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Introduction

Species distribution models (SDMs) are widely used to describe and forecast the spatial distribution of species [START_REF] Elith | Species Distribution Models: ecological explanation and prediction across space and time[END_REF]. SDMs relate species occurrence data with information about the environmental conditions at these locations [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF][START_REF] Elith | Species Distribution Models: ecological explanation and prediction across space and time[END_REF][START_REF] Jiménez-Valverde | Use of niche models in invasive species risk assessments[END_REF]. The most common strategy is to work with long-term (e.g. 30 years) interpolated averages of a set of bioclimatic variables at 30'' resolution (ca. 1 × 1 km at the equator), e.g. WorldClim or CHELSA [START_REF] Hijmans | Very high resolution interpolated climate surfaces for global land areas[END_REF][START_REF] Warren | Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution[END_REF][START_REF] Sears | The world is not flat: defining relevant thermal landscapes in the context of climate change[END_REF][START_REF] Slavich | Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections[END_REF][START_REF] Gonzalez-Moreno | Beyond climate: disturbance niche shifts in invasive species[END_REF][START_REF] Karger | Climatologies at high resolution for the earth's land surface areas[END_REF]. While such macroclimate data might be sufficient to capture the conditions on flat terrains, many environments host a heterogeneous topography (e.g. across steep elevational gradients in mountain regions) that make the microclimate near the ground vary noticeably over short distances [START_REF] Gottfried | A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming[END_REF][START_REF] Holden | Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain[END_REF][START_REF] Scherrer | Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming[END_REF][START_REF] Sears | The world is not flat: defining relevant thermal landscapes in the context of climate change[END_REF][START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF][START_REF] Stewart | Forecasted homogenization of high Arctic vegetation communities under climate change[END_REF]. In order to make realistic forecasts of species distributions and distribution shifts in such heterogeneous environments, it has been suggested that climate data at finer spatiotemporal resolutions are needed [START_REF] Illan | The contributions of topoclimate and land cover to species distributions and abundance: fine-resolution tests for a mountain butterfly fauna[END_REF][START_REF] Scherrer | Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming[END_REF][START_REF] Graae | On the use of weather data in ecological studies along altitudinal and latitudinal gradients[END_REF][START_REF] Lenoir | Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe[END_REF][START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF][START_REF] Graae | Stay or go-how topographic complexity influences alpine plant population and community responses to climate change[END_REF]. Such new climate datasets including in-situ logging and remote sensing are now increasingly becoming available [START_REF] Bramer | Predicting species distributions across the Amazonian and Andean regions using remote sensing data[END_REF]). Yet, an evaluation of their performance in species distribution models is necessary to provide guidance for future studies, in particular those predicting species responses to climate change [START_REF] Stewart | Forecasted homogenization of high Arctic vegetation communities under climate change[END_REF].

In the high-latitude and high-elevation areas of northern Europe, local temperatures have been found to vary up to 6° C within 1 km² spatial units, reflecting the local topography [START_REF] Lenoir | Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe[END_REF]. This high temperature variation depends for instance on the interaction between temperature and snow distribution, and consequently affects the length of the local growing season [START_REF] Körner | Alpine plant life: functional plant ecology of high mountain ecosystems[END_REF][START_REF] Aalto | Biogeophysical controls on soilatmosphere thermal differences: implications on warming Arctic ecosystems[END_REF]. Local temperatures also vary strongly between seasons, and short-term extreme weather conditions have been shown to be more relevant for species distributions than the average climatic conditions [START_REF] Ashcroft | Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 x 300 km) and diverse region[END_REF].

Including this variation into SDMs is likely to be crucial, for instance in the context of stepping stones, holdouts or microrefugia [START_REF] Dobrowski | A climatic basis for microrefugia: the influence of terrain on climate[END_REF][START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF]Meineri & Hylander, 2017). Stepping stones refer to areas with microclimates that facilitate species' range shifts, e.g. upward or poleward movement during climate change or after non-native species introductions [START_REF] Pauchard | Ain't no mountain high enough: plant invasions reaching new elevations[END_REF][START_REF] Hannah | Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia[END_REF][START_REF] Lembrechts | Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit[END_REF].

Holdouts and microrefugia on the other hand are areas with a relatively stable microclimate where isolated populations can persist for a certain time [START_REF] Ashcroft | Identifying refugia from climate change[END_REF][START_REF] Hannah | Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia[END_REF][START_REF] Lenoir | Climatic microrefugia under anthropogenic climate change: implications for species redistribution[END_REF]Meineri & Hylander, 2017). Climatic variability within an area can indeed considerably buffer climate warming effects [START_REF] Lenoir | Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe[END_REF][START_REF] Lenoir | Climatic microrefugia under anthropogenic climate change: implications for species redistribution[END_REF], which often remains undetected using macroclimate data, possibly leading to the overestimation of rates of extinction and range expansion [START_REF] Willis | Biodiversity and climate change[END_REF].

Moreover, many organisms (particularly small-stature plants, certain types of insects and soil microbes) experience temperatures at ground or sub-surface level, which can differ strongly from ambient air temperatures that are usually measured at 2 m above the soil surface [START_REF] Poorter | Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field[END_REF][START_REF] Aalto | Biogeophysical controls on soilatmosphere thermal differences: implications on warming Arctic ecosystems[END_REF][START_REF] Körner | The 90 ways to describe plant temperature[END_REF]. Especially in high-latitude and high-elevation regions, snow cover for example acts as an insulator, thereby strongly decoupling soil and air temperatures [START_REF] Pauli | The subnivium: a deteriorating seasonal refugium[END_REF][START_REF] Poorter | Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field[END_REF][START_REF] Thompson | The phenology of the subnivium[END_REF], while biophysical processes due to vegetation cover may also decouple upper atmospheric conditions from boundary layer conditions [START_REF] Geiger | The climate near the ground[END_REF].

In order to overcome this spatiotemporal mismatch between climate data and species ecology and to improve predictions of species' current and future distributions, four main approaches are commonly used: (i) to downscale existing coarse-grained (i.e. 1000 x 1000 m resolution) climate data [START_REF] Mccullough | High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes[END_REF]; (ii) to interpolate climate station data [START_REF] Aalto | Revealing topoclimatic heterogeneity using meteorological station data[END_REF], (iii) to gather local climate data through field measurements [START_REF] Potter | Microclimatic challenges in global change biology[END_REF][START_REF] Slavich | Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections[END_REF][START_REF] Lenoir | Climatic microrefugia under anthropogenic climate change: implications for species redistribution[END_REF]; or (iv) to monitor climatic conditions continuously in space and time through remote sensing technologies (e.g. satellite-measured land surface temperatures) [START_REF] Wan | New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products[END_REF][START_REF] Metz | Surface temperatures at the continental scale: tracking changes with remote sensing at unprecedented detail[END_REF][START_REF] Neteler | Massive data processing in GRASS GIS 7: A new gap-filled MODIS Land Surface Temperature time series data set[END_REF]. In the first two approaches, a high spatial resolution can be obtained using topographic variables derived from digital elevation models which are available at much finer resolutions (e.g. 1'', which is about 30 × 30 m at the equator). Such downscaled or interpolated climate data has been found to be a significant improvement over macroclimatic variables for modelling species distributions (Randin et al., 2009b;[START_REF] Dobrowski | A climatic basis for microrefugia: the influence of terrain on climate[END_REF][START_REF] Slavich | Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections[END_REF]Meineri & Hylander, 2017).

In the third approach, one uses actual in-situ measurements to provide fine-grained climatic conditions with high spatial accuracy (microclimate) [START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF]Meineri & Hylander, 2017). Such field measurements can also be interpolated to the level of regional climate using topographical information [START_REF] Ashcroft | The effect of exposure on landscape scale soil surface temperatures and species distribution models[END_REF][START_REF] Maclean | Fine-scale climate change: modelling spatial variation in biologically meaningful rates of warming[END_REF][START_REF] Greiser | Monthly microclimate models in a managed boreal forest landscape[END_REF], yet usually cover short temporal and small geographical extents only. In addition to a fine spatial resolution, in-situ measurements provide the opportunity to adapt the measurement focus to the ecology or life form of the species, e.g. by measuring near-surface soil temperature instead of air temperature. Gathering in-situ temperature data, however, requires considerably more resources than the previously mentioned downscaling approaches [START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF]Meineri & Hylander, 2017). Increasing the spatiotemporal resolution and extent of such field measurements generally refines the predictions, but also presents a logistical challenge [START_REF] Wundram | Alpine soil temperature variability at multiple scales[END_REF]Meineri & Hylander, 2017).

Finally, the fourth approach, i.e. using remotely sensed data, is now more frequently used in SDMs [START_REF] Pottier | Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy[END_REF], for instance through remotely sensed snow cover data or by using the normalized difference vegetation index (NDVI) [START_REF] Yannic | Temporally dynamic habitat suitability predicts genetic relatedness among caribou[END_REF]. One such remotely sensed source of data of which the spatiotemporal resolution, extent and accuracy is rapidly improving is satellite-based land-surface temperatures (LST) [START_REF] Wan | New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products[END_REF][START_REF] Wan | MOD11C2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG V006[END_REF].

Remotely-sensed LST are now freely available at the global scale at the vegetation canopy or land surface level, with a temporal resolution of days over a period of decades and with a spatial resolution ranging from 30'' (ca. 1000 × 1000 m at the equator) to as fine as 1'' (ca. 30

x 30 m) [START_REF] Cook | Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data[END_REF]. This type of data does have the advantage over free-air temperature datasets like WorldClim or CHELSA of being a direct and contiguous measurement in space and time, as opposed to data interpolation and temporal averaging from a network of weather stations, yet might be strongly affected by land surface characteristics and cloud cover in the area [START_REF] Zellweger | Advances in microclimate ecology arising from remote sensing. Trends in ecology & evolution[END_REF]. Thanks to the increasing availability of these long-term and accurate time series, such satellite-based LST-datasets offer very promising research avenues to fill the gap between local temperature measurements and global-scale climatic datasets.

These different approaches to obtain suitable climate data have been extensively explored and applied in SDMs [START_REF] Bramer | Predicting species distributions across the Amazonian and Andean regions using remote sensing data[END_REF], yet a comparative study of all of these (downscaled and interpolated macroclimate data, field measurements, and satellite-based LST) togetherboth concerning their inherent characteristics and their role in SDMs -has up till now been missing. Such a comparison is nevertheless urgently needed in order to quantify the progress that can be made by replacing the traditional global climate models with other temperature data sources. We hypothesize in that regard that the best result depends in large on two critical factors: a) the climatic characteristics of the study region, and b), the growth forms of the study organisms. Here, we use a case study along steep climatic gradients in the Northern Scandes, a mountain range in northern Scandinavia, to assess both factors and to provide guidelines for the use of temperature data in SDMs in topographically challenging regions. We compare the characteristics of different temperature datasets within the region, as well as the descriptive and predictive power of SDMs for 50 plant species with different growth forms: forbs, graminoids, (dwarf) shrubs and trees. We compare global climate datasets (i.e. WorldClim and CHELSA) with datasets of remotely-sensed LST (MODIS), a topographic downscaling and interpolation approach, and soil temperature obtained with miniature data loggers, and use three widely applied and ecologically relevant (i.e. bioclimatic) temperature variables: (i) mean annual temperature and mean temperature of the (ii) warmest and (iii) coldest quarter. We hypothesize a significant effect of the spatial resolution of the climate data, as well as of measurement focus (free-air, surface, or soil) and temporal extent on temperature patterns across topographic gradients. Increasing spatiotemporal accuracy of temperature data, especially through the use of in-situ measurements, is expected to improve the descriptive and predictive power of the SDMs, despite the associated loss in temporal extent. The optimal resolution, extent and measurement focus are, however, likely to depend on the growth forms of the assessed species, i.e. the spatiotemporal framework in which they operate.

Methods

Study region

The study was conducted in the Northern Scandes mountain range in Norway and Sweden, between N 67°46'23.5" / E 16°30'52.6" (south west) and N 68°40'33.6" / E 18°58'40.4" (north east), covering an area of 100 × 100 km and an elevation range from 0 up to 2097 m a.s.l. The area ranges from the Norwegian coast, with a relatively mild and wet climate dominated by birch forests with heathland understory, to the significantly drier and colder eastern side of the Northern Scandes, typically vegetated by subarctic, alpine dwarf shrub vegetation [START_REF] Lembrechts | Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem[END_REF]. The region was chosen for its strong climatic gradient, with large macro-and microclimatic variation due to a distinct topography and high latitude location [START_REF] Scherrer | Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming[END_REF][START_REF] Graae | On the use of weather data in ecological studies along altitudinal and latitudinal gradients[END_REF][START_REF] Lenoir | Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe[END_REF]. In total, 106 temperature measurement locations were spread across the study area (Fig. 1).

Climate data

For this area, we obtained eight different types of climate data encompassing a wide range of measurement foci, spatiotemporal resolutions and temporal extents (Table 1). For each of these datasets, we extracted or calculated the mean annual temperature and mean temperature of the warmest and coldest quarter (bioclimatic variables Bio1, Bio10 and Bio11, following the definition of WorldClim, [START_REF] Hijmans | Very high resolution interpolated climate surfaces for global land areas[END_REF], hereafter called mean annual, summer and winter temperature, respectively). These ecologically relevant variables belong to the set of physiologically most pertinent bioclimatic determinants of spatial plant species distribution and are thus commonly used in SDMs (e.g. [START_REF] Austin | Improving species distribution models for climate change studies: variable selection and scale[END_REF][START_REF] Cook | Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data[END_REF][START_REF] Distler | Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change[END_REF], and they allow us to accurately take into account seasonal differences in climate. The different datasets are discussed in detail below.

a) WorldClim

The WorldClim database (Version 2.0) provides globally interpolated free-air temperature conditions over a 30-year time period at a spatial resolution of 30'' (ca. 1000 × 1000 m at the equator) [START_REF] Fick | WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[END_REF]. The studied bioclimatic variables were directly downloaded from the website (www.worldclim.org).

b) CHELSA

The climatologies at high resolution for the earth's land surface areas (CHELSA, Version 1.2) is a global dataset based on quasi-mechanistical statistical downscaling of free-air temperatures from the ERA Interim (ECMWF) global circulation model [START_REF] Dee | The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[END_REF], over a period of 34 years and with the same spatial resolution as WorldClim (30'', ca. 1000 x 1000 m at the equator), yet for a more recent time period [START_REF] Karger | Climatologies at high resolution for the earth's land surface areas[END_REF]. Bioclimatic variables were again downloaded directly from the website (www.chelsaclimate.org). c) Downscaled CHELSA-data (hereafter called 'downscaled') We used the bioclimatic variables downloaded from CHELSA, at an original resolution of 30'' (ca. 1000 x 1000 m at the equator), and downscaled them statistically even further, to a 1'' (ca. 30 × 30 m at the equator) resolution based on topographic variation, using a physiographically-informed model fitted with a geographically weighted regression (GWR) technique [START_REF] Fotheringham | Geographically weighted regression: the analysis of spatially varying relationships[END_REF]. In short, GWR extends the traditional regression approach by allowing estimated regression parameters to vary across space. Therefore, GWR models are particularly relevant to explore the scale-dependent and spatial non-stationary relationships between free-air temperatures and physiographic variables (here: elevation, slope, eastness, northness, distance to the ocean and clear-sky solar radiation) [START_REF] Su | Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations[END_REF]. For more details, see Supplementary Material 1.

d) Topoclimate

Fine-resolution gridded climate data for the region was obtained from [START_REF] Aalto | Revealing topoclimatic heterogeneity using meteorological station data[END_REF], who included topography-driven small-scale climate heterogeneity in a topoclimatic interpolation of weather station data across northern Scandinavia, using generalized additive modelling at a resolution of 1'' (ca. 30 x 30 m at the equator). They modelled monthly average temperatures from 1981 till 2010 using geographical location, elevation, water cover, solar radiation and cold-air pooling. Bioclimatic variables were calculated based on these monthly averages.

e) MODIS LST

The moderate resolution imaging spectroradiometer (MODIS) satellite TERRA [START_REF] Wan | MOD11C2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG V006[END_REF] from the National Aeronatuics and Space Administration (USA) provides global land surface temperature (LST). We extracted data from MOD11A2: 8-day averages based on the clear sky day-and night-time records at a 30'' (ca. 1000 × 1000 m at the equator) resolution, 

f) EuroLST

The EuroLST dataset is a gap-filled dataset at the European scale of LST derived from MODIS (see sub-section e focusing on MODIS LST) at a spatial resolution of 250 × 250 m and averaged over a temporal extent of 10 years [START_REF] Metz | Surface temperatures at the continental scale: tracking changes with remote sensing at unprecedented detail[END_REF]. This dataset has been created using a combination of weighted temporal averaging with statistical modelling and spatial interpolation to fill in the gaps in the MODIS LST dataset, as well as to improve its spatial resolution. Relevant bioclimatic variables were downloaded directly from the website (courses.neteler.org/eurolst-seamless-gap-free-daily-european-maps-land-surfacetemperatures).

g) E-OBS

The E-OBS dataset (version 17.0) provides daily gridded climate data of free-air temperature for Europe at a 0.1° (ca. 10.000 × 10.000 m at the equator) spatial resolution, interpolated from weather stations [START_REF] Haylock | A European daily highresolution gridded data set of surface temperature and precipitation for 1950-2006[END_REF], used here over the study period from August 2015 to July 2017 (as in sub-section e on MODIS LST). The gridded dataset is created by first interpolating the monthly mean temperature from the weather stations using threedimensional thin-plate splines, interpolating the daily anomalies using a spatial kriging approach with an external drift for temperature, and then combining these monthly and daily estimates. Temperature data was downloaded directly from the website (https://www.ecad.eu/download/ensembles/download.php) and subsequently used to generate the three studied bioclimatic variables in R.

h) Soil temperatures

Near-surface soil temperatures were logged every 1.5 or 2 hours (iButtons: DS1922L or DS1921G, with 0.5 °C accuracy, www.maximintegrated.com, San José, CA, USA) at a depth of 3 cm below the soil surface in 106 locations along several elevation gradients in Norway and Sweden (Fig. 1, Table 2). Loggers were wrapped in parafilm and put in a small zipper bag to prevent water damage. The loggers were originally established for several different projects [START_REF] Lembrechts | Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem[END_REF][START_REF] Lembrechts | Disturbance is the key to plant invasions in cold environments[END_REF][START_REF] Lembrechts | Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit[END_REF] along seven elevation gradients, together ranging from 0 to 1200 m a.s.l., of which three were in Norway and four in Sweden. The three bioclimatic variables were calculated in R (R Core Team, 2015) for each 106 locations and for each year (from 2015 till 2017, corresponding to the periods used in sub-section e) from daily averages. Based on these soil temperature data, we made predictions for each bioclimatic variable for the whole study area of 100 × 100 km for the period August 2016 till July 2017 using GWRs (as in sub-section c featuring the downscaling approach) based on the same physiographic variables (i.e. elevation, slope, eastness, northness, distance to the ocean and clear-sky solar radiation). The models were used to predict the bioclimatic variables for every 1'' (ca. 30 x 30 m at the equator) pixel in the study area. For more details on the interpolation approach, see Supplementary Material 1.

Plant species observations

Plant species data were obtained during summer 2017 in the framework of the Mountain Invasion Research Network (www.mountaininvasions.org) long-term monitoring effort, and specifically as a follow-up of the survey of [START_REF] Lembrechts | Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem[END_REF] in the Norwegian study plots (59 out of the 106 plots with in-situ soil temperature measurements, see Fig. 1, Table 2).

Within the framework of this survey, three elevation gradients were selected (spanning on average 700 m in elevation). The elevation range covered by each gradient was divided into 19 equally spaced elevation bands, resulting in 20 sampling sites per gradient. At each elevation, presence/absence of all vascular plant species was recorded in plots of 2 × 50 m in natural vegetation. At one end of each of these plots, the temperature logger (see dataset described in sub-section h above) was buried. We used data for the 50 most common plant species in the survey (i.e. at least 10 occurrences). Species were grouped based on their growth forms (Table S1): forbs (N = 25); graminoids (N = 7); dwarf shrubs (N = 15); and trees (N = 3). All species were native to the region.

Direct comparison of climatic variables

1) Relation to elevation

To assess differences in the behaviour of the eight climate datasets along an elevation gradient, the three bioclimatic variables derived from these climate datasets were plotted separately against the elevation of the 106 locations of the in-situ soil temperature data loggers. For the gridded climate datasets, we extracted a value for each bioclimatic variable for each location. We used linear models (function lm in R, [START_REF] Core | R: a language and environment for statistical computing[END_REF] to assess the lapse rate (i.e. the slope, °C per 100 m) of temperature decrease with elevation. For MODIS LST, E-OBS and the soil temperature measurements, data was plotted and modelled separately for the two study years (2015-2016 and 2016-2017).

2) Paired comparisons

For each of the 106 studied locations, we compared the values for each climatic dataset (and each of the three bioclimatic variables) against the others, to investigate consistent temperature deviations between datasets. Trends for each bioclimatic variable and each dataset were visualised with general additive models (GAMs) with a cubic regression line and without pre-set smoothing value (function gam, R package mgcv, [START_REF] Wood | Generalized Additive Models: An introduction with R[END_REF], following procedures described in [START_REF] Zuur | Mixed effects models and extensions in ecology with R[END_REF]. GAMs were used as we did not want to make restrictive assumptions about the relationships of the datasets with each other.

3) Correlative dendrograms

For all 106 locations, we made correlative dendrograms (distance = 1 -, where  is the Pearson's product-moment correlation) to visualize correlations among and relationships between the different datasets, using the function hclust from the package spatstat [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]. 4) Regional climate predictions We generated regional maps for the different climate datasets (see the Climate data section as well as Supplementary Material 1 for more details on how the maps were generated for the insitu measurements), and calculated for each pixel the absolute temperature difference between the respective dataset and the regionally modelled soil temperature at a 1'' (ca. 30 × 30 m at the equator) spatial resolution.

5) Temporal correction

For a more formal comparison between the datasets with different temporal windows, we calculated for each climatic dataset its difference with the 'background climate', taken as temperatures for the window in question from the ERA Interim (ECMWF) 2 meter free-air temperature database [START_REF] Dee | The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[END_REF]. This is a time series of monthly means of daily means from 1979 up till 2018 (hence covering the time period for all studied datasets except WorldClim), for which we calculated average Bio1, Bio10 and Bio11 over the whole 100 × 100 km study area (based on the original 0.75° × 0.75° resolution grid). We then re-ran the paired comparisons (see above) with the temperature off-set, i.e. the difference between the bioclimatic value (for each observation and for each dataset) and the average bioclimatic value from ERA Interim for the corresponding period, using paired t-tests to test for potential differences, e.g. differences between a) Bio1(soil temperature(2016-2017)) -Bio1(ERA Interim(2016-2017)) and b) Bio1 (CHELSA(1979(CHELSA( -2013))) -Bio1 (ERA Interim(1979-2013)).

Using this off-set of temperatures from a standardized and common time series allowed to correct to some extent for differences in the temporal scope among the climatic datasets, and thus climate change and inter-annual weather variation. While this does not take into account possible decoupling of climate change between soil, surface and air temperature, it does allow to estimate the size of the temporal effect in the dataset, and thus quantify the difference between in-situ soil temperature and the other datasets more precisely.

Species distribution modelling

The regional distribution of the 50 plant species was modelled using species-specific generalized linear mixed-effect models (GLMMs) (function glmer, package lme4 [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF], family = binomial) as a function of mean annual, summer and winter temperature, and their quadratic terms. Gradient (plant data were available from three different elevation gradients; Table 2) was used as a random intercept term in these models to account for structural variation between gradients. This was repeated for each climate dataset (except for E-OBS, as due to the limited measured climate variation within the region, species distributions could not be modelled), resulting in a total of 350 SDMs (50 species × 7 datasets). For both MODIS LST and soil temperature, only the data from the measurement year prior to the species observations (2016)(2017) Finally, we assessed the predictive power of the different SDMs using a leave-one-out method, each time calibrating the model with 59 data points (plots) and predicting for the remaining one. We calculated the area under the curve (AUC) of the receiver operation characteristic (ROC), using the function performance from the package ROCR [START_REF] Sing | ROCR: visualizing classifier performance in R[END_REF], as well as the sensitivity (presences correctly predicted as presences) and the specificity (absences correctly predicted as absences) metrics. A value of 0.5 was used to binarize predictions. This was repeated for each species and for each climate dataset, and differences in AUC, sensitivity and specificity between SDMs using the different climatic datasets were again assessed with an ANOVA and a post-hoc Tukey HSD test. We also compared the increase in AUC, sensitivity and specificity obtained by using soil temperature versus the other climate datasets for the different growth forms separately. Note that this predictive approach is limited for three reasons: First, the restricted dataset size likely constrains the predictive power of the models. Secondly, for comparison purposes, our SDMs are only calibrated using bioclimatic predictors, and thus predictive power (as estimated here using AUC-values) will be relatively low. Thirdly , when using predictive modelling in smallsized plots (i.e. 100 m² here, vs. 1 km² traditionally), one can expect a high accuracy in correctly predicting presences as presence (i.e. if a species is observed, the model will also predict its presence), yet low accuracy in predicting absences as absence (i.e. if a species is absent, this could either be due to the plot falling outside its niche (correctly predicted absence), or due to random absences due to the limited plot size, or microscale non-climatic factors (incorrectly predicted absence)). Of course, incorrect absences can also be due to observation bias, identification uncertainties and incomplete detection, further lowering predictive power. We thus expect high sensitivity, yet relatively low specificity and AUCvalues, and encourage interpretation of these different evaluation metrics together to assess the predictive power of the models (Jiménez-Valverde, 2012).

All analyses were performed in R (R Core Team, 2015).

Results

Direct comparison of climatic variables

All three studied bioclimatic variables (Bio1 = mean annual, Bio10 = mean summer and Bio11 = mean winter temperature) showed a consistent negative correlation with elevation in almost all temperature datasets in the region, yet with large differences in lapse rate (Fig. 2).

The latter ranged for mean annual temperature from around -0.6 °C per 100 m for CHELSA, downscaled CHELSA and Topoclimate, over around -0.4 °C per 100 m for WorldClim, EuroLST and MODIS LST to -0.2 °C per 100 m for soil temperature and -0.1 °C per 100 m for E-OBS. Mean annual temperatures were in both years consistently higher for the soil temperature than for all other datasets, i.e. both the long-term temperature data (WorldClim, CHELSA, downscaled CHELSA, Topoclimate and EuroLST, Fig. 3a-e) and the surface (MODIS LST, Fig. 3f) and free-air (E-OBS, Fig. 3g) temperature measurements from the same time period (p < 0.001 from a linear model), yet differences were larger at low than at high temperatures. Differences of 3 to 6 °C between soil temperature and all other datasets remained even after correcting for possible inter-annual and climate change effects (Table 3, Fig. S1a-f). Significant differences of up to 3 °C in mean annual temperature could also be observed between all other datasets (Table 4, Fig. S2).

Despite the higher mean annual temperature in the soil, mean summer soil temperature was in both years similar (compared to WorldClim, Topoclimate, EuroLST and E-OBS) or even lower (CHELSA, downscaled CHELSA and MODIS LST) than air and surface temperature (Fig. 3h-n). After correcting for inter-annual and climate change effects, differences between soil temperature and most other datasets (except MODIS LST) remained limited to around 1 to 1.5 °C (Table 4, Fig. S1g-l). Summer temperature recordings were highest in MODIS LST (Fig. 2n, Fig. S2i,k,l). The relationship with elevation was again the strongest for (downscaled) CHELSA (-0.6 °C per 100 m), and weakest for E-OBS and MODIS LST.

Winter temperature showed the largest discrepancy between soil, free-air and surface temperatures (Fig. 3), with soil temperatures being close to 0 °C from sea level up to at least 900 m a.s.l., and as such driving the higher mean annual temperatures in the soil (Fig. 2x).

Part of this variation was due having relatively warm winters with plenty of snow in the area in the period 2015-2017, yet the difference remained as high as 4 °C to 11 °C after correcting for the temporal mismatch (Table 4, Fig. S1n-r). Surface temperatures were in addition colder than free-air temperatures (Fig. S2n-r) due to an extended frost period (Fig. S3). Temperature differences between years were relatively small, except for mean annual and mean summer surface temperatures from MODIS (Fig. 2f,n).

The above-mentioned differences along the elevation gradient, combined with additional effects from local topography, resulted in large regional differences between the different climate datasets in general (Fig. 4), and between interpolated soil temperature and the other datasets in particular (Fig. 5). The correlation analyses (Fig. 4) showed that the climate datasets were nested, with strongest relationships (across all bioclimatic variables) between the datasets with long-term averages: (downscaled) CHELSA, Topoclimate, WorldClim and EuroLST. The datasets with short-term measurements (in-situ soil, MODIS LST and free-air E-OBS) differed more from each other than from the long-term averages. Modelled mean annual temperature in the soil was, as expected, several degrees warmer than in all other datasets, especially at higher elevations (Fig. 5), while in summer soil temperature was warmer than CHELSA climate and MODIS LST at high elevations, yet colder at low elevations (Fig. 5). Winter temperature predictions were up to 17 °C higher in the soil than in the other datasets, except at the highest elevations. Due to the large local variation in snow cover, however, winter soil temperature predictions were unreliable (Fig. 5, Fig. S3), in contrast to annual and summer temperatures, for which the local R² (indicating the local spatial regression fit) of the regional interpolations was highly consistent across space, albeit only moderately high, i.e. on average 50% for Bio10 and 37% for Bio1.

Species distribution modelling

SDMs using soil temperatures explained on average 80% of variance (48% if only Bio1 was used), which was on average 18% (15% for models with Bio1 only) more than the models using other climate datasets (Fig. 6, significant differences with most datasets after correcting for multiple testing). Differences in explained variance among SDMs based on these other datasets were much smaller. Differences in predictive power were not significant between models (highest for Euro-LST and downscaled CHELSA (AUC ≈ 0.70), and between 0.61 and 0.64 for the other datasets (Fig. S5). As expected, sensitivity was high (≈ 0.85), yet specificity was low (≈ 0.27) for all datasets. Predictive modelling was nearly impossible with models with Bio1 only (AUC ≈ 0.5, specificity ≈ 0.20), even though sensitivity was still high (≈ 0.81).

Model performances depended strongly on growth forms (i.e. forbs, graminoids, dwarf shrubs, trees, Fig. 6b-c). We observed a significant net improvement in marginal R² values (as an indicator of descriptive power of the models) for SDMs based on soil temperature in the case of forbs and graminoids compared to the other datasets (on average +24% and +21% for the full model, respectively, and 20% and 25% for the model with Bio1 only), and moderately so for shrubs (full model: +8%, Bio1: +25%). Yet there was no such net increase for trees (+2% and 8% only). On the contrary, we observed a significant net decrease in predictive values for shrubs and trees when using soil temperature compared to most of the other datasets (AUC on average -0.12 and -0.11 respectively for both models; -0.06 and -0.08 for Se), yet not so for forbs and graminoids (Fig. S5b-c).

Discussion

Our comparison of different climate datasets highlights that the use of a specific source of climate data is species-and region-specific and can have strong repercussions on the outcome of SDMs, as exemplified here for the distributions of 50 plant species along steep climatic gradients in a cold-climate region. Our data indeed revealed a strong sensitivity of SDMs to the used climate dataset depending on the growth form of the species. In general, the use of in-situ soil temperature instead of surface or free-air temperature did improve the explanatory power of our SDMs. It did so much more for forbs and graminoids, to a lesser degree for shrubs, yet not for trees (Fig. 6). This outcome confirms recent studies arguing for the use of more local climate variables in distribution modelling (e.g. [START_REF] Ashcroft | The effect of exposure on landscape scale soil surface temperatures and species distribution models[END_REF][START_REF] Pradervand | Very high resolution environmental predictors in species distribution models: Moving beyond topography?[END_REF][START_REF] Slavich | Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections[END_REF][START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF]Meineri & Hylander, 2017) and proofs the validity of this concept across a whole range of possible temperature data sources. Yet, our results also indicate that an increased accuracy of climate data does not necessarily improve distribution models for all species or in all circumstances [START_REF] Bennie | Seeing the woods for the trees -when is microclimate important in species distribution models?[END_REF][START_REF] Pradervand | Very high resolution environmental predictors in species distribution models: Moving beyond topography?[END_REF], as it will depend on the growth forms of the species and perhaps also the regional climate characteristics. The differences in SDMs' explanatory power could result from differences in measurement focus and spatiotemporal resolution or extent, related to the different spatiotemporal framework in which different species groups operate, as discussed below.

Measurement focus

The most critical differences observed between the climate datasets in this study were likely driven by measurement focus (free-air, land surface or soil), with consistently higher average annual temperatures observed in the soil resulting to a large extent from differences in winter temperatures (Bio11). Even though free-air temperature predictions (WorldClim, CHELSA, E-OBS) for winter temperature easily dropped below -7 °C, and surface temperature measurements (EuroLST, MODIS LST) were even lower, winter temperatures just below the soil surface were close to 0 °C along most of the elevation gradient (Fig. 2). Only in those locations where global climate models predicted an average winter temperature below -10 °C, measured soil temperatures dropped below 0 °C (Fig. 2). These differences remained even after correcting for the temporal mismatch in the different datasets (Table 4, Fig. S1). While some of the earliest studies on soil temperature reported a strong relationship with air temperature across all seasons [START_REF] Shanks | Altitudinal and microclimatic relationships of soil temperature under natural vegetation[END_REF], it is clear that both a dense vegetation cover and a thick snowpack can provide effective insulation and protection against freezing events in the subnivium [START_REF] Geiger | The climate near the ground[END_REF][START_REF] Dorrepaal | Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog[END_REF][START_REF] Pauli | The subnivium: a deteriorating seasonal refugium[END_REF][START_REF] Aalto | Revealing topoclimatic heterogeneity using meteorological station data[END_REF][START_REF] Thompson | The phenology of the subnivium[END_REF], and that snow in the Arctic is a crucial explanatory variable for the distribution of plant species (Randin et al., 2009a;[START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF]. In northern Norway, especially, the relatively mild climate and humid air from the ocean result in thick winter snow packs that can provide a significant decoupling between air, surface and soil temperature [START_REF] Pauli | The subnivium: a deteriorating seasonal refugium[END_REF][START_REF] Thompson | The phenology of the subnivium[END_REF]. Such an insulating snow pack can affect plant life in several ways, through its effects on overwintering survival, productivity, reproductive success and nutrient and water availability [START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF], with both positive (e.g. less frost events) and negative effects (e.g. limited growing season) observed.

For many species in the region, especially low-growing forbs and graminoids, we have shown that using near-surface soil temperatures instead of free-air temperatures, which allows incorporating these snow cover effects, is crucial to accurately describe the distribution of small-stature plants (Randin et al., 2009a;[START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF]. For trees, however, the absence of model improvement through the use of soil temperature might result from a stronger correlation with air than with soil temperature due to higher maximum canopy heights, at least in later life stages. In winter and early spring, trees are likely to be much more affected by air temperatures and freezing events affecting their buds above the snow than by temperatures in the soil [START_REF] Körner | Alpine plant life: functional plant ecology of high mountain ecosystems[END_REF].

These results also indicate that the relative importance of using soil temperature in SDMs will depend on the topography and large-scale climate of the region. Most importantly, the amount of fresh snow in winter will define the strength of the discrepancy between winter (and thus indirectly annual) mean temperatures in the soil and in the air [START_REF] Cohen | Snow cover and climate[END_REF][START_REF] Zellweger | Advances in microclimate ecology arising from remote sensing. Trends in ecology & evolution[END_REF].

The mismatch is in our study indeed significantly larger in the warmer but snowier (Norwegian) plots at low elevations than in the colder yet drier (Swedish) plots at high elevations (Fig. 3). For summer temperature, our data overall showed a more consistent match between the different datasets, although with minor buffering effects of the vegetation.

Even though the discrepancy between measurement foci is thus region-specific (and likely even more different in e.g. tropical regions), we suggest that the use of climate data in close proximity to the study species is always recommended. Importantly, however, the use of soil temperature does not fully resolve this measurement mismatch, as only part of the plants are belowground. Although our data demonstrates a significant improvement in the use of soil temperature over free-air temperature data for species groups entirely covered by snow in winter, an optimal approach would incorporate in-situ climate measurements both above and below the soil surface. The latter can for example be achieved with the temperature and soil moisture plant simulator sensors as described in [START_REF] Wild | Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement[END_REF], measuring temperatures at, above and below the surface.

Despite the clear benefits of using soil temperature data in SDMs, a major drawback (next to the cost associated with obtaining in-situ soil temperature measurements) lies in the increased local-scale heterogeneity, especially in winter. The soil temperatures were in our study indeed hard to predict accurately using a 50 × 50 m DEM-based interpolation approach. More in-situ temperature measurements, as well as the inclusion of other microclimate-related variables like snow cover maps, might be needed to improve interpolations of microclimate at fine spatial resolution. This is also a prerequisite for better SDMs' predictive performances.

Follow-up studies with larger datasets and in-situ measurements of more environmental variables (e.g. soil moisture, air temperature, precipitation, or snow cover) are thus recommended to investigate this further.

While satellite-measured land surface temperature data (MODIS LST and EuroLST) resulted in mean annual temperatures within the same range as those obtained with free-air temperature measurements, the land surface temperatures were, throughout the measurement period, significantly higher in summer and lower in winter, thus resulting in an increased overall annual temperature range (Fig. 2, Fig. S1, Table 4). These extremes were however smoothed out when using the EuroLST temperature averages over a ten-year period. While the use of satellite-based land surface temperature for SDMs has until now been largely underexplored, our study adds to the growing list of recent studies indicating the potential of these untapped data resources for accurately predicting species distributions (see e.g. [START_REF] Cook | Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data[END_REF][START_REF] Bisrat | Predicting the distribution potential of an invasive frog using remotely sensed data in Hawaii[END_REF][START_REF] Neteler | Is Switzerland suitable for the invasion of Aedes albopictus?[END_REF]. We expect that LST-timeseries with an even higher spatial resolution, such as Landsat [START_REF] Cook | Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data[END_REF] will as such turn out the crucial link between local-scale temperature measurements and global climate models. Our results however indicate that smoothed, long-term averages like EuroLST are preferable above shortterm measurements, especially for predictive modelling. Similar to the issue of spatial heterogeneity for in-situ soil temperature data, averages over long-term time series are, by nature, more likely to increase the predictive performances of SDMs compared with more erratic fluctuations based on short-term data.

Temporal -extent

Differences between the used climate datasets could also be attributed to variation in temporal extent, with the datasets building on long-term historic averages (WorldClim, CHELSA, Topoclimate and EuroLST) showing the strongest correlation with each other (Fig. 4).

Correlations were however weakest for the three datasets with only two years of data, yet with different measurement foci as described above (MODIS LST, E-OBS and soil temperature).

While patterns over time for these datasets were relatively consistent between measurement years (Fig. 2), they did reveal more variation between air and surface temperature than between EuroLST and the other datasets with long-term climatic averages. The discrepancy in temporal extents might also explain why the performance of our predictive models decreased in some cases for shrubs and trees when using short-term soil (or surface) temperatures (Fig. S4 and5). These long-lived species are indeed likely to be relatively inert towards short-term changes in their environment [START_REF] Körner | Alpine plant life: functional plant ecology of high mountain ecosystems[END_REF], which might make it harder to predict their distribution based on locally-measured short-term temperatures [START_REF] Ashcroft | The effect of exposure on landscape scale soil surface temperatures and species distribution models[END_REF]. Longlived organisms like most arctic-alpine species in the study region could also persist outside their niche for considerable parts of their life [START_REF] Bond | Ecology of sprouting in woody plants: the persistence niche[END_REF], adding to the complexity of predicting their distribution using short-term temperature data.

Spatial resolution

Our comparative approach indicates that the downscaling or interpolation of climate dataas applied here respectively to global datasets like CHELSA and the in-situ soil temperature data and topoclimatic dataset from [START_REF] Aalto | Revealing topoclimatic heterogeneity using meteorological station data[END_REF] was rather successful. Downscaling of CHELSA from 1000 × 1000 m to 30 × 30 m based on the physiography worked well, as indicated by the high local R²-values (0.90 ± 0.06 for Bio1 and Bio10, 0.89 ± 0.06 for Bio11, Fig. S4), yet nevertheless only resulted in minor improvements of the regional SDMs compared to coarse-grained CHELSA-data (3.7% and 0.035 for the R 2 and AUC values, respectively). This lack of improvement is in disagreement with several other studies (e.g. [START_REF] Gillingham | The effect of spatial resolution on projected responses to climate warming[END_REF][START_REF] Slavich | Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections[END_REF]. Part of this could be due to the inherent limitations in the original CHELSA dataset: unlike elevation, small-scale topographic variables like slope and aspect are not taken into account into the original CHELSA model, and their inclusion in the downscaling approach is thus unlikely to have major effects. Smallscale topographic effects on microclimate are more correctly taken into account in the topoclimatic dataset from [START_REF] Aalto | Revealing topoclimatic heterogeneity using meteorological station data[END_REF], however, making the latter approach recommendable above the former. The fact that the topoclimatic dataset did not perform significantly better in the SDMs than CHELSA either (ΔR² = -7% and +5%, and AUC = -0.01 and +0.06, depending on the model), might suggest again that an increased level of detail is not better by default, yet depends on the context of the study [START_REF] Bennie | Seeing the woods for the trees -when is microclimate important in species distribution models?[END_REF]. The most likely explanation for this lack of improvement in model performance in this case thus is that the distribution of the studied alpine species might be less driven by small-scale topoclimatic variation in air temperature than by snow-cover induced variation in soil temperature.

Interpolation of the soil temperature data worked well across the whole study region, except for winter temperature, where probably the strong local variation and the highly non-linear correlation with elevation resulted in inaccurate predictions (Figure 4, Fig. S3, [START_REF] Ashcroft | The effect of exposure on landscape scale soil surface temperatures and species distribution models[END_REF]. The large differences in winter temperatures between measurement locationsand the low predictability of soil winter temperature in the regionthus suggest that caution is needed, as in many regions winter temperatures are likely crucial for the distribution of species [START_REF] Williams | Cold truths: how winter drives responses of terrestrial organisms to climate change[END_REF]. A larger dataset and more accurate predictor variables, e.g. related to snow cover duration [START_REF] Niittynen | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF], might be needed to improve these interpolation efforts.

Implications

The observed differences in the climate datasets and SDMs at the regional scale advocate for a careful selection of the climate data source when modelling species distributions, based on a priori ecological assumptions about the relationship of the studied organism with the regional environment, and the comparisonor joint useof different datasets (Buermann et al., 2008;[START_REF] Rebaudo | Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures[END_REF]. Measurement focus, temporal extent and spatiotemporal resolution should all be taken into account with regard to the studied species and area: is the species affected by snow cover; is it an annual or a perennial species; is the focal species mobile or sessile; does the study area reach above the treeline; is it in topographically challenging terrain, etc. Our study highlights the importance of growth forms: soil temperature was highly important for forbs and graminoids, and to a certain extent for shrubs, yet not so for trees.

Only when making ecologically meaningful a priori decisions, and when comparing the performance of different datasetsand perhaps their interactions, one can be sure that the observed trends relate to the actual (micro)climate experienced by the study species or species group(s) in the study region. Understanding these processes in the current climate is a crucial step before model projections can be improved under climate change as well. In order to advance towards this goal, there is an urgent need for large-scale datasets of microclimate data; ecologists and climatologists should consider in-depth on-the-ground, long-term microclimate monitoring along climatic gradients to be able to improve our microclimatic models for use in SDMs [START_REF] Lembrechts | Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem[END_REF]. Nevertheless, our case study suggests that SDMs can be relatively robust to several characteristics of different types of climate datasets, like spatial and temporal resolution, especially in the relatively stable slow-reacting vegetation types of high-latitudinal mountains. Additionally, there is a need to improve our abilities to forecast microclimate data itself in the future, as climate change is likely to affect soil, surface and air temperatures differently [START_REF] Ashcroft | Moisture, thermal inertia, and the spatial distributions of nearsurface soil and air temperatures: Understanding factors that promote microrefugia[END_REF][START_REF] De Frenne | Global buffering of temperatures under forest canopies[END_REF]. Significant progress has been made in this regard, for example by integrating microclimatic dynamics and processes like microclimatic buffering in predictions [START_REF] Keppel | The capacity of refugia for conservation planning under climate change[END_REF][START_REF] Lenoir | Climatic microrefugia under anthropogenic climate change: implications for species redistribution[END_REF][START_REF] Wason | Climates on the move: Implications of climate warming for species distributions in mountains of the northeastern United States[END_REF], yet there is still a need for improvement before the same diversity and quality of climate datasets will be available for SDM projections into future climate as we have now for current climate.

Tables Table 1: The eight studied climate datasets and their geographical and temporal extent, spatial resolution and measurement focus. Average annual (Bio1, a-h), summer (Bio10, i-p) and winter (Bio11, q-x) temperature for the eight climate datasets (columns, temporal extent between brackets) against elevation of the 106 measurement locations. Orange (2015Orange ( -2016Orange ( ) and red (2016Orange ( -2017) ) lines are fitted with linear models. 

Dataset

  for a period of two years corresponding to the in-situ measurements (from August 2015 to July 2017, see below). Mean annual temperature was calculated in ArcGIS by averaging the temperature per pixel for 2015-2016 and 2016-2017, separately, from day of the year (DOY) 209 in year n (e.g. July 27th for 2015) till DOY 208 in year n+1 (e.g. July 26th for 2016), which was the set of 8-day averages corresponding most closely with the period used for the in-situ temperature measurements described below (see sub-section h on Soil temperatures). Mean summer and winter temperatures were calculated similarly, yet for DOY 185 (e.g. July 3th in 2015) till 272 (September 28th in 2015) and from DOY 1 (e.g. January 1st in 2016) till 88 (March 28th in 2016), respectively.

  were used, while the bioclimatic variables from 2015-2016 were highly correlated with those of 2016-2017 and thus excluded. The variance inflation factor (VIF, function vif, package car, Fox & Weisberg, 2011) was calculated for each of the climatic datasets to test the correlation between the different bioclimatic variables. As the VIF (a value between 0 and infinity) exceeded 5 (indicating a strong correlation) for some datasets (specifically those with long-term climatic averages), separate models including only Bio1 as explanatory variables were made, and results compared between both approaches.The explained variance in the present distribution of the species (R² of the fixed effect, i.e. the marginal R²,[START_REF] Nakagawa | A general and simple method for obtaining R2 from generalized linear mixed-effects models[END_REF] was then calculated for each model and compared across all species between the different datasets with an ANOVA and a post-hoc Tukey HSD test (R² ~ growth forms (factor with 4 levels), model assumptions were met). We also compared the increase in R² values obtained by using soil temperature versus the other climate datasets for the different growth forms (forbs, graminoids, shrubs and trees) separately.
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Table 2 : Overview of in-situ soil temperature measurement plots in Sweden and Norway (n=106).

 2 For each gradient (numbers from 1) to 4) refer to the map in Fig.1), we present the number of elevation gradients (i.e. different mountains monitored), sites and plots (with more plots than sites indicating repeated temperature measurements in a < 20 × 20 m area), as well as the temporal extent, the length of the elevation gradient, and if species data is available to run species distribution models (SDMs).

		Initial source Geographical	Spatial	Measurement	Temporal
			extent	resolution	focus	coverage
	a) WorldClim	WorldClim	Global	30''	Free-air	1970-2000
	b) CHELSA	CHELSA	Global	30''	Free-air	1979-2013
	c) Downscaled	CHELSA	10000 km²	1''	Free-air	1979-2013
	d) Topoclimate	Aalto et al.	10000 km²	1''	Free-air	1981-2010
		(2018)				
	e) MODIS LST	MODIS	Global	30''	Surface	2015-2017
	f) EuroLST	MODIS	Europe	~7.5"	Surface	2001-2011
	g) E-OBS	E-OBS	Europe	0.1°	Free-air	2015-2017
	h) Soil temperature	iButtons	10000 km²	1''	Soil	2015-2017
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Data Accessibility Statement

Most used climate datasets are freely available (see Methods section). In-situ soil temperature and species distribution data will be published in an open access data repository.