processes in the current climate is a crucial 656 

step before model projections can be improved under climate change as well. In order to 657 

advance towards this goal, there is an urgent need for large-scale datasets of microclimate 658 

data; ecologists and climatologists should consider in-depth on-the-ground, long-term 659 

microclimate monitoring along climatic gradients to be able to improve our microclimatic 660 

models for use in SDMs (Lembrechts et al., 2018). Nevertheless, our case study suggests that 661 

SDMs can be relatively robust to several characteristics of different types of climate datasets, 662 

like spatial and temporal resolution, especially in the relatively stable slow-reacting 663 

vegetation types of high-latitudinal mountains. Additionally, there is a need to improve our 664 

abilities to forecast microclimate data itself in the future, as climate change is likely to affect 665 

soil, surface and air temperatures differently (Ashcroft & Gollan, 2013; De Frenne et al., 666 

2019). Significant progress has been made in this regard, for example by integrating 667 

microclimatic dynamics and processes like microclimatic buffering in predictions (Keppel et 668 

al., 2015; Lenoir et al., 2017; Wason et al., 2017), yet there is still a need for improvement 669 

before the same diversity and quality of climate datasets will be available for SDM 670 

projections into future climate as we have now for current climate. 671 
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Tables 911 

Table 1: The eight studied climate datasets and their geographical and temporal extent, spatial resolution and measurement focus.  912 

Dataset Initial source Geographical 

extent 

Spatial 

resolution 

Measurement 

focus 

Temporal 

coverage 

a) WorldClim WorldClim Global 30’’ Free-air 1970-2000 

b) CHELSA CHELSA Global 30’’ Free-air 1979-2013 

c) Downscaled CHELSA 10000 km² 1’’ Free-air 1979-2013 

d) Topoclimate Aalto et al. 

(2018) 

10000 km² 1’’ Free-air 1981-2010 

e) MODIS LST MODIS Global 30’’ Surface 2015-2017 

f) EuroLST MODIS Europe ~7.5” Surface 2001-2011 

g) E-OBS E-OBS Europe 0.1° Free-air 2015-2017 

h) Soil temperature iButtons 10000 km² 1’’ Soil 2015-2017 

 913 
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Table 2: Overview of in-situ soil temperature measurement plots in Sweden and Norway (n=106). For each gradient (numbers from 1) to 4) 914 

refer to the map in Fig. 1), we present the number of elevation gradients (i.e. different mountains monitored), sites and plots (with more plots 915 

than sites indicating repeated temperature measurements in a < 20 × 20 m area), as well as the temporal extent, the length of the elevation 916 

gradient, and if species data is available to run species distribution models (SDMs). 917 

Region # of 

gradients 

Sites Plots Surface area Temporal extent Elevation (m a.s.l.) Species data 

1) Norway  3 59 59 2 × 100 m 01/08/15-31/07/17 0-700 Yes 

2) Sweden 2 4 23 0.6 × 1.2 m 01/08/15-31/07/16 900-1100 No 

3) Sweden 2 6 11 0.6 × 1.2 m 01/08/16-31/07/17 400-900 No 

4) Sweden 2 13 13 2 × 10 m 01/08/16-31/07/17 400-1200 No 

 918 
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Table 3: Differences in average temperature between the climatic datasets. Two-by-two 919 

comparisons between the three studied bioclimatic variables (Bio1 = mean annual 920 

temperature, Bio10 = mean temperature of the warmest quarter, Bio11 = mean temperature 921 

of the coldest quarter) for the different climatic datasets (except WorldClim) after correcting 922 

for inter-annual and climate change effects using ERA Interim (see methods for details). 923 

Analysis based on data from all 106 measurement locations, for MODIS LST, E-OBS and in-924 

situ soil temperature, only the data from 2016-2017 is tested. Values show the differences in 925 

average temperature in °C between the two datasets, with positive values indicating higher 926 

temperatures in the variable in the column than in the row. Values in bold are significant at 927 

p<0.05 from paired t-tests. Relationships with in-situ soil temperature are visualised in Fig. 928 

S1, while some relationships among the other variables are visualised in Fig. S2.    929 

 CHELSA 

down 

Topo-

climate 

EuroLST MODIS 

LST 

E-OBS In-situ 

soil 

Bio1       

CHELSA -0.03 -0.36 -3.19 -1.96 -1.11 2.67 

CHELSA down - -0.33 -3.16 -1.92 -1.08 2.68 

Topoclimate - - -2.84 -1.59 -0.75 3.00 

EuroLST - - - 1.22 2.08 5.77 

MODIS LST - - - - 0.91 4.53 

E-OBS - - - - - 3.53 

Bio10       

CHELSA -0.03 -2.86 -3.28 1.45 -2.85 -1.48 

CHELSA down - -2.83 -3.25 1.49 -2.81 -1.48 

Topoclimate - - -0.42 4.30 0.01 1.24 

EuroLST - - - 4.70 0.43 1.67 

MODIS LST - - - - -4.23 -3.15 

E-OBS - - - - - 1.12 

Bio11       

CHELSA -0.03 2.60 -2.47 -4.82 0.02 6.30 

CHELSA down - 2.63 -2.44 -4.78 0.05 6.29 

Topoclimate - - -5.07 -7.39 -2.58 3.74 

EuroLST - - - -2.35 2.49 8.72 

MODIS LST - - - - 4.89 10.99 

E-OBS - - - - - 6.06 

  930 
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Figures 931 

 932 

Figure 1: Study area and measurement locations. Location of the study area in Scandinavia 933 

(left) and digital elevation model (DEM) at 1 arc-second resolution (ca. 30 x 30 m at the 934 

equator) across the study area (right). Dots on the DEM show locations of the 106 soil 935 

temperature measurements. Species data sampling was done in the locations marked with 936 

blue dots (a and b). See Table 2 for datasets: blue = 1), orange = 2), green = 3), red = 4). 937 

Elevational gradients ranging from 0 till 700 m a.s.l. (a and b) and from 400 to 1200 m a.s.l. 938 

(c).  939 
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 940 

Figure 2: Temperature patterns against elevation for the different temperature data sets. 941 

Average annual (Bio1, a-h), summer (Bio10, i-p) and winter (Bio11, q-x) temperature for the 942 

eight climate datasets (columns, temporal extent between brackets) against elevation of the 943 

106 measurement locations. Orange (2015-2016) and red (2016-2017) lines are fitted with 944 

linear models.  945 
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 946 

Figure 3: Plot-by-plot comparisons of soil temperature data against 7 other sources of 947 

temperature data. Mean annual (Bio1, a-g), summer (Bio10, h-n) and winter (Bio11, o-u) 948 

temperature, for all 106 measurement locations for 2015-2016 (orange lines, grey dots) and 949 

2016-2017 (red lines, black dots). Black lines show first bisectors (a hypothetical perfect 950 

match), red and orange lines are fitted with generalised additive models for each year of 951 

temperature measurements separately. Measurement periods between brackets. 952 
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 953 

Figure 4: Dendrograms of collinearity between different temperature datasets. Data from 954 

the 106 measurement locations for mean annual (a - Bio1), summer (b – Bio10) and winter (c 955 

– Bio11) temperature. Measurement periods between brackets. Maps show the regional (100 956 

× 100 km) predictions for each dataset and bioclimatic variable. For Bio1, cut-outs of the 957 

maps are shown (location specified by black squares).  958 
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 959 

Figure 5: Differences (in °C) between regionally modelled soil temperature and other 960 

temperature data sources. Differences in annual average temperature (Bio1), mean 961 

temperature of the warmest quarter (Bio10) and mean temperature of the coldest quarter 962 

(Bio11) are shown for soil temperature versus downscaled CHELSA (left), E-OBS (middle) 963 

and MODIS LST (right). Comparisons between soil temperature and CHELSA, WorldClim 964 

and EuroLST are not shown, as trends were similar. Values below zero indicate a lower value 965 

for the soil temperature compared with the other dataset; values above zero a higher value. 966 

 967 
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968 

Figure 6: Proportion of explained variance (marginal R²) by species distribution models 969 

(SDMs) using the different temperature datasets. (a) Boxplots of the marginal R² of 970 

distribution models for 50 plant species in a subset of 59 plots, based on binomial GLMMs 971 

built with the different temperature datasets: using Bio1, 10 and 11 together (left, ‘Full’) or 972 

Bio1 only (right, ‘Bio1). (b) Differences in marginal R² between the models using soil 973 
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temperature and all other datasets for forbs (N = 25), graminoids (N = 7), (dwarf) shrubs (N 974 

= 15) and trees (N = 3). (c) Heatmaps visualising the differences in marginal R² between the 975 

models using soil temperature and each of the other climatic datasets for the different growth 976 

forms. Green (positive values) indicates better performance of soil temperature models, blue 977 

a better performance of the other dataset in question.  “*” and “.” respectively indicate 978 

significant (p < 0.05) and marginally significant (0.05 < p < 0.1) differences from zero as 979 

obtained with a two-sided t-test. 980 

 981 

 982 

 983 


