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Abstract  

In this paper, we report on AlN/GaN HEMTs for high 

frequency applications. Various gate lengths have been 

studied as a function of the gate-drain distance in order to 

analyze the impact on the DC, RF and power performances. 

Electrical characteristics of this structure for 110 nm gate 

length show a maximum drain current of 1.2 A/mm, an 

extrinsic transconductance Gm of 400 mS/mm and a FT/Fmax 

of 63/300 GHz at a drain bias voltage VDS = 20V. An excellent 

electron confinement with a low leakage current below 10 

µA/mm is achieved. Furthermore, a breakdown voltage of 55 

V for GD0.5 and up to 140 V for GD2.5 are observed when 

using a 110 nm short gate length. Large signal characteristics 

at 40 GHz reveal a state-of-the-art combination of power 

added efficiency (PAE) (50%) with an output power density 

(Pout) of 3.6 W/mm at VDS = 20 V in continuous wave mode 

(CW) and PAE of 50% associated with a Pout  of 8.3 W/mm at 

40V in pulsed mode. It can be noticed that the 110 nm gate 

length GD0.5 showed no degradation after semi-on 

robustness tests and large signal measurements up-to VDS = 

20V. 

 

Introduction 

Gallium Nitride (GaN)-based RF power devices have 

made substantial progress in the last decade, which will 

enable new applications such as military wireless 

communication and SATCOM. Indeed, those 

applications operating at high frequency need compact 

systems, for which the power-added-efficiency (PAE) is 

a critical parameter. That is why, achieving both high 

PAE and output power density (Pout) in the millimetre-

wave range represents currently one of the key goals for 

the GaN technology. High Electron Mobility Transistors 

(HEMT) on SiC have already demonstrated attractive 

efficiencies up to Ka band [1]-[3] but limited data have 

been reported so far in the Q band [4] and above. To 

obtain very high frequency performance, it is necessary 

to optimize wisely the structure configuration especially 

the barrier thickness [5]. In this paper, we used an 

ultrathin barrier layer and investigated the impact of the 

gate-drain distance and the gate length with the aim of 

reaching high RF performances in the Q band and above.  

 

 

Experimental 

The epitaxial layer structure is based on an AlN/GaN 

heterostructure grown by metal organic chemical vapor 

deposition (MOCVD) on 4 in. SiC substrates. Figure 1 

shows the cross section of the HEMT structure consisting 

in an AlN transition layer, a C-doped GaN buffer layer 

followed by a 100 nm GaN channel and a 3.0 nm ultra-

thin AlN barrier layer. The HEMT was capped with an 

in-situ SiN layer both as early passivation as well as to 

reduce trapping effects. Room-temperature Hall 

measurements showed a high electron sheet 

concentration of 1.9x1013 cm-2 with a mobility of 965 

cm2/Vs. A Ti/Al/Ni/Au metal stack annealed at 850°C 

has been used to form the source-drain ohmic contacts 

directly on top of the barrier by etching the in-situ Si3N4 

layer. Then, Ni/Au T-gates with various lengths were 

defined by e-beam lithography. The SiN underneath the 

gate was fully removed by SF6 plasma etching through 

the e-beam lithography. Finally, 200 nm PECVD Si3N4 

was deposited as final passivation. 

 
 

Figure 1. Schematic cross section of the fabricated 

AlN/GaN-on-SiC HEMTs (left) and FIB view of a 110 

nm T-gate (right)    

 

Results and discussion  

DC characteristics:   

DC measurements have been carried out with a Keysight 

A2902A static modular and source monitor. Figures 2 

and 3 show the output and transfer characteristics as well 

as the extrinsic transconductance. 

The gate source voltage was swept from -4 V to +2 V 

with a step of 1 V. A maximum drain current IDmax is 

about 1.2 A/mm and 1.1 A/mm for GD0.5 = 0.5 µm and 

GD1.5 = 1.5 µm respectively. 

 
Figure 2. Output characteristics of an AlN/GaN HEMT with 

Lg = 110 nm 2x25 µm devices with GD0.5 (a) and GD1.5 (b). 

 

 

Figure 3. Transfer characteristics (a) and extrinsic 

transconductance (b) of an AlN/GaN HEMT 2x25 µm 

devices with a gate-drain distance of 0.5 µm (gd0.5) as a 

function of various gate lengths 
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A pinch-off voltage VTH = -2 V (shown in Figure 3) is 

observed for the different gate lengths with a drain 

leakage current below 20 µA/mm which reflects the 

absence of short channel effects. Furthermore, a decrease 

of the extrinsic transconductance as a function of the gate 

length has been observed from 400 mS/mm for Lg = 110 

nm to 360 mS/mm for Lg = 270 nm. The 

transconductance can be significantly optimized by 

reducing the access resistances as the contact resistance 

is as high as 0.45 Ω.mm for these devices.  

 

Figure 4 shows some basic DC parameters as a function 

of the gate length for GD0.5 and GD1.5. As expected, a 

drop of IDmax and GMmax are observed due to the increase 

of the gate-drain distance and the gate length. As mention 

earlier, the leakage current shown in Figure 4.b, is still 

below 50 µA/mm for all gate lengths and GD, which 

reflects the high material and processing quality.  

 

 
Figure 4. IDmax (a), IDleak (b), VTH (c), and GMmax (d) as a 

function of gate length for GD0.5 and GD1.5 

 

 

Figure 5. Semi-On robustness test up to VDS = 20V of a 

2x25 µm GD0.5 (a) and up to VDS = 30V GD1.5 (b) with 

LG = 110 nm. 

 

A semi-on robustness test has been performed on GD0.5 

and GD1.5 with Lg = 110 nm. The maximum current 

density is limited to 150 mA/mm and the IDVD transfer 

characteristics are swept from VDS = 2 V up to 20V for 

GD0.5 and up to 30V for GD1.5. The initial transfer 

characteristic is then compared to the one after the stress. 

Even for the short gate length of 110 nm, we observed a 

good electron confinement and no degradation during 

and after the semi-on robustness test as shown Figure 5. 

The excellent robustness can be attributed to the absence 

of parasitic surface leakage resulting from the in-situ SiN 

cap layer. 

 

The breakdown voltage at VGS = -4V is shown in Figure 

6 for various GD and Lg. It can be noticed that a leakage 

current still below 500 µA/mm is observed (figure 6.a) 

for short GD. The breakdown voltage scales well versus 

GD with for instance 50V for GD0.5 to more than 100V 

for GD1.5 as shown figure 6.b. 

 

Figure 6. Breakdown Voltage characteristics of an AlN/GaN 

HEMT 2x50 µm for various GD with Lg = 110 nm (a), and for 
various Lg with GD0.5 and GD1.5 (b). 

Small signal characteristics:  

The S-parameters have been measured from 250 MHz to 

67 GHz with a Rhode and Schwarz ZVA67GHz network 

analyser as shown in Figure 7. As expected, the current 

gain extrinsic cut-off frequency (FT) decreases as a 

function of VDS and Lg (shown in figure 7a). There is a 

large room for improvement by both reducing the contact 

resistances and the gate length. The maximum oscillation 

frequency (Fmax) and unilateral power gain (Umax) 

increase as function of VDS (figure 7b and 7c), which in 

turn confirm the absence of short channel effects for the 

designs that have been used. FT/Fmax of 63/300 GHz are 

achieved at VDS= 20V for a GD0.5 with Lg=110 nm 

(figure 7d). It can be pointed out that the power gain is in 

excess of 17 dB at 40 GHz for the shortest design. The 

Fmax/FT ratio close to 5 is explained by the highly 

favourable aspect ratio: gate length / gate-to-channel 

distance.  

 

Figure 7. Small signal characteristics of an AlN/GaN HEMT 

2x25 µm GD0.5 for various gate lengths: FT (a), Fmax (b), Umax 
(c) and FT / Fmax at 20V with Lg= 110 nm (d) 

 



Large signal characteristics: 

Large signal characterizations have been carried out at 40 

GHz on a nonlinear vector network analyzer system 

(Keysight Network Analyser: PNA-X, N5245A-NVNA) 

capable of on-wafer large signal device characterization 

up to the Q-band in continuous and pulsed mode. Further 

details of this specific power bench can be found in [6]. 

Figures 8a and 8b show CW power performances of 2x50 

µm with Lg = 110 nm for GD0.5 at VDS = 10V and GD1.5 

at VDS = 30V, respectively. A high saturated power (Pout) 

of 1.5 W/mm associated to power added efficiency 

(PAE) of 51.7% at VDS = 10V for GD0.5. For GD1.5 and 

at VDS = 30V, a Pout of 4.4 W/mm associated to a PAE of 

46.3% has been achieved. It can be stressed out that in 

power matching a Pout of 6.2 W/mm is reached. 

Figure 8c depicts the PAE, Pout and gain of 2x25 µm 

GD0.5, 2x50 µm GD0.5 and GD1.5 as a function of VDS 

(PAE matching) at 40 GHz. For all device design, the 

PAE remains above 45 % up to VDS = 20V and up to 30V 

when using a gate-drain distance of 1.5 µm. This 

capability of maintaining a high PAE above 45% up to 

VDS = 30V under high power density sets a new 

performance benchmark at this frequency band.   

An increasing evolution of POUT is observed up to 3.5 

W/mm at VDS = 20V for GD0.5 devices and 4.4 W/mm 

at VDS = 30V for GD1.5 devices. Furthermore, the power 

gain is maintained above 11 dB in all cases up to VDS = 

30V. In pulsed mode a PAE of 58% combined to a Pout of 

3.8 W/mm at 20V is reached. At VDS = 40V the PAE is 

maintained above 50% with a Pout of 8.3W/mm.  

 

Figure 8. CW power performances of an AlN/GaN HEMT 

2x50 µm with Lg = 110 nm for GD0.5 at VDS = 10 V (a), GD1.5 

at VDS = 30 V (b) and CW output power density (triangle), PAE 
(circle) and Small signal Gain (square) vs. VDS at 40 GHz (c).  

 

Despite the short gate length and GD, we observed no 

degradation of the devices up to VDS = 20V for GD0.5 

and VDS = 30V for GD1.5 as seen in Figure 9. The 

excellent robustness is attributed to the high quality of 

the epitaxial structure and the optimized processing. 

 

Figure 9. Transfer characteristics after large signal 

measurements with Lg = 110 nm for an AlN/GaN HEMT 2x25 
µm GD0.5 (a) 2x50 µm GD0.5 (b) and 2x50 µm GD1.5 (c).   

Conclusions  

We have developed high frequency AlN/GaN HEMTs 

grown on SiC substrate. We showed that with a 110 nm 

gate length, high frequency performance (FT/Fmax of 

63/300 GHz) can be reached at VDS = 20V. The 

optimized AlN/GaN HEMT structure enabled to deliver 

high power density together with state-of-the-art PAE > 

50% at VDS = 10V and > 45% at VDS = 30V in CW mode 

at 40 GHz. This achievement is mainly attributed to the 

optimization of both material, design as well as 

processing quality enabling namely a high electron 

confinement together with reduced short channel effects 

under high electric field. 

Preliminary CW results at 94 GHz on the same devices 

already demonstrated a combination of PAE about 

14.5% and an outstanding Pout of 4 W/mm at VDS = 20 V.  
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