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Abstract 32 

Global environmental changes are expected to alter the functional characteristics of understorey herb-layer 33 

communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the 34 

variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers 35 

in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. 36 

We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 37 

2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect 38 

of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, 39 

specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) 40 

explained the largest proportion of variation in community trait means (on average 77% of the explained 41 

variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68% of 42 

the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the 43 

community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait 44 

distribution properties. The variation explained by shared combinations of the variable groups was generally 45 

negligible. These findings highlight the importance of considering multiple spatial scales in predictions of 46 

environmental-change effects on the functionality of forest understories. We propose that forest management 47 

sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest 48 

patches to maximise ecosystem service diversity in rural landscapes. 49 

 50 

Keywords: Agricultural landscapes; biogeography; community ecology; forest understorey; functional trait 51 

diversity; fragmentation; global environmental change; landscape connectivity; macroclimatic gradient; multi-52 

scale analysis  53 
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Introduction 54 

The major drivers of global change, that is, climate and land-use changes, are causing long-term shifts in the 55 

biodiversity and functioning of forest ecosystems (Hansen et al., 2001; Sala et al., 2000). Indeed, previous studies 56 

have reported a warming-induced reshuffling in the composition of forest plant communities (Walther, 2010). 57 

Furthermore, habitat fragmentation may aggravate the impact of climate change on forest ecosystems by 58 

impeding the movements of species across the landscape (Honnay et al., 2002; Skov & Svenning, 2004). Forest 59 

herbs are particularly susceptible to these interactive global-change effects due to their dispersal limitation (De 60 

Frenne et al., 2011; Verheyen, Honnay, Motzkin, Hermy, & Foster, 2003). Many forest plants are likely not able 61 

to rapidly track favourable environmental conditions, and their persistence may depend on the conservation of 62 

existing forest habitats within their actual distribution range (Honnay et al., 2002). From this perspective, small 63 

forest remnants may serve as refugia for forest herbs or even form stepping-stones for their migration across the 64 

landscape. Likewise, exactly these patches account for some key ecosystem services (e.g. sources of wood and 65 

fibre production, pollination, carbon sequestration, etc.; see review by Decocq et al., 2016). 66 

The response of forest ecosystems to environmental changes as well as their capacity to deliver ecosystem services 67 

is strongly defined by changes in plant functional trait diversity (i.e. the distribution of functional life-history traits 68 

among coexisting species) (Diaz, Cabido, & Casanoves, 1998; Violle, Reich, Pacala, Enquist, & Kattge, 2014). 69 

Indeed, various abiotic and biotic drivers (ecological filters) acting across different scales shape the functional 70 

trait composition within and across communities (Keddy, 1992; Violle et al., 2007; Zobel, 1997). Large-scale 71 

environmental factors (e.g. macroclimate) determine which ecological strategies are more viable at a given site, 72 

and may thus shape the community-level mean of plant traits. Local environmental variation (e.g. microclimate, 73 

edaphic heterogeneity and biotic interactions), on the other hand, provides opportunities for niche partitioning, 74 

and may explain why communities support a wider distribution of ecological strategies (de Bello et al., 2013; 75 

Stark, Lehman, Crawford, Enquist, & Blonder, 2017). Finally, landscape-scale factors (e.g. landscape 76 

connectivity) affect the movements of species among habitat patches, and may thus also modify the distribution 77 

of traits in community assemblages (e.g. by selecting species based on their dispersal traits; Favre-Bac, Mony, 78 

Burel, Seimandi-Corda, & Ernoult, 2017). However, the relative importance of these environmental drivers in 79 

structuring the functional trait distribution of forest plant communities across multiple spatial scales (from local 80 

to continental) still needs to be quantified. This knowledge is key to develop a deeper understanding of how 81 



5 
 

global changes affect ecosystem dynamics and functionality of forest remnants, and can be used to elaborate 82 

guidelines for their conservation and management in an era of environmental change.  83 

Here we determined the functional trait distribution of forest herbs as the community-level mean (CM) and 84 

coefficient of variation (CV). We specifically focused on the minimally needed trait spectrum, i.e. the leaf-height-85 

seed (LHS) trait space (Westoby, 1998), which relies on a combination of easily measurable traits known to 86 

reflect key aspects of ecological strategies amongst vascular plant species (Diaz et al., 2004). (i) Plant height at 87 

maturity determines a species’ ability to compete for light and adjust to various forms of environmental stress 88 

(climate, nutrients, etc.) (Westoby, 1998). (ii) Specific leaf area (SLA; leaf area to dry weight ratio) reflects the 89 

trade-off between leaf longevity and the maximum photosynthetic rate (with low/high SLA values resulting in 90 

long/short leaf life-spans, but low/high rates of photosynthesis; Wright et al., 2004), and thus controls the growth 91 

rate of plants as well as their capacity to respond to varying levels of disturbance (Bernhardt-Römermann et al., 92 

2011). (iii) Seed mass plays an important role in the colonization process as this trait is highly correlated with 93 

seed dispersal distances, seed bank persistence, germination potential of seeds and establishment and survival of 94 

seedlings (with heavier-seeded plants typically having a higher seedling survival rate upon emergence; Coomes & 95 

Grubb, 2003; Moles, Wright, Pitman, Murray, & Westoby, 2009).  96 

We aimed at explaining the variation in the functional trait distribution patterns of understorey plant 97 

communities in forest patches of agricultural landscapes along a broad macroclimatic gradient across Europe. 98 

To achieve this, we investigated the relative effects of several environmental drivers acting across different spatial 99 

scales (continental scale, regional/landscape scale and local/patch scale). Our study was explicitly designed to 100 

capture the environmental variability across these scales. In each region, we selected two landscape windows with 101 

a contrasting degree of landscape permeability and habitat connectivity. We assured that these windows 102 

contained forest patches of varying size, age and degree of isolation. The macroclimatic gradient along which the 103 

forest patches were located, assured that the large-scale climatic conditions of temperate Europe are represented 104 

adequately in our study. Moreover, studying plant populations along a broad environmental gradient provides 105 

vital information on the structuring and functioning of ecosystems, and serves as an excellent tool to investigate 106 

the response of individuals, communities or ecosystems to global environmental change (De Frenne, Graae, et 107 

al., 2013). We focus on understorey communities as these represent the vast majority of vascular plant diversity 108 

in temperate forests (Gilliam, 2007). They also play a vital role in forest ecosystem functioning (e.g. litter 109 
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decomposition and nutrient cycling) as well as the provisioning of ecosystem services (e.g. pollination, tree 110 

regeneration, habitat provisioning, etc.; Ampoorter et al., 2016; Nilsson & Wardle, 2005) and disservices 111 

(Ehrmann et al., 2018). Finally, herbaceous-layer communities are indicators for long-term environmental-112 

change impacts on forest ecosystems (Förster, Becker, Gerlach, Meesenburg, & Leuschner, 2017; Perring et al., 113 

2018). 114 

More specifically, we addressed the following hypotheses: (i) Macroclimatic factors, as overall ecological filter, 115 

mainly affect the community trait means of understorey herbs in forest fragments, (ii) Landscape configuration 116 

around the forest patches determines the dispersal success of species, and may therefore also influence the 117 

functional trait distribution of plant communities in fragmented forests, and (iii) Patch-scale factors such as patch 118 

age, size and internal heterogeneity contribute mostly to community trait variation within fragmented systems. 119 

 120 

Material and methods 121 

Study area 122 

Data on plant species occurrences were gathered from deciduous forest patches in eight regions, spanning a 123 

macroclimatic gradient of c. 2500 km across the nemoral and boreo-nemoral zones of Europe (see also Valdés 124 

et al., 2015; Fig. 1). In each region, two 5 km × 5 km agricultural landscape windows were selected with contrasting 125 

degree of connectivity between forest patches. The first window (henceforth referred to as ‘highly-fragmented 126 

system’), was chosen to consistently represent a poorly connected landscape with primarily isolated forest 127 

patches, separated by an intensively managed agricultural matrix of open arable fields. The other window 128 

(hereafter referred to as ‘semi-fragmented system’) contains forest patches which are, to some extent, connected 129 

by woody corridors (e.g. hedgerows and tree lines), and embedded in a less disturbed matrix. This landscape 130 

was thus considered more permeable to species movements between habitat patches. For each window, 131 

landscape metrics and climatic characteristics are given in Appendix A: Table 1. 132 

We sampled all deciduous forest patches in each landscape window, including both large and small as well as 133 

ancient (i.e. forests that have not been cleared for agriculture over a period of at least 150–400 years) and recent 134 

forests (i.e. forests that have been established on former agricultural land; Flinn & Vellend, 2005). We focused 135 

on deciduous forests as these are the most dominant type of forest remnants in rural landscapes across Europe, 136 
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and are known to have a diverse understorey species composition. Hence, we excluded coniferous plantations 137 

and stands with more than 40% of coniferous trees in the entire patch area. If a deciduous forest patch was 138 

embedded in a larger coniferous plantation, the coniferous part was not sampled and the deciduous stands were 139 

regarded as a single patch. In total, 708 forest patches were sampled, with an average of 37 ± 15 (mean ± S.D.) 140 

forest patches per window in the eight highly-fragmented landscapes and 52 ± 13 (mean ± S.D.) forest patches 141 

per window in the eight semi-fragmented landscapes. 142 

Floristic surveys 143 

Species-specific occurrences (presence/absence) of terrestrial vascular plants were collected in all forest patches 144 

at the peak of phenology of the vegetation (May–July 2012). More specifically, we recorded all vascular plant 145 

species (see Valdés et al., 2015 for a complete species list) occurring along parallel transects spaced at 10 m apart, 146 

in accordance with the recommendations of Kirby et al. (1986). Taxonomic agglomerates (e.g. Rubus fruticosus 147 

agg.) were treated as single species. The number of transects per patch and the transect length were proportional 148 

to the patch size. The transect direction was chosen randomly, but all transects were situated parallel to each 149 

other such that the entire area was surveyed. The average amount of time spent on these surveys was about two 150 

hours per hectare per person. Finally, we omitted trees and non-seed plants (i.e. ferns and horsetails) to avoid a 151 

bias in the calculation of trait statistics (especially for plant height and seed mass, respectively). This resulted in a 152 

final dataset of 606 species (with an average of 37.5 ± 19.7 species per patch). Following the methodology of 153 

Chao, Colwell, Lin, and Gotelli (2009), we estimated that we detected 85.3 % of all species present in the forest 154 

fragments. 155 

Trait data 156 

We compiled data on functional plant life-history traits from databases as well as personal measurements (see 157 

Appendix A: Table 2). The main data source for all traits was the LEDA database (Kleyer et al., 2008), completed 158 

for plant height by data from Ecoflora (Fitter & Peat, 1994) and for seed mass by D³ (Hintze et al., 2013) and 159 

the SID databases (Royal Botanic Gardens Kew, 2008). For completion of species with still missing values, the 160 

trait databases shown in Appendix 2 were assessed. In few cases, personal measurements following the protocols 161 

of the LEDA database were used. Remaining gaps in the trait data were relatively scarce (i.e. 0.87%, 2.66% and 162 

4.62% of missing occurrences in the sites × traits matrix for plant height, SLA and seed mass, respectively) and 163 

were therefore not interpolated as this would have only a minor influence on the calculation of community-level 164 
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statistics. Plant height was weakly correlated with SLA (Pearson’s r = –0.118, P = 0.007), while plant height and 165 

seed mass (Pearson’s r = 0.073, P = 0.098) as well as SLA and seed mass (Pearson’s r = 0.018, P = 0.677) showed 166 

no significant correlation. 167 

Due to limitations in data availability, we used mean functional trait values per species without taking into account 168 

intraspecific trait variability. Yet, this is a rational approach considering the broad scale of our study and the 169 

nature of our predefined hypotheses (following the guidelines of Albert, Grassein, Schurr, Vieilledent, & Violle, 170 

2011). Nonetheless, we acknowledge that incorporating within-species trait variability could further improve the 171 

robustness of our analyses (Albert et al., 2010; Violle et al., 2012), and merits additional research (especially 172 

given the effect of intraspecific trait variation on plant community dynamics and ecosystem functioning; Garnier 173 

et al., 2001).  174 

Environmental variables 175 

For each studied forest patch, three types of environmental variables (i.e. patch-scale, landscape-scale and 176 

macroclimatic variables) were calculated using a Geographic Information System (GIS) software (ArcGIS 9.3, 177 

ESRI). For each type, only the four most meaningful and representative variables were retained [based on a 178 

principal component analysis (PCA); 12 environmental variables per patch in total] to avoid overweighting of 179 

one type over the others in the statistical analysis and facilitate between-group comparisons (Valdés et al., 2015). 180 

The first group of environmental predictors consisted of four macroclimatic variables, using WorldClim 181 

version 1.4 (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005): maximum temperature of the warmest month 182 

(MaTWm; BIO5), minimum temperature of the coldest month (MiTCm; BIO6), precipitation of the wettest 183 

month (PWm; BIO13) and precipitation of the driest month (PDm; BIO14). Both MaTWm and MiTCm were 184 

highly correlated with the mean annual temperature (Pearson’s r = 0.773 and 0.943, respectively), while PWm 185 

and PD showed a high correlation with the mean annual precipitation (Pearson’s r = 0.698 and 0.956, 186 

respectively). For more details regarding the calculation and selection procedure of these macroclimatic variables, 187 

we refer to Appendix A and Valdés et al. (2015).  188 

Next, we calculated 20 variables describing the landscape configuration around each patch, using the Corrine 189 

Land Cover map of 2006 (Büttner, 2014) as well as aerial photographs. We retained only the four most 190 

representative variables, i.e. the proximity index (PROX; McGarigal, Cushman, & Ene, 2002), proportion of 191 

forest (F500) and grassland (G500) in a 100–500 m buffer around each focal patch and proportion of hedgerows 192 
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(H50) in a 0–50 m buffer around each patch (see Appendix A). These variables provide a measure for the inter-193 

patch connectivity as well as permeability of the surrounding matrix, and relate to the movements of species 194 

across the landscape. 195 

Finally, four patch-level variables were computed. Patch area (AREA) was determined after digitizing all forest 196 

fragments using recent aerial photographs (all taken after the year 2000). To estimate patch age (AGE), we 197 

reconstructed historical changes in forest cover based on land-use maps from the 18th century, 19th century, 20th 198 

century and the 21st century. Specifically, we calculated an area-weighted age index 𝐴𝐴𝑖𝑖 = ∑𝑝𝑝𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖, where 𝑝𝑝𝑖𝑖 is 199 

the proportion of the total surface area of a focal patch that existed continuously between the time of each 200 

historical map and the year 2012, and 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 the estimated age of the historical maps relative to 2012 (the year of 201 

the vegetation surveys). Both features are considered as important drivers of understorey species diversity in 202 

forests (De Frenne et al., 2011; Valdés et al., 2015), and may therefore have a profound influence on the 203 

functional diversity of fragmented systems. Likewise, small-scale differences in topography and canopy cover 204 

strongly modify local environmental conditions (e.g. light availability, microclimate and soil conditions) (Graae 205 

et al., 2017; Lenoir, Hattab, & Pierre, 2017), and may promote randomness, or even divergence, of trait values 206 

in the understorey herb layer. To account for these effects, we used the topographic variability (coefficient of 207 

variation of elevation) as proxy for abiotic heterogeneity (ABIO_H), and total woody species diversity within 208 

each patch as proxy for biotic heterogeneity (BIO_H). Further details on the calculation of these variables are 209 

provided in Appendix A. 210 

Data analyses 211 

We calculated the community-level mean (CM; i.e. mean trait values per patch) and variation (CV; i.e. coefficient 212 

of variation of trait values per patch) for each of the three plant traits. Then, we related these trait statistics to the 213 

12 studied environmental variables using linear mixed-effect models (LMM) with maximum-likelihood model 214 

estimation. In these models, we used the CM and CV of the studied traits as response variable, whereas the 12 215 

environmental variables were included as fixed effect. Furthermore, we included ‘region’ and ‘window type’ 216 

(nested within ‘region’) as random intercept terms in the models to account for the hierarchical structure of the 217 

data and potential spatial autocorrelation between plant populations belonging to the same region and landscape 218 

window. The variance inflation factor (VIF) between predictors was greatest for MiTCm (VIF = 7.87) and PDm 219 

(VIF = 9.40) (see Appendix A: Fig. 1, Fig. 2 and Table 3). Therefore, these two variables were not simultaneously 220 
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included in the models. All response variables were transformed with natural logarithm prior to the analyses to 221 

meet the assumptions of the statistical tests, while the predictor variables were standardized. 222 

To come up with the most parsimonious models, we adopted a model selection procedure according to 223 

Burnham and Anderson (2002). In particular, for each of the response variables (CM and CV of the three plant 224 

traits), we constructed candidate models with all possible combinations of the 12 explanatory variables, but always 225 

excluded one out of the two collinear variables (MiTCm and PDm) unless the other variable dropped out. Next, 226 

we ranked these models based on the small sample unbiased Akaike Information Criteria (AICc) (Burnham & 227 

Anderson, 2002). Finally, to account for model selection uncertainty, we performed conditional model averaging 228 

of parameter estimates across all candidate models with a ΔAICc < 2 (Burnham, Anderson, & Huyvaert, 2011). 229 

Finally, we performed a variation partitioning among the three groups of explanatory variables (patch-scale, 230 

landscape-scale and macroclimatic) according to Legendre and Legendre (2006). We constructed LMMs 231 

containing each time one, two or three groups of explanatory variables, and determined the proportion of 232 

variation explained by the fixed factors (marginal R ²; 𝑅𝑅𝑚𝑚2 ) according to Nakagawa and Schielzeth (2013). 233 

Subsequently, we calculated the amount of variation explained by the unique and shared contribution of patch-234 

scale, landscape-scale and macroclimatic variables, and expressed this relative to the total amount of variation 235 

explained by the fixed factors in the global model (containing all three groups of explanatory variables).  236 

All statistical analyses were performed in R using the packages ‘lme4’ (Bates, Mächler, Bolker, & Walker, 2015), 237 

‘lmerTest’ (Kuznetsova, Brockhoff, & Christensen, 2017) and ‘MuMin’ (Barton, 2017). 238 

 239 

Results 240 

In the most parsimonious models, the 12 environmental variables explained 31.0% (χ ² test; P < 0.001), 9.60% 241 

(χ ² test; P  = 0.002) and 18.4% (χ ² test; P < 0.001) of the total variance in the mean plant height, SLA and seed 242 

mass, respectively. More precisely, the mean plant height responded negatively to patch age, abiotic and biotic 243 

patch heterogeneity and precipitation of the wettest month, whereas the minimum temperature of the coldest 244 

month and the precipitation of the driest month had a strong positive effect. The mean SLA related negatively 245 

to patch area and proportion of grassland around the patch.  The mean seed mass increased with increasing 246 
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biotic heterogeneity and proportion of forests around the patch, but was negatively correlated with the proportion 247 

of grassland and minimum temperature of the coldest month (Table 1).   248 

For the variation of plant height, SLA and seed mass, the proportion of variance explained by the environmental 249 

predictors in the best model was 31.6% (χ ² test; P < 0.001), 37.4% (χ ² test; P < 0.001) and 41.1% (χ ² test; P < 250 

0.001, respectively. Notably, the variation of plant height, SLA and seed mass increased significantly with 251 

increasing patch area, patch age and abiotic as well as biotic heterogeneity of the forest patches. In addition, we 252 

detected a negative correlation between the variation of plant height and SLA and proportion of hedgerows 253 

around the patch, while the variation of seed mass responded negatively to increasing minimum temperature of 254 

the coldest month (Fig. 2, Table 1).  255 

The variation partitioning revealed that, among all fixed effects, the unique effect of macroclimatic variables 256 

accounted for the largest proportion of explained variation in the mean plant traits (70.8%, 87.7% and 73.2% of 257 

the explained variation for plant height, SLA and seed mass, respectively), whereas the percentage of variation 258 

explained by patch- and landscape variables was negligible. For the variation of the plant traits, however, patch-259 

scale variables accounted for the largest prediction value (78.2%, 73.6% and 50.8% of the explained variation for 260 

plant height, SLA and seed mass, respectively), followed by macroclimatic conditions and finally by landscape-261 

scale variables. The percentages of variation shared by the different groups of environmental variables were 262 

generally low (on average 2.88% of the explained variation across the three plant traits; Fig. 3). The results of the 263 

variation partitioning are thus highly consistent with the LMMs, demonstrating the robustness of our findings. 264 

 265 

Discussion 266 

Our study quantified the functional trait distribution of understorey plant species in fragmented forests along a 267 

macroclimatic gradient, and related the observed patterns to underlying effects of environmental variables at 268 

three different scales (patch-, landscape- and continental scale). We provide evidence for a scale-dependency in 269 

the role of environmental variables shaping the functional trait assemblages of forest fragments. Once large-scale 270 

environmental conditions such as macroclimate have set the community trait means, fine-scale variables 271 
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determine the variance of plant functional traits around the mean, and may thus explain why communities 272 

support different amounts of trait variation. 273 

Patch-scale variables as main driver of community trait variation in forests 274 

We found strong positive effects of all four patch-scale predictor variables (patch size, patch age, abiotic 275 

heterogeneity and biotic heterogeneity) on the community-level variation of the three studied traits.  Indeed, 276 

larger forest patches tend to harbour a higher number of species (cf. species-area relationship; Wright, 1983), 277 

and may hence support a broader range of plant strategies. Furthermore, ancient forests are likely to accumulate 278 

more species over time, especially species with life-history traits that limit their dispersal (De Frenne et al., 2011), 279 

and may thus also support a higher variation of functional traits. Older forests also provide a wider variety of 280 

microhabitats related to, for instance, the structural complexity of shrub and tree layer as well as often higher 281 

density of dead wood (Lõhmus & Kraut, 2010). 282 

Forest patches with higher levels of abiotic heterogeneity (here quantified as topography) generally provide a 283 

wider array of edaphic conditions, microclimates and potential resources, which could in turn support the co-284 

occurrence of species with differing trait values in the understorey (Opedal, Armbruster, & Graae, 2015; Stark 285 

et al., 2017). For instance, topographic complexity typically enhances microclimatic variability (Graae et al., 2017; 286 

Lenoir et al., 2017) and contributes to local heterogeneity in soil texture, soil moisture availability and litter 287 

decomposition (Dwyer & Merriam, 1981). Likewise, we assume that a higher heterogeneity in the canopy 288 

structure, and thus degree of canopy closure, also promotes functional diversity of understorey herbs by locally 289 

modifying environmental conditions such as light transmittance (Sercu et al., 2017) and below-canopy 290 

temperatures (De Frenne, Rodríguez-Sánchez, et al., 2013; Lenoir et al., 2017). 291 

In addition to these patch-scale effects, we detected a strong negative impact of the number of hedgerows around 292 

a forest patch on the variation of plant height and SLA. Long-term continuity of woody corridors is commonly 293 

seen as crucial factor supporting species-rich plant communities in small forest patches (Liira & Paal, 2013; Roy 294 

& de Blois, 2008). The hedgerows in our landscape windows, however, are likely too young to act as efficient 295 

migration corridors for forest herbs (Valdés et al., 2015), and might therefore not contribute to a divergence in 296 

functional trait attributes. Alternatively, well-connected landscapes (with many corridors) might reflect the 297 

historical land use, e.g. as remnants of cleared forests or forests used as wooded pastures, both of which may 298 

have homogenised the distribution of leaf traits in understorey herb-layer communities. 299 
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Finally, apart from the negative effect of temperature on seed mass variation, macroclimatic factors contributed 300 

poorly to explaining functional trait variation in the forest fragments. This is corroborated by the weak 301 

relationship between latitude and the variation of plant traits, particularly for plant height and SLA (see 302 

Appendix A: Fig. 3). Moreover, if macroclimate would have been the main driver of functional diversity, we 303 

would have expected a significant reduction in the number of viable plant strategies—and thus functional 304 

diversity—towards higher latitudes (Lamanna et al., 2014). Yet, our results indicate that patch characteristics may 305 

decrease the effect of large-scale environmental conditions, and ultimately explain why understorey herb 306 

communities in forest remnants exhibit different amounts of variation in their life-history traits. 307 

Macroclimatic variables as primary filter to define community trait means in forests 308 

Overall, macroclimatic variables had the greatest effect on the mean plant traits, suggesting large-scale filtering of 309 

species according to specific limiting conditions (Keddy, 1992). For instance, a higher precipitation in the driest 310 

month positively affected the mean plant height, supporting the findings of Moles, Warton, et al. (2009) that 311 

water availability constitutes one of the key limiting factors for plant height at a species level. Likewise, the positive 312 

effect of temperature on the mean plant height and seed mass in our study is corroborated by large-scale 313 

observational studies of plant functional trait variation (De Frenne, Graae, et al., 2013; Moles et al., 2005). Yet, 314 

we acknowledge that macroclimatic variables did not have a significant effect on the mean SLA. Most likely, this 315 

can be attributed to the fact that we focused on forest herbs, and SLA is therefore a direct reflection of species 316 

adaptations to shade (Lõhmus, Paal, & Liira, 2014) rather than macroclimate. 317 

In addition to macroclimate, some patch- and landscape-scale variables also showed a significant, but weaker 318 

effect on the community trait means. For instance, the negative correlation between patch age and understorey 319 

plant height could be related to the fact that older forests commonly host more small forest specialist species 320 

(Verheyen et al., 2003; and see Appendix A: Fig. 4). Recent forests, on the other hand, typically lack these slow-321 

colonizing specialists (Brunet et al., 2011; Naaf & Kolk, 2015), and are often dominated by tall, competitive herbs 322 

(e.g. Urtica dioica) due to the higher resource availability (e.g. soil phosphorous) or more open tree canopies 323 

(Flinn & Vellend, 2005). Likewise, we found that the mean plant height was negatively affected by the abiotic 324 

(topographic) and biotic (canopy) heterogeneity of the forests. The mean seed mass, however, increased with 325 

biotic patch heterogeneity. According to Wulf and Kolk (2014), the number of geophytes and small forest 326 

specialists with heavy seeds increases with forest patch heterogeneity, while the number of generalists was not 327 
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affected in their study. Forest specialists thus tend to respond positively to the higher number of small-scale 328 

suitable habitats, whereas generalists require less specific growing conditions and are mainly affected by moisture 329 

and nutrient availability (see also Dupré & Ehrlén, 2002). Consequently, we expect that an increase in small-scale 330 

heterogeneity may cause a proportionally higher rise in the number of forest specialist relative to generalists, thus 331 

implying a decrease in community mean plant height as well as an increase in community mean seed mass. 332 

SLA responded negatively to patch size, which could be the result of larger patches being either more intensively 333 

managed towards efficient timber production (Lidestav & Berg Lejon, 2013) or having more interior edges (e.g. 334 

forests roads) dominated by light-demanding, low-SLA species. Forest patches surrounded by a larger proportion 335 

of grasslands had a lower average SLA and seed mass. Most likely, these forests receive a higher input of open-336 

landscape species (with low SLA and low seed mass) and wind-dispersing plants (with low seed mass) from the 337 

surrounding pastures and meadows into the forest edges (Jamoneau et al., 2011; Lõhmus et al., 2014).  338 

Finally, it should be noted that, in some cases, the explanatory power (R ²) of the studied environmental variables 339 

was low (especially for the mean SLA and seed mass). We argue that other fine-scale environmental factors, 340 

which were not directly measured in this study, could partly drive functional diversity in the studied forest patches. 341 

Previous studies have reported that soil characteristics (Price et al., 2017), microclimate (Stark et al., 2017) and 342 

local light conditions (Liira, Jürjendal, & Paal, 2014) may play a key role in shaping the functional composition 343 

of plant communities. Besides, several non-environmental factors, such as biotic interactions, may influence 344 

functional diversity at a community-level (Tamme et al., 2010). Given this, we could expect that part of the 345 

variation in the studied plant traits arises from interactions between coexisting species within a forest patch 346 

(Moles, Warton, et al., 2009).  347 

Scale-dependency in drivers of the community trait means and variation of forests 348 

As expected, the variation partitioning demonstrated that macroclimatic drivers contributed most to the variation 349 

in community-mean traits, while patch-scale factors mainly determined functional trait variation, particularly for 350 

plant height and SLA (see also Stark et al., 2017). Specifically, it has been shown that environmental drivers 351 

might act as ‘hierarchical filter’ shaping community assemblages across different spatial scales (de Bello et al., 352 

2013; Kraft, Godoy, & Levine, 2015; Zobel, 1997). For instance, de Bello et al. (2013) argued that species are 353 

selected hierarchically from the regional species pool, according to certain trait attributes optimizing their growth 354 

and reproduction in a given area. In this filtering process, large-scale environmental factors such as macroclimate 355 



15 
 

primarily shape the functional trait composition (i.e. community-average traits), whereas local-scale 356 

environmental variables (e.g. microclimate heterogeneity) ultimately determine relative trait abundances, and 357 

may thus explain differences in community functional diversity.  358 

Environmental-change effects on the functional trait distribution of forest understories 359 

Under climate change, species are predicted to shift their ranges towards higher latitudes (and higher elevations 360 

in mountainous regions) in the coming decades (Parmesan, 2006). As a result, numerous forest ecosystems will 361 

likely experience a shift in their plant functional assemblages, which may in turn affect their functioning. 362 

However, for many species, these projected range shifts may be, at least party, inhibited due to the fragmentation 363 

of present-day landscapes (Renton, Shackelford, & Standish, 2012). Habitat fragmentation per se may also alter 364 

the functional trait distribution of forests by filtering plant species with strategies adapted to low habitat availability 365 

and high levels of patch isolation (Favre-Bac et al., 2017). In particular, plant species with dispersal traits helping 366 

them to overcome adverse effects of habitat isolation are selected from the regional species pool, leading to an 367 

overall convergence of trait values. In our study, however, landscape-scale variables related to habitat connectivity 368 

and landscape permeability had only a minor influence on both community trait means and variation. We argue 369 

that trait variation in our study area is not subject to direct landscape filtering, but shows a more stochastic pattern, 370 

which is driven by factors acting both at a continental and at a patch level. 371 

Alternatively, fragmentation through land-use changes not only implies a loss of connectivity, but also leads to a 372 

progressive conversion of forests into smaller and younger patches (Flinn & Vellend, 2005). This is reflected 373 

more clearly in the stand structure and patch characteristics of these forests, and may have a much stronger, 374 

negative impact on the functional diversity of understorey plant communities. In particular, many forest 375 

specialists display life-history traits that make them susceptible to habitat loss and degradation (Brunet et al., 376 

2011), and will be among the first to disappear from the regional pool of species. Yet, even if the present-day 377 

landscape configuration is maintained, time lags in the local extinction of forest specialists following habitat 378 

fragmentation may still be expected (Kolk & Naaf, 2015). Thus, incorporating information on historical land-use 379 
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changes and past landscape connectivity, when studying the effects of global change on functional diversity in 380 

temperate forest understories, could be the subject of future evaluation of forest functional research. 381 

 382 

Conclusion 383 

While community-average traits have been repeatedly linked to mean environmental conditions over large spatial 384 

scales, we demonstrated that local environmental factors (e.g. patch size, patch age, abiotic and biotic 385 

heterogeneity of the patch, etc.) provide a better predictor of functional trait diversity in fragmented forests. Given 386 

the role of small forest patches as biodiversity reservoirs and their potential to improve multifunctionality of 387 

degraded landscapes (Decocq et al., 2016), we suggest that better-informed guidelines for their management and 388 

conservation in an agricultural framework are urgently needed. With this in mind, our results are relevant to 389 

improve projections of future environmental-change impacts on the biodiversity and functioning of forest 390 

remnants, and have implications for the future management of fragmented systems. Forest managers, 391 

policymakers and landscape planners could benefit from prioritizing the conservation of larger, older and more 392 

heterogeneous forests, as these have a higher functional diversity and therefore potentially a higher resilience to 393 

global environmental changes (Mori, Furukawa, & Sasaki, 2013) as well as a higher potential to safeguard 394 

ecosystem service delivery in human-transformed landscapes (Decocq et al., 2016). Vice versa, our findings 395 

suggest that land management strategies aiming to improve the ecosystem service supply of heavily fragmented 396 

systems should prioritize on specific patch-scale characteristics of forests (e.g. size, history, tree composition, 397 

etc.), before scaling up to a landscape level (e.g. increasing functional connectivity or improving the overall 398 

landscape permeability).  399 
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Fig. 1 (A) Continental scale: map showing the locations of the eight study regions, spanning a latitudinal gradient 627 

of c. 2500 km. The grey area represents the temperate forest biome of Europe (adapted from Olsen et al. 2001). 628 

Country codes: SF = Southern France, NF = Northern France, BE = Belgium, WG = Western Germany, EG = 629 

Eastern Germany, SS = Southern Sweden, CS = Central Sweden, ES = Estonia). (B) Landscape scale: each region 630 

comprised two 5 km × 5 km landscape windows, embedded in a fragmented agricultural matrix consisting of 631 

mainly croplands, grasslands/pastures and isolated forest patches (example from western Germany). (C) 632 

Landscape scale: ‘semi-fragmented system’ with higher amount of woody corridors and a more permeable 633 

landscape matrix. (D) Landscape scale: ‘highly-fragmented system’ with lower amount of woody corridors and a 634 

landscape matrix predominantly consisting of intensively managed croplands. (E) Patch scale: fragmented forest 635 

patch with the location of the sampling plots (white points) used for the vegetation surveys. This figure was partly 636 

adapted from Valdés et al. (2015). 637 
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Fig. 2 Relationship between the community-level coefficient of variation (CV) of plant height (A–D), SLA (E–H) 640 

and seed mass (I–L), on the one hand, and patch area (A, E , I), patch age (B, F, J), abiotic patch heterogeneity 641 

(C, G, K) and biotic patch heterogeneity (D, H, L), on the other hand. The blue line denotes a linear mixed-642 

effect model (LMM; P < 0.05) with the predictor variables as fixed effect and ‘region’ as well as ‘window type’ 643 

(nested within ‘region’) as random intercept terms. The dashed line represents a 95% confidence interval. All 644 

response variables (CV of plant height, CV of SLA and CV of seed mass) were transformed with natural 645 

logarithm, whereas predictor variables (patch area, patch age, abiotic heterogeneity and biotic heterogeneity) were 646 

standardized by subtracting the mean and dividing by the standard deviation (S.D.). 647 
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Fig. 3 Results of the variation partitioning for the community-level mean (CM) plant height (A), SLA (B) and 650 

seed mass (C) as well as the community-level coefficient of variation (CV) for plant height (D), SLA (E) and seed 651 

mass (F) across the three groups of environmental variables (patch-, landscape- and macroclimatic scale). The 652 

amount of variation explained by pure and shared contributions of each variable group was calculated as a 653 

percentage of the total variation explained by the fixed factors in the global model (including the three groups of 654 

explanatory variables), and represented by ellipses with the ellipse area proportional to the percentage of variation 655 

explained. Values of marginal R ² (𝑅𝑅𝑚𝑚2 ) and conditional R ² (𝑅𝑅𝑐𝑐2) of the global models are shown for each response 656 

variable. Variation partitioning was based on a linear mixed-effect model (LMM) with the predictor variables as 657 

fixed effect and ‘region’ as well as ‘window type’ (nested within ‘region’) as random intercept terms. Note that 658 

these results strongly reflect the patterns shown in Fig. 2 and Table 1, based on the LMMs separately. 659 
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Tables 661 

Table 1 Results of the mixed model selection and averaging across the best candidate models relating the 662 

community-level mean (CM) and coefficient of variation (CV) of the studied plant traits (plant height, SLA and 663 

seed mass) to the 12 environmental variables. Values of Akaike Information Criterion (AIC), marginal R ² (𝑅𝑅𝑚𝑚2 ) 664 

and conditional R ² (𝑅𝑅𝑐𝑐2) are shown for the best model. The values inside the table represent parameter estimates 665 

± standard error, resulting from model averaging across all models with a ΔAIC < 2. The significance of each 666 

predictor variable was obtained from a χ ² test, and is indicated as: *** P < 0.001; ** P < 0.01; * P < 0.05; . P < 667 

0.1, with n = 708 forest patches. Blank spaces indicate that the variable was not included in the average model. 668 

Explanatory variables Plant height SLA Seed mass 

Community mean (CM) AIC = −588 

𝑅𝑅𝑚𝑚2 = 0.310 

𝑅𝑅𝑐𝑐2 = 0.544 

AIC = −1870 

𝑅𝑅𝑚𝑚2 = 0.096 

𝑅𝑅𝑐𝑐2 = 0.475 

AIC = 1238 

𝑅𝑅𝑚𝑚2 = 0.184 

𝑅𝑅𝑐𝑐2 = 0.314 

Patch area (AREA) −0.006 ± 0.007 −0.006 ± 0.002 * −0.046 ± 0.024 . 

Patch age (AGE) −0.030 ± 0.007 *** 0.002 ± 0.003 0.034 ± 0.025 

Abiotic heterogeneity (ABIO_H) −0.027 ± 0.011 *   

Biotic heterogeneity (BIO_H) −0.017 ± 0.007 * 0.002 ± 0.003 0.070 ± 0.026 ** 

Proximity index (PROX)  0.004 ± 0.002 .  

Proportion of forest (F500) −0.016 ± 0.010 . −0.004 ± 0.004 0.069 ± 0.035 * 

Proportion of grassland (G500) 0.018 ± 0.010 . −0.010 ± 0.004 * −0.092 ± 0.037 * 

Proportion of hedgerows (H50)  0.003 ± 0.003 0.046 ± 0.027 . 

Maximum temperature warmest month 

(MaTWm) −0.002 ± 0.041 −0.008 ± 0.016 −0.061 ± 0.077 

Minimum temperature coldest month 

(MiTCm) 0.085 ± 0.034 * 0.026 ± 0.017 −0.203 ± 0.073 ** 

Precipitation wettest month (PWm) −0.066 ± 0.034 * 0.003 ± 0.013 −0.031 ± 0.060 

Precipitation driest month (PDm) 0.105 ± 0.047 * 0.029 ± 0.015 .  

Community coefficient of variation (CV) AIC = −110 

𝑅𝑅𝑚𝑚2 = 0.316 

𝑅𝑅𝑐𝑐2 = 0.439 

AIC = −324 

𝑅𝑅𝑚𝑚2 = 0.374 

𝑅𝑅𝑐𝑐2 = 0.511 

AIC = 534 

𝑅𝑅𝑚𝑚2 = 0.411 

𝑅𝑅𝑐𝑐 
2= 0.501 

Patch area (AREA) 0.036 ± 0.009 *** 0.033 ± 0.008 *** 0.050 ± 0.015 *** 

Patch age (AGE) 0.034 ± 0.010 *** 0.035 ± 0.008 *** 0.060 ± 0.015 *** 

Abiotic heterogeneity (ABIO_H) 0.047 ± 0.027 *** 0.052 ± 0.012 *** 0.093 ± 0.022 *** 

Biotic heterogeneity (BIO_H) 0.112 ± 0.010 *** 0.102 ± 0.009 *** 0.172 ± 0.016 *** 

Proximity index (PROX) 0.013 ± 0.008 0.008 ± 0.007 0.008 ± 0.013 

Proportion of forest (F500) 0.015 ± 0.013 0.010 ± 0.011 0.016 ± 0.021 

Proportion of grassland (G500) 0.026 ± 0.014 . 0.015 ± 0.012 −0.006 ± 0.022 

Proportion of hedgerows (H50) −0.027 ± 0.010 ** −0.024 ± 0.009 ** −0.022 ± 0.016 
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Maximum temperature warmest month 

(MaTWm) −0.010 ± 0.027  −0.124 ± 0.041 ** 

Minimum temperature coldest month 

(MiTCm) 0.020 ± 0.027 −0.008 ± 0.025  

Precipitation wettest month (PWm) −0.033 ± 0.023 −0.035 ± 0.023 −0.032 ± 0.036 

Precipitation driest month (PDm) 0.016 ± 0.031 −0.029 ± 0.029 −0.048 ± 0.046 
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