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This article presents some unpublished results obtained in the early 1980s, reworked in the early 2000s, without attempting to situate them in today's (2019) literature. Matroid theory is based on the abstract notion of linear dependence as privileged over the quantitative aspects encountered in classical linear algebra. A matroïd is based on a set E and the definition of subsets of E, verifying certain properties expressing the vector dependence or independence of these subsets. The basic structure of a chemical thermodynamics problem is based on the enumeration of a list of chemical species, a list of chemical elements and the correspondence between the elements and the species (this element may or may not belong to this species). A dual approach concerns species and chemical reactions (such species participates in such reaction). It can be simply associated with a matroïd, the set E being that of the chemical species. The axiomatics of the independent subsets are verified by collections of independent chemical species, i.e. not participating in the same reaction or having no chemical element in common. The axiomatics of dependent subsets are verified by chemical reactions. A stigm is a minimal chemical reaction and bases are independent subsets with maximum cardinal number. We find the previous structures from the matrices defining a chemical thermodynamics problem (based on the vector independence of the vectors constituting them). The orientations (+ / -) of the various subsets of the (oriented) matroïd are related to the relative positions of the chemical species in the chemical space, conditioning their character as reactants (+) or products (-) in the writing of chemical reactions. A first application is to provide a general framework for solving linear systems associated with a chemical thermodynamics problem (determination of the minimum number of equations required, etc.) and to provide specific solutions for more complex problems (solving mixed systems where certain chemical concentrations and potentials are fixed). A second application concerns the qualitative understanding of phase diagrams: it promises to be a major application. An analogy between chemical thermodynamics and electricity (loops, points, Kirchoff's rules etc.) is proposed, electricity being a field where matroids are already used. The first part of the text, in French, presents the general proposals concerning the correspondence between matroid theory and a problem of chemical thermodynamics. The second part, in English, presents a presentation at a conference illustrating on examples the contribution of the concept of affigraphy (Guy et Pla, 1997) and the theory of ortiented matroids to the understanding of the qualitative structure of phase diagrams; the orientations of the various subsets of matroid E (chemical space) imply those of the orthogonal or dual matroid E* (phase diagrams) (one recovers Schreinemakers' rules). Some search directions are indicated.

Résumé

Le présent article présente quelques résultats inédits obtenus au début des années 1980 et repris au début des années 2000, sans chercher à les situer dans la littérature d'aujourd'hui (2019). La théorie des matroïdes est fondée sur la notion abstraite de dépendance linéaire comme privilégiée par rapport aux aspects quantitatifs rencontrés dans l'algèbre linéaire classique. Un matroïde repose sur la donnée d'un ensemble E et la définition de parties de E, vérifiant certaines propriétés exprimant la dépendance ou l'indépendance vectorielle de ces parties. La structure de base d'un problème de thermodynamique chimique repose sur l'énumération d'une liste d'espèces chimiques, d'une liste d'éléments chimiques et de la correspondance entre les éléments et les espèces (tel élément appartient ou non à telle espèce). Une approche duale concerne les espèces et les réactions chimiques (telle espèce participe à telle réaction). On peut y associer simplement un matroïde, l'ensemble E étant celui des espèces chimiques. L'axiomatique des parties libres est vérifiée par les collections d'espèces chimiques indépendantes, c'est-à-dire ne participant pas à une même réaction ou n'ayant pas d'élément chimique en commun. L'axiomatique des ensembles dépendants est vérifiée par les réactions chimiques. Les stigmes sont les réactions chimiques minimales et les bases sont des parties libres de cardinal maximal. On retrouve les structures précédentes à partir des matrices définissant un problème de thermodynamique chimique (fondées sur l'indépendance vectorielle des vecteurs les constituant). Les orientations (+ / -) des différents sous-ensembles d'un matroïde (orienté) sont en relation avec les positions relatives des espèces chimiques dans l'espace chimique, conditionnant leur caractère de réactant (+) ou de produit (-) dans l'écriture des réactions chimiques. Une première application est de donner un cadre général pour la résolution des systèmes linéaires associés à un problème de thermodynamique chimique (détermination du nombre minimal d'équations nécessaires etc.) et apporter des solutions spécifiques pour certains problèmes plus complexes (résolution de systèmes mixtes où certaines concentrations et certains potentiels chimiques sont fixés). Une seconde application concerne la compréhension qualitative des diagrammes de phases : elle s'annonce comme une application majeure. Une analogie thermodynamique chimique -électricité (mailles, noeuds, lois de Kirchoff etc.) est proposée, l'électricité étant un domaine où les matroïdes sont déjà utilisés. La première partie du texte, en français, présente les propositions générales concernant la correspondance entre la théorie des matroïdes et un problème de thermodynamique chimique. La seconde partie, en anglais, présente un exposé en congrès illustrant sur des exemples l'apport du concept d'affigraphie (Guy et Pla, 1997) et de la théorie des matroïdes orientés à la compréhension de la structure qualitative des diagrammes de phases : les orientations des divers sous-ensembles du matroïde E (espace chimique) entraînent celles du matroïde orthogonal ou dual E* (diagrammes de phases). On retrouve les lois de Schreinemakers. Quelques directions de recherche sont indiquées.
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Avant-propos

Nous commençons ici par donner quelques résultats obtenus il y a une trentaine d'années, en dialogue avec deux mathématiciens : Jean-Marie Pla et Wojciech Bienia. Il n'est pas sûr qu'à l'époque, d'autres chercheurs avaient déjà fait le rapprochement entre les matroïdes et la thermodynamique chimique (des premières réflexions avaient été consignées dans le rapport final inédit d'une ATP -action thématique programmée -du CNRS ; ATP n° 95 00 10 ; [START_REF] Guy | Interactions eaux-roches: modélisation des évolutions spatio-temporelles; étude expérimentale de co-précipitations de minéraux. Application à l'étude des gisements de tungstène[END_REF]. Depuis, d'autres travaux sont apparus dans la littérature internationale ; nous ne cherchons pas à en rendre compte, nous contentant de redonner sous forme relativement abrégée les points principaux que nous avions formulés. Dans une seconde partie (travail plus récent, datant d'une douzaine d'années, qui reposait sur les résultats acquis antérieurement) nous montrons l'utilisation des matroïdes pour la compréhension de règles qualitatives portant sur les diagrammes de phases (cf. les lois de Schreinemakers) ; le concept d'affigraphie (Guy et Pla, 1997a) qui introduit déjà aux aspects plus qualitatifs des diagrammes de phases intervient également.

Tout ceci mériterait bien sûr de plus amples développements (qui existent certainement maintenant dans la littérature internationale).

Les références bibliographiques concernant les deux parties sont toutes rassemblées à la fin.

Les tableaux et les figures qui leur sont propres sont données à la fin de chaque partie.

Première partie Thermodynamique chimique et matroïdes orientés

Introduction

On peut faire un rapprochement entre les ingrédients de la théorie des matroïdes et les concepts qualitatifs rencontrés en thermodynamique chimique. Les matroïdes reposent sur la notion abstraite de dépendance linéaire comme privilégiée par rapport aux aspects quantitatifs rencontrés dans l'algèbre linéaire classique [START_REF] Bruter | Les matroïdes, nouvel outil mathématique[END_REF][START_REF] Bruter | Eléments de la théorie des matroïdes[END_REF]. On peut dire sans souci de rigueur que les matroïdes sont un peu aux espaces vectoriels ce que la topologie est à la métrique. Leurs domaines d'application sont nombreux et concernent tous les secteurs où les notions attachées à la dépendance linéaire sont prépondérants, comme la théorie des graphes, les réseaux de transport, certains problème d'électricité, élasticité etc. [START_REF] Iri | Applications of matroid theory[END_REF]. Au départ leur rôle est surtout d'exprimer la structure sous-jacente à un ensemble de relations pour un problème donné. Ils servent à poser de façon générale les problèmes et à partir de là permettent leur simplification (par exemple établissement du nombre minimal de relations et/ou des degrés de liberté des systèmes) et peuvent conduire à l'écriture d'algorithmes de résolution. Une façon simple de présenter un matroïde est de dire que l'on « oublie » les valeurs des composantes d'un vecteur de l'algèbre linéaire classique pour ne retenir que la base où on le décompose. Ceci s'illustre très simplement en pétrologie : cela revient à adopter le point de vue paragénétique par opposition au point de vue géochimique : une roche de composition R peut se décomposer suivant les minéraux de compositions M

1 , M 2 , …, M n selon R = a 1 M 1 + a 2 M 2 + … + a n M n
Où R, M 1 , M 2 etc. sont des vecteurs dont les différentes composantes sont des quantités d'éléments chimiques par unité de volume, ou de masse, et les a i sont des coefficients scalaires. L'analyse paragénétique ne retient de R que l'association (M 1 , M 2 , …, M n ) qui peut être commune à de nombreuses roches et oublie la composition définie par les a i (mais la liste M 1 …M n n'épuise pas celle utile pour décrire tous les minéraux possibles).

Le rapprochement proposé entre matroïdes et thermodynamique chimique n'allait pas de soi a priori et a déjà demandé un travail. Prononcer l'affirmation (elle paraît maintenant triviale) : « une réaction chimique (minimale) est un stigme » ne semblait évidente ni pour mes interlocuteurs mathématiciens ni pour mes interlocuteurs chimistes. 1 Il convient de fixer cette première étape en ayant en même temps une visée didactique : faire sentir aux chimistes, pétrologistes etc. les premiers rudiments de cette théorie. La théorie des matroïdes en thermodynamique chimique (et d'ailleurs pourquoi pas en thermodynamique tout court) me paraît avoir de l'avenir devant elle : je la vois d'ores et déjà comme fournissant un cadre unificateur très puissant pour de nombreuses notions qualitatives qui sont dispersées à l'heure actuelle. Ce sont des notions comme celles de : réaction chimique, espèces chimiques dépendantes ou indépendantes, stabilité, sens d'une réaction, nombre de phases, règle des phases, variance, degré de liberté, paragenèse etc. Au départ, la notion de réaction chimique affirme simplement un lien entre une collection d'espèces chimiques. Ces notions sont en relation avec diverses axiomatiques des matroïdes qui sont toutes reliées les unes aux autres.

Deux types d'application apparaissent se dessiner en ce qui concerne les matroïdes en thermodynamique chimique. La première, dont je parle un peu ici car elle se décalque dans une certaine mesure sur ce qui se fait déjà en électricité concerne la structure matricielle d'un problème de thermodynamique chimique. La théorie des matroïdes est susceptible d'apporter une aide pour sa résolution, spécialement lorsqu'il est posé de façon mixte à l'aide de variables de concentration et de potentiels chimiques. On retrouve à ce niveau des ingrédients de la théorie des graphes. La seconde est typiquement du ressort des matroïdes orientés : tout ce qui concerne la structure qualitative des diagrammes de phases (règles de Schreinemakers, travaux de Zen, Korzhinskii etc. en pétrologie), domaine où l'on s'aperçoit parfois que les chercheurs ont déjà fait du matroïde sans le savoir (c'est-à-dire par exemple se sont fabriqué des matrices avec des 1 ou des -1 et des 0 en oubliant les valeurs des coefficients définissant les réactions etc.). Dans un diagramme de phase les notions matroïdales sont plus importantes que les notions topologiques (on utilise pourtant ce mot) ; elles expriment des changements discrets qui distinguent les différents domaines du diagramme, alors qu'il n'y a pas de topologie au sens classique de passage à la limite ou de frontière.

1 C'est grâce à J.-M. Pla que le rapprochement esquissé ici a pu se faire : je lui avais posé (via F. Conrad) un problème (qui n'est d'ailleurs pas résolu) de trajet sur un polyèdre convexe à facettes. Il m'a répondu en me passant un article d'Iri et un livre de Breuter, avec la question : « n'y a-t-il pas du matroïde là-dessous ? ».

Structure d'un problème de thermodynamique chimique

Un problème type de thermodynamique chimique repose [START_REF] Smith | Zharikov… (the Russian school, the Dutch and European school, the American, the Chinese[END_REF] 

Matroïde associé

La structure rappelée à l'instant nous suffit : elle constitue l'ossature répondant à l'axiomatique des matroïdes. Un matroïde est construit sur un ensemble E : ici ce sont les espèces chimiques. Comme nous l'avons dit, on privilégie la notion de dépendance : à propos des espèces chimiques une relation de dépendance peut s'exprimer de deux façons : -des espèces chimiques sont dépendantes si l'on peut écrire une réaction chimique qui les relie ; ou de façon duale : -des espèces chimiques sont dépendantes si elles ont un même élément chimique en commun. Et par opposition, des espèces chimiques sont indépendantes s'il n'y a pas de de réaction chimique qui les relie, ni (2° formulation) s'il n'y a pas d'élément chimique commun.

Ceci nous permet tout de suite de mettre en regard deux axiomatiques de base des matroïdes ; un matroïde est défini par des parties de E répondant à certaines propriétés ; les deux axiomatiques sont les suivantes : -Soient deux parties libres F et F' telles que le nombre d'espèces de F' est supérieur au nombre d'espèces de F. Alors on peut trouver une espèce dans F' qui n'appartient pas à F et dont l'union avec F est encore une partie libre. Cela est aussi vérifié.

Il existe de nombreuses autres axiomatiques permettant de construire des matroïdes et il sera intéressant de trouver leur correspondance chimique. Des indications sont données dans les Tableaux 1 et 2. On y présente également des éléments d'axiomatique des matroïdes orientés : l'orientation (+ / -) des diverses parties du matroïde est mise en relation avec les positions relatives des espèces chimiques dans l'espace chimique, conditionnant leur caractère de réactant (+) ou de produit (-) dans l'écriture des réactions chimiques.

Matrices associées à un problème de thermodynamique chimique

Nous allons maintenant retrouver des notions structurales au niveau des équations définissant un problème de thermodynamique chimique. Les variables associées aux espèces chimiques sont leurs nombres de moles dans le système (ou leurs concentrations pour un volume ou une masse totale donnée et/ou leurs potentiels chimiques dans le système). La résolution complète Il faut enfin compléter la définition du système par une correspondance potentiels chimiquesconcentrations. On a localement une correspondance du type

F k (µ k , N k ) = µ k -µ k0 -RTLoga k (N k ) = 0 (1)
Où µ k est le potential chimique de l'espèce k et N k son nombre de moles dans le système, a k (N k ) étant l'activité de l'espèce chimique k, qui peut dépendre des nombres de moles des différentes espèces dans le système. On définit à partir de (1) la matrice On peut visualiser graphiquement ce type de relation par le schéma de la Figure 1 (ce schéma n'est là que pour fixer les idées ; les matroïdes chimiques sont de nature plus complexe que les matroïdes en relation avec des graphes de R 2 ). Si nous appelons u k et i k les différences de potentiel et courant à travers la branche k, l'analogue de la loi des mailles de Kirchoff

F = [f i /µ k | f i /N k ] (2)
𝑅 𝑟 𝑘 u k = 0 r = 1, …, p
Est la loi de l'équilibre chimique.

𝑁 𝑟 𝑘 µ k = 0 r = 1, …, p
L'analogue de la loi des noeuds

𝐷 𝑘 𝑎 i k = 0 a = 1, …, m
Est la loi de conservation des éléments chimiques

𝐴 𝑘 𝑎 N k = b a a = 1, …, m
Où b a est la quantité de l'élément chimique a dans le système, que l'on peut écrire de façon locale

𝐴 𝑘 𝑎 dN k = 0
En définissant dN k par rapport à un état de référence (dans ce qui précède, on a utilisé la convention de sommation sur les indices situés à des hauteurs différentes).

Les analogues des lois (1) de correspondance potentielsnombres de moles sont les lois du type

f k (i 1 , …, i n , u 1 , … u n ) = 0 k = 1, …, n
Qui contiennent dans le cas simple la loi d'Ohm r k i ku k = 0 L'énergie totale du système est respectivement N k µ k en variables thermodynamiques et i k u k dans le cas de l'électricité (avec toujours la convention sur les indices répétés).

Application à la résolution d'un problème de thermodynamique chimique

Dans le travail de résolution des systèmes linéaires fondés sur les matrices A ou N, la première étape est de déterminer les relations et les inconnues indépendantes en nombre maximal. Cet aspect relève essentiellement des matroïdes structuraux construits sur A ou N.

On peut associer à la matrice A un matroïde (ou à N le matroïde dual ou orthogonal) fondé sur [START_REF] Iri | Applications of matroid theory[END_REF].

L'écriture complète des relations cherchées fait intervenir les matroïdes A et N et le matroïde physique construit sur F. Les matroïdes permettent de systématiser l'approche des ces problèmes, ceci peut être utile dans les cas de complexité inhabituels.

Figure 1

Représentation sous forme de graphe des relations entre : 1a (en haut) : réactions chimiques (cycles), éléments chimiques (sommets), espèces chimiques (arêtes) ; ou 1b (en bas), de façon duale : éléments chimiques (cycles), espèces chimiques (arêtes) et réactions chimiques (sommets).

Notion chimique Notion matroïdale

Matroïde M(E) Correspondances entre notions chimiques et notions matroïdales Espèce et constituant : nous considérerons ici qu'une liste de constituants chimiques indépendants en nombre c est simplement le choix privilégié de c espèces indépendantes parmi les c + k espèces du système. Dans la théorie des matroïdes, il y a aussi les notions de fermeture, matroïde dual ou orthogonal, bases orientées, hyperplans, droites, points etc. et leurs axiomatiques. On définit encore les opérations de contraction et de suppression. A partir de l'orientation des stigmes, on sait orienter les bases, l'orthogonal etc. Tous ces résultats, et leurs équivalents en thermodynamique chimique, pourraient être consignés dans un tableau.

Tableau 2 Axiomatiques principales des matroïdes (voir par exemple [START_REF] Bienia | Contribution à la théorie des matroïdes orientés[END_REF], que je reproduis ici). 

Axiomatique des sous-ensembles indépendants I

I1   I I2 si X  U et X'  X alors X'  I I3 Si X et Y appartiennent à I et Card(X) = Card(Y) + 1 Alors il existe x  X \ Y
(E) Si B 1 et B 2 appartiennent à B et x  B 1 \ B 2 Alors il existe y  B 2 \ B 1 tel que (B 1 \ x)  y  B.
Commentaire : soient deux bases (SiO 2 , Mg 2 SiO 4 , Fe 2 SiO 4 ) et (SiO 2 , MgSiO 3 , FeO). Prenons x = Mg 2 SiO 4 (appartient à B 1 sans appartenir à B 2 ). Alors il existe y, soit y = MgSiO 3 , tel que (SiO 2 , MgSiO 3 , Fe 2 SiO 4 ) soit aussi une base.

Axiomatique des circuits ou stigmes

La collection C de sous-ensembles de E est la famille des circuits d'un matroïde M sur E si et seulement si elle vérifie les conditions suivantes.

C1 si X et Y appartiennent à C et X Y, alors X ∉ Y C2 Si X et Y appartiennent à C et X  Y et z ∈ X ∩ Y   alors il existe Z ∈ C t.q. Z  X  Y \ z
Les deux axiomes sont bien vérifiés pour les réactions chimiques.

Axiomatique des circuits signés [START_REF] Vergnas | Matroïdes orientables[END_REF][START_REF] Bland | Orientability of matroids[END_REF] 1. Ensemble signé X = couple constitué d'un ensemble X et d'une application sg X : X → {-1, +1} appelée signature de X :

On pose X + = {x ∈ X, t.q. sgX(x) = +1}

Et X -= {x ∈ X, t.q. sgX(x) = -1}

On a X = X + + X -et on désigne par -X l'ensemble signé avec la signature opposéesg X , c'est-à-dire (-X) + = X -et (-X) -= X + On distingue la première et la deuxième composante. X sous-ensemble sous-jacent de X = {X +  X -} est dit support de X.

Circuits signés

O. O1.  ∈ O Si X ∈ O alors -X ∈ O Si X et Y appartiennent à O et X  Y, alors X = Y ou X = -Y O2. Axiome d'élimination signé Pour tous X et Y ∈ O, X  -Y et z ∈ (X + ∩ Y -)  (X -∩ Y + ) il existe Z ∈ O t.q. Z +  (X +  Y + ) \ z Z - (X - Y -) \ z
Si une signature O des circuits de M vérifie O.2, elle définit une orientation de M. On a ici X + = (FeO, Cu), X -= (Fe, CuO) Y + = (CuO, Zn), Y -= (Cu, ZnO)

Commentaire

On cherche l'orientation de Z qui associerait les quatre espèces : ZnO, Fe, FeO et Zn On a ici X -∩ Y + = CuO X + ∩ Y -= Cu Et on peut donc éliminer z parmi (CuO, Cu) Par élimination de Cu on a :

X +  Y + -z = FeO + CuO + Zn X - Y --z = Fe + CuO + ZnO
On vérifie bien que Z +  X +  Y + -z Et Z - X - Y --z (remarquons que FeO + CuO + Zn = Fe + CuO + ZnO n'est pas minimal) Et l'on obtient l'orientation Z + = (FeO, Zn), Z -= (Fe, ZnO) qui exprime que l'on doit mettre FeO et Zn d'un côté de l'équilibre et Fe et ZnO de l'autre côté. L'équilibre en échangeant les deux membres de la réaction est également possible, soit Z -= (FeO, Zn), Z + = (Fe, ZnO). La réaction s'écrit :

ZnO + Fe = FeO + Zn On obtiendrait le même résultat en éliminant CuO.

Note : comme nous l'avons dit, la signature d'une espèce dans un stigme (ou dans une relation de dépendance, qu'elle soit minimale ou non) correspond au côté de la réaction où l'on écrit cette espèce. Dans mon texte original [START_REF] Guy | Interactions eaux-roches: modélisation des évolutions spatio-temporelles; étude expérimentale de co-précipitations de minéraux. Application à l'étude des gisements de tungstène[END_REF], j'avais à tort discuté l'exemple de la hiérarchie des potentiels d'oxydo-réduction ; en cherchant à savoir si, spontanément, tel élément parmi la collection Cu, Fe, Zn allait réduire tel oxyde parmi la collection CuO, FeO, ZnO. Ou encore, tentant de déterminer le sens d'une réaction, connaissant les sens de deux autres réactions, telles CuO + Fe → Cu + FeO et CuO + Zn → Cu + ZnO. Ce qui s'exprime en disant : le fer réduit CuO et le zinc réduit CuO.

Pour pouvoir mener pareille discussion, il faudrait rajouter un composant fictif (W. Biénia, comm. pers.) fixant le sens de la réaction (en relation avec le signe de ΔH par exemple, où H est l'enthalpie). L'axiome d'élimination signé peut-il alors montrer comment un classement sur deux réactions se répercute sur une troisième ? En vue de définir un classement d'espèces (cf. les classements en oxydo-réduction ou en réactions acido-basiques) ? Il faudra essayer : Wikipedia (2019) donne l'ordre Cu 2+ / Cu ; Fe 2+ / Fe ; Zn 2+ / Zn pour les potentiels standard des couples oxydant / réducteur à 25°C).

Deuxième partie Matroïdes orientés et diagrammes de phases

Second part Oriented matroïds and phase diagrams

Les lignes qui suivent, en anglais, sont le contenu d'un exposé présenté lors de la conférence internationale Calphad (Calculation of phase diagrams) tenue à Maastricht, Pays-Bas, en mai 2005 [START_REF] Guy | The qualitative structure of phase diagrams: from the works of Schreinemakers (the Netherlands, beginning of the XX th century) to present day[END_REF]. Le ton « télégraphique » du montage « powerpoint » a été conservé. : 1912: -1915: , 18 papers -In-, mono-and di (pluri-) variant equilibria: 1915: -1925: , 29 papers 18, 1915: /16, 116-126, 531-542, 820-828, 1018: -1025: , 1026: -1037: , 1175: -1190: , 1384: -1398: , 1539: -1552: , 1676: -1691;;19, 1916/17, 514-527, 713-727, 816-824, 867-880, 927-932, 999-1006, 1196-1205, 1205-1217;20, 1917-1918, 659-667;22, 1919/20, 318-322, 542-554;23, 1920/21, 1151-1160;25, 1922, 341-353;26, 1923, 283-296, 719-726;27, 1924, 57-64, 279-290, 441-450, 800-808;28, 1925, 252-261. Other subjects on which Schreinemakers has worked: Osmosis, semi-permeable membranes, study of particular systems… About 200 papers in total (in several journals) Collaborator of Bakhuis Roozeboom (1854Roozeboom ( -1907)), participation to the book: Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre Notations for the present paper: First, it is useful to say a few words about the notations of the systems (Schreinemakers also contributed to the notations). n independent chemical components n + k phases in total (fixed composition, no solution) Notation of invariant points, univariant lines and divariant fields by the list of absent phases, between brackets.

At an invariant point: n + 2 present phases, k -2 absent phases Along an univariant line: n + 1 present phases, k -1 absent phases In a divariant field: n present phases, k absent phases For k = 2: 1 invariant point For k = 3: n + 3 invariant points We will not discuss all the Schreinemakers'rules (I personally don't know all of them), but will only discuss as an example the organization of univariant lines around an invariant point. See Fig. 2.

A famous rule:

Example of Schreinemakers rule: the « univariant scheme » (FAH S 1915-16 a; a is the first paper for the years 1915-16 in the above list)

In brief: what is this (mysterious?) correspondence between (n -1)-dim. composition space (concentration diagram) and 2-dim. phase diagram?

2. The contribution of affigraphy approach (Guy and Pla 1992, 1997) So we would like to go further into the correspondence between (P, T) diagrams and concentrations diagrams. A beginning of an answer is given by the so-called affigraphy approach.

Correspondence between two matrices, two spaces:

-Composition matrix C (n, n+k): chemography, dimension n, composition space: position of the n+k phases, space of present phases (concentration diagram) -Reaction matrix R (k, n+k), affigraphy, chemical affinity space, dimension k: coordinates of the n+k phase dissociation affinities in a basis of k independent affinity vectors; space of absent phases

A B C D E A 1 0 0 d A e A B 0 1 0 d B e B C 0 0 1 d C e C Composition matrix (A) (B) (C) (D) (E) (D) -d A -d B -d C 1 0 (E) -e A -e B -e C 0 1
Reaction matrix

Thermodynamic meaning:

For each phase i: x i number of moles in the system A i = g i - i affinity of phase dissociation ("absence of phase") At thermodynamic equilibrium:

Min G = Min x i g i Cx = cte  n present phases x i  0 A i = g i - i = 0  k absent phases x i = 0 A i = g i - i  0  duality x  A Ax = 0
duality CR t = 0 (linear programming problem; Kuhn and Tucker conditions)

Example for a very simple system n = 1, k = 2 H 2 O system: liquid, solid, vapor Two independent chemical reactions: s = l, v = l; we consider the two matrices

L S V l 1 1 1 Composition matrix C (l) (s) (v) (s) -1 1 0 (v) -1 0 1 Reaction matrix R
The columns of R are interpreted as affinity vectors, or "absent phase" vectors.

Fig. 5.

Thermodynamic diagrams

So, in the case k = 2, affigraphy is 2-dimensional and gives the topology of phase diagram In the general case: fundamental theorem (Fig. 9):

The intersection of affigraphy by 2-dimensional planes gives the possible (P, T) diagrams.

From the duality of C and R matrices, one recovers the three topologies for (P, T) diagrams in the case n = 3, k = 2 (Fig. 6) and one can prove the univariant scheme, Fig. 7 (next example for n = 1, k = 3):

C: A B C D A 1 1 1 1 R: (A) (B) (C) (D) (B) -1 1 0 0 (C) -1 0 1 0 (D) -1 0 0 1
Proof of univariant scheme from the considering of C and R matrices: back to Schreinemakers' rules recovered from affigraphy concept Example: « univariant scheme » k = 2, n = 3 A + C = D + E (B) So R written in the basis (A), (B) -R has two lines-will be such that for the first line, giving the equation for reaction with B absent:

(A) (B) (C) (D) (E) (A) 1 0 1 -1 -1
So, in the coordinate system (A), (B): (C) will be on positive side of (A)  on (A) side with respect to (B); (D) and (E) on negative side of (A). This proves the rule Fig. 8.

In affigraphy space, generalization of phase rule with k independent equilibrium factors.

Affigraphy is unifying concept for many (all) qualitative rules on the structure of phase diagrams, Fig. 9 We will not speak more about affigraphy.

In brief, affigraphy is unifying concept for all structural aspects of phase diagrams So we understand in the same time:

-the correspondence between rules on concentration diagram and rules on affigraphy space -we find back the topologies, we find back the univariant scheme -the role of dimensionality: for k = 2 affigraphy is 2-dimensional:

Affigraphy and (P,T) have the same topology: So, with its quantitative aspects, affigraphy is not the end of the story. How can we account rigorously for these « schematical » (qualitative) aspects?

A 1 = g 1 (P, T) - 1  g 10 + Pv 1 -Ts 1 - 1 A 2 = g 2 (P, T) - 2  g 20 + Pv 2 -Ts 2 - 2 A 1 , A 1 is

The contribution of oriented matroid theory

Qualitative aspects…

Actually there exists a mathematical theory devoted to qualitative geometry and qualitative linear (vectorial) algebra: the theory of matroid, the theory of oriented matroid; combinatorial geometry. It may be useful for chemical systems [START_REF] Guy | Interactions eaux-roches: modélisation des évolutions spatio-temporelles; étude expérimentale de co-précipitations de minéraux. Application à l'étude des gisements de tungstène[END_REF]. One forgets the coordinates of vectors, one only examines for a set of vectors, what are the elements in the set, what is their number, whether the elements are algebraically dependent or independent, form a basis etc. Abstraction of linear dependency Matroid = elements + sets of elements + structure on these sets (axioms) Qualitative matroidal information: example: one is interested to know that phases A, B, C… -are present together with no reaction (« paragenesis, assemblage… ») -are p or n in number -are such that their number may be maximal with no reaction (form a basis) -may react together, some on one side, some others on the other side of the reaction -whatever their proportions, whatever their precise composition… -are such that the composition of A is richer in chemical component a than the composition of B… Refer to Table 1.

Example for a chemical reaction: the following list of chemical species with their signs (abcdefghi) (++0+--0+-) means that species a and b participate to the reaction on the left hand side, c does not participate, d also participates on the left-hand side, e and f on the right side etc. Refer to Fig. 13 for two examples of orientations.

From the basic axioms, rules are derived for the transfer of orientations from bases to circuits etc.

Examples of sets of axioms:

Axioms of independent sets I (non reactive phase assemblages):

1)   I 2) if X  I and X'  X, then X'  I 3) If X and Y  I, and card(

X) = card(Y) + 1, then  x  X \ Y such that Y  {x}  I Axiom of bases If B1 and B2  B and if x  B1 \ B2, then  y  B2 \ B1 such that B1 \ x  y  B

Axioms of circuits (minimal reactions):

1) If X and Y  C and X Y then XY 2) If X and Y  C and X Y and if z  XY, then  Z  C such that Z  X Y \ z

Axioms of oriented circuits (reactions): In brief: the correspondence between both matroids, primal and orthogonal:

X = {X+, X-} -X = {X-, X+} 1)   O, 2) if X O then -X O, if X and Y O and X  Y then X = Y or X = -Y 3)
-expresses the correspondence between composition and affinity spaces, RC t = 0 (-is also a new justification for the notation with absent phases) Orientation (signature) of circuits, bases etc. (FAH S 1915-16 e, p. 532, 535, 537) x l  0 x s = x v = 0 A l = g l - l = 0 A s = g s - s  0 A i = g v - v  0

Table 1 Correspondence between chemical and matroidal notions

Figure 5 Representation of the invariant point Ω for the water system

There are three phases: l = liquid, s = solid, v = vapor; the three affigraphy absent phase vectors (l), (s) and (v) are represented, their coordinates in the two-dimensional plane are found in the reaction matrix. The divariant fields are noted both by the present and the absent phases {s (v,l)}, {l (v,s)} and {v (l,s)}.

Figure 6

Three "topologies" of a n = 3, k = 2, 5 phase system

The topologies are recovered from the affigraphy approach (cf. Fig. 4). Left column: chemography (position of phases in chemical space); middle: composition and reaction matrices; right: arrangement of univariant lines (chemical reactions) around the invariant point. From Schreinemakers works (In-, mono and divariant equilibria, VI, January 29 1916, pp. 1175-1190): this author had already summarized the qualitative properties of the chemical system by use of + orsigns.

Figure 12

From Schreinemakers work (In-, mono and divariant equilibria, VI, January 29 1916, pp. 1175-1190). A correspondence of the + orsigns both on the concentration diagram and on the P,T diagram may be found. The orientation of the bases and circuits are shown both for the matroid and its orthogonal for a n = 3, 5 phase system.

  une liste d'espèces chimiques possibles dans un système donné (par exemple H 2 O liquide, H 2 O gaz, Oxygène gaz, SiO 2 quartz etc.) ; -D'une liste d'éléments chimiques (par exemple oxygène, hydrogène, silicium, etc.) ; suivant les cas les constituants de base peuvent être des combinaisons des éléments chimiques classiques (par exemple des oxydes en pétrologie). -Et de la correspondance entre les éléments et les espèces, c'est-à-dire : tel élément appartient ou non à telle espèce. Une approche duale (ce mot peut être pris au sens mathématique) consiste à définir le système par : -Une liste d'espèces chimiques -Un jeu de réactions chimiques (par exemple : H 2 O gaz = 1/2 O 2 gaz + H 2 gaz) ; -Et une correspondance entre espèces et réactions, c'est-à-dire : telle espèce participe ou non à telle réaction. Voir Fig. 1.

  a) Les matroïdes construits sur les ensembles dépendants (ici les réactions chimiques) ou encore les stigmes ou cycles, ou b) Les matroïdes construits sur les ensembles indépendants ou parties libres (ou encore parfois ensemblins) ici des collections d'espèces chimiques indépendantes. On peut reprendre les axiomes : nous les formulons directement sous forme chimique dans le cas a) (stigmes) : -Si l'on considère deux réactions chimiques distinctes, alors aucune ne contient l'autre -Si deux réactions distinctes ont en commun une même espèce, on peut écrire une nouvelle réaction où cette espèce n'apparaît pas et contenant au moins une espèce de l'une des réactions de départ. La nouvelle réaction doit être incluse dans l'union des réactions initiales. Pratiquement, cela peut se faire par l'élimination de l'espèce commune par une combinaison linéaire appropriée des deux réactions et on vérifie que les propriétés requises sont remplies. Dans le cas b) (parties libres ou ensembles indépendants : l'ensemble E est le même que précédemment et les parties libres sont des collections d'espèces indépendantes au sens où nous l'avons défini au début du paragraphe) nous devons vérifier : -Si un sous-ensemble de E est contenu dans une partie libre alors c'est une partie libre ; oui : si on enlève une espèce à une collection d'espèces indépendantes, on obtient une collection d'espèces indépendantes.

  d'un problème demande en outre la définition des correspondances entre les potentiels chimiques et les concentrations. Aux « dépendances » rappelées plus haut sont associées des matrices. En thermodynamique chimique, la correspondance entre les espèces chimiques et les éléments chimiques est définie par la matrice de composition 𝐴 𝑘 𝑎 où les espèces chimiques k sont les vecteurs colonne (k = 1, …, n) et les éléments chimiques a (a = 1, …, m) les vecteurs lignes ; la quantité 𝑎 𝑘 𝑎 désigne le nombre de moles de l'élément chimique a rentrant dans une mole de l'espèce chimique k. La correspondance entre les réactions chimiques indépendantes et les espèces chimiques est définie par la matrice des réactions 𝑁 𝑟 𝑘 où les réactions chimiques r (r = 1,…, p) sont les vecteurs colonnes, les espèces chimiques les vecteurs lignes ; 𝑛 𝑟 𝑘 désigne le nombre de moles de l'espèce chimique k participant à la réaction chimique r. On montre que les deux matrices vérifient AN = 0 (« dualité »). Soulignons l'intérêt de cette dualité réaction chimiqueélément chimique : historiquement espèces chimiques et réactions chimiques ont été premières ; la notion d'éléments, qui s'échangent dans une réaction, est donc sous-jacente mais n'a pu être prouvée qu'avec les progrès de la chimie atomique.

  Ensemble indépendant maximal pour l'inclusion Axiomatique des bases Cardinal d'une collection d'espèces indépendantes (ou nombre maximal d'espèces indépendantes dans une collection d'espèces) Axiomatique de la fonction rang Fonction rang r M (A) = max │A│, X tq. X  A et pour X  E Axiomatique de la fonction rang Nombre maximal d'espèces indépendantes (dimension du système) c de la règle des phases Rang du matroïde r = r M (E) Nombre maximal d'espèces indépendantes en nombre minimal ou réaction chimique, par ex. C, O 2 , CO 2

  tel que Y  {x}  I Commentaire I2 En soustrayant une espèce à une collection d'espèces indépendantes, on obtient encore une collection d'espèces indépendantes. I3 se vérifie simplement Axiomatique des bases Famille non vide B de sous-ensembles de cardinalité r = r M

  The qualitative structure of phase diagrams: from the works of Schreinemakers (the Netherlands, beginning of the XX th century) to present day Outline 1. The structure of phase diagrams and the work of Schreinemakers 2. The contribution of « affigraphy » approach 3. The contribution of oriented matroid theory Parts 2 and 3 will show two different ways to generalize the works of Schreinemakers.1. The structure of phase diagramsConstruct a phase diagram from experimental data or theoretical predictions: limited accuracy, role of kinetics… Mathematical rules of thermodynamic equilibrium  structural rules for phase diagrams (e.g. Gibbs phase rule) Knowledge of the composition of the phases  application of the rules See Fig.1.The pioneering work of SchreinemakersThis Calphad meeting is a good opportunity to speak of the work of Schreinemakers who lived in the Netherlands one century ago.Biography: born: Roermond (The Netherlands) 1-9-1864; deceased: Roermond 20-2-1945: worked in University of Leiden. FAH Schreinemakers = Franciscus Antonius Hubertus Schreinemakers Papers on the theory of phase diagrams appeared in the Proceedings of the Koninklijke Akademie van Wetenschappen Te Amsterdam (both in Dutch and in English):-137 papers counted from 1898 to 1932 (alone or in collaboration) -Equilibria in ternary systems

  equivalent to P, T via a linear transformation (first approximation) But if we are interested in structural rules, we do too much because for expressing the structural rules, what is important is qualitative, not quantitative examples of qualitative informations; Fig. 10. FAH Schreinemakers himself stresses the qualitative aspects: Fig. 11 and 12. « schematical reaction diagram » Information only in a series of signs for both diagrams (concentration / (P, T) Schreinemakers says: " each series of signs is a representation of both diagrams" "a concentration-diagram type can be considered a schematical representation of the corresponding P-T diagram type".

  for all X and Y  O and X -Y and z (X+ Y-) (X-Y+) then  Z  O such that Z+  (X+ Y+) \ z and Z- (X-Y-) \ z Application to (minimal) chemical reactions 1) Two different chemical reactions cannot be compared (no one contents the other one) 2) One can write a new chemical reaction by eliminating the common phase to two chemical reactions -The orientation of a chemical reaction obtained from two other chemical reaction may be derived from the orientation of the two reactions Many operations are possible with oriented matroids… Important for our purpose: Operation of duality/orthogonality To matroid E corresponds dual or orthogonal matroid E* or E  To the bases B of E, correspond the co-bases B* of E*: E \ B And more generally sets of E* are complements of sets of E with respect to the whole set of elements rank(E) + rank(E*) = card(E) = n + k

Fig. 14 and 15 .

 15 Fig. 14 and 15.

Figure 1

 1 Figure 1 Invariant point of a 1-component 3-phase systemThe statement: "there is one invariant point and three univariant lines" is a decision of a theoretical nature (right part of the figure). Indeed, the only information on experimental data, always subject to uncertainty, leads to a drawing such as the one shown on the left side of the figure.

Figure 2

 2 Figure 2 Invariant point of a (n+3) systemAt an invariant point, one phase is lacking, there are n + 2 present phases, one absent phase. The univariant lines are defined by two absent phases and the divariant fields correspond to three absent phases; the absent phases are noted between brackets.

Figure 3

 3 Figure 3 Invariant point of a n = 3, k = 2, 5 phase-system All the phases are present at the invariant point. The arrangement of the phases in the chemical space (middle left figure) is responsible for the arrangement of the reactions around the invariant point on the bottom figure. On the top right, figure the divariant field (DE) is inside the angular sector (D), (E) such that the angle between (D) and (E) is less than 180°.

  Figure 4 Application to the 3 different topologies of a 3 + 2 system

Figure 7

 7 Figure 7 Affigraphy and (P,T) diagram for a n = 1, k = 3 systemThe four affigraphy vectors are represented in a 3-dimensional space. The (P, T) diagram is obtained by intersecting the affigraphy structure by a 2-dimensional plane. The example chosen is the sulfur system. The metastability levels of the points, lines and fields are related to the positive or negative side of the affigraphy vectors involved and intersecting the (P,T) plane.

Figure 8

 8 Figure 8 Proof of univariant schemeThe five affigraphy vectors of a five phase system are represented. (A) (B) is chosen as a basis. The arrangement of the vectors (C), (D) and (E) with respect to (A) and (B) is derived from their coordinates in the reaction matrix and is another way to read the chemical reactions in the system (see text).

  Figure 10 Example of qualitative information both in composition space and affigraphy space

Figure 13

 13 Figure 13Two examples of orientations for a n = 3, 4 phase system

  

  

  

  

  

  

  

5. Systèmes associant grandeurs extensives et grandeurs intensives. Analogie avec l'électricité

  On retrouve ici un problème général auquel s'applique la théorie des matroïdes et qui concerne des systèmes comportant deux types de variables : des variables intensives (ici des potentiels chimiques des espèces) et des variables extensives (des nombres de moles des espèces chimiques). On peut s'arrêter sur l'analogie avec l'électricité où la théorie des matroïdes a déjà été utilisée pour plusieurs types de problèmes. La correspondance entre la thermodynamique chimique et un réseau électrique est définie comme suit. L'analogue de

l'espèce chimique k est la branche k du réseau. Les grandeurs extensives associées sont le nombre de moles et l'intensité du courant, respectivement. Les grandeurs intensives sont le potentiel chimique de l'espèce k et le voltage aux bornes de la branche k respectivement.

Pour ce qui est des matrices l'analogue de la matrice des réactions est la matrice cyclomatique 𝑅 𝑘 𝑝 définissant un ensemble maximum de mailles indépendantes (il ne s'agit pas de toutes les mailles mais d'un nombre limité formant une base, de même pour les réactions chimiques qu'on prend indépendantes en nombre maximum : on a donc aussi la correspondance réaction chimiquemaille : et l'analogue de la matrice des composition chimiques est la matrice cocyclomatique définissant les noeuds 𝐷 𝑘 𝑎 .

  qui définit les degrés de liberté des systèmes. Par opposition, le matroïde défini par (1) et (2) à partir de la matrice F contient une information plus « quantitative » ; nous l'appelerons matroïde physique. La matrice F a 2n colonnes et n lignes ; le matroïde physique est défini sur deux répliques de l'ensemble des espèces chimiques. Il existe une autre axiomatique de construction des matroïdes : celle fondée sur la fonction rang et qui serait ici le rang des vecteurs des matrices A ou N. Si l'on pose le problème en concentrations uniquement (ou en potentiels uniquement), le nombre de relations cherché est le rang de ces matroïdes. Dans le cas d'un problème mixte où certaines concentrations et/ou potentiels sont connus (cela s'applique à des systèmes ouverts ; sur un diagramme géologique, c'est le problème de connaître la liste des phases en un point du diagramme lorsqu'on se donne des concentrations des éléments inertes et des potentiels des éléments mobiles) et où l'on cherche les autres, le nombre minimal peut être encore abaissé par rapport au rang : la théorie donne directement sa valeur

l'indépendance des vecteurs colonne. Nous l'appelerons matroïde structural. C'est essentiellement lui

This rule is derived from two principles: -a reaction is a boundary for the stability level of assemblages: there is a change in the stability level when crossing the line; -the divariant region (DE) is inside the angular sector between (D) and (E) such that angle < 180°. We can ask two questions about this correspondence: 1) What is the role of P and T?

See

Let us listen to Schreinemakers: " it might be strange that we have obtained a perfect representation of a P,T -diagram, without having spoken anywhere in our considerations of temperature and pressure". And: " a PT diagram can be considered as a schematical reaction-diagram of the corresponding concentration-diagram".

2) How to account for the gain in dimensionality from n -1 in concentration diagram to 2 in (P,T) diagram? Same information? Schreinemakers: "it is apparent from the previous that we may deduce the schematical reactions from both the diagram-types and that the concentration-diagrams have the advantage that they indicate the reactions also quantatively; the schematical reactiondiagrams have, however, the advantage that they can be drawn in a plane of each system of n components; the concentration-diagrams however are situated in a space with n -1 dimensions and consequently they are difficult to draw for systems with more than four components".