
HAL Id: hal-02356791
https://hal.science/hal-02356791

Preprint submitted on 9 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A 3D Tight-Binding Model for La-Based Cuprate
Superconductors

Raphael Photopoulos, Raymond Fresard

To cite this version:
Raphael Photopoulos, Raymond Fresard. A 3D Tight-Binding Model for La-Based Cuprate Super-
conductors. 2019. �hal-02356791�

https://hal.science/hal-02356791
https://hal.archives-ouvertes.fr


October 30, 2019

A 3D Tight-Binding Model for La-Based Cuprate
Superconductors
Raphaël Photopoulos1 and Raymond Frésard1,∗

Motivated by the recent experimental determination of
the three-dimensional Fermi surface of overdoped La-
based cuprate superconductors [Horio et al., Phys. Rev.
Lett. 2018, 121, 077004], we revisit the tight-binding pa-
rameterization of their conduction band. We construct
a minimal tight-binding model entailing eight orbitals,
two of them involving apical oxygen ions. Parameter
optimization allows to almost perfectly reproduce the
three-dimensional conduction band as obtained from
density functional theory (DFT). We discuss how each
parameter entering this multiband model influences
it, and show that the peculiar form of its dispersion
severely constraints the parameter values. We then
evidence that standard perturbative derivation of an ef-
fective one-band model is poorly converging because
of the comparatively small value of the charge trans-
fer gap. Yet, this allows us to unravel the microscopical
origin of the in-plane and out-of-plane hopping ampli-
tudes. An alternative approach to the computation of
the tight-binding parameters of the effective model is
presented and worked out. It results that the agreement
with DFT is preserved provided longer-ranged hopping
amplitudes are retained. A comparison with existing
models is also performed. Finally, the Fermi surface,
showing staggered pieces alternating in size and shape,
is compared to experiment, with the density of states
also being calculated.

1 Introduction

Transition metal oxides entail a large diversity of func-
tional oriented properties: high-Tc superconductivity
[1–6], colossal magnetoresistance observed in the man-
ganites [7–10], and transparent conducting oxides [11, 12].
In addition, a whole series of promising materials for ther-
moelectric applications has been discovered [13–19]. Fur-

thermore, they also harbor fascinating phenomena such
as superconductivity at the interface of two insulators [20],
and peculiar metal-to-insulator transitions in vanadium
sesquioxide [21–24], all of them providing a strong chal-
lenge to study these systems from the theory side. Such a
task implies the derivation of an appropriate microscopi-
cal model containing the relevant degrees of freedom. To
some extend, the least degree of complexity arises when
modeling the superconducting cuprates as, in that case,
only one band crosses the Fermi energy. Accordingly, the
Hubbard model on the square lattice is often considered
as the proper low energy effective model of the super-
conducting cuprates [25]. It has been studied by a whole
range of approaches, but it remains fair to say that a widely
accepted theory of the cuprates, and more generally of
strongly correlated oxides, is still to come.

In an effort to set up a generic model applicable to
most superconducting cuprates, P. W. Anderson suggested
to focus on the CuO2 layers that are common to these ma-
terials, and, accordingly, to simplify the one-body term
of the Hamiltonian down to nearest-neighbor hopping
on the square lattice formed by the Cu ions [25]. He fur-
ther suggested to assume a fully screened Coulomb inter-
action that only retains the local (Hubbard) interaction
term among the dx2−y2 electrons that form the only band
crossing the Fermi energy. Intense efforts devoted to study
the resulting two-dimensional (2D) Hubbard model has
shown that it captures the basic phenomenology of the
cuprates [26–28]. However, these endeavors did not allow
to systematically yield long-ranged pure d-wave pairing
order in the hole doped region of interest (from the under-
doped δ' 5% region to the overdoped δ' 27% one with
δ the hole doping in a half-filled band). In addition, the
so-called 1/8 anomaly is found to be related to a magnetic
stripe. Yet, the period of the calculated one is twice larger
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than experimentally observed [29–31]. Eventually, this fail-
ure may originate from an oversimplification of the model,
and it has been suggested that including hopping to the
next-nearest neighbors (with hopping amplitude t ′) leads
to the correct stripe periodicity [30, 32–34]. Therefore, the
physics entailed in the Hubbard model is sensitive to the
very form of its one-body term. This is even more so since
recent calculations indicate that the role of t ′ is to sup-
press d-wave pairing correlations [33]. This, however, is
in contrast to the DFT study by Pavarini et al. [35], who
showed that a larger t ′ is empirically correlated to a higher
maximal Tc in each family of cuprate compounds. The
role of possible longer-ranged hopping terms, and their
relationship with oxygen orbitals, received a lesser degree
of attention.

Irrespective of the form of the interaction ultimately
leading to superconductivity, the one-body term of the
Hamiltonian is of interest on its own, for several reasons.
First, from the experimental point of view it has been es-
tablished long ago that the superconducting transition
temperature Tc is quite sensitive to the very structure
of a sample, that is primarily reflected in the hopping
term. For instance, the critical temperature is 25 K in bulk
La1.9Sr0.1CuO4 [36], while Tc reaches 49 K in thin film form
[37, 38]. Second, knowing the proper parameter set enter-
ing the kinetic energy term of the Hamiltonian might be
helpful when performing numerical simulations, in partic-
ular when tackling effective low energy Hamiltonians such
as the one-band Hubbard model. Alternatively, one may
wonder whether the rather weak exotic superconductivity
found in the repulsive t −U Hubbard model [27,33,39,40]
persists when further hopping terms are taken into ac-
count. Third, it is of interest to understand the micro-
scopic origin of the various hopping amplitudes entering
the kinetic energy of the effective model. How do effec-
tive models based on “in layer only” CuO2 orbitals com-
pare to models taking the third dimension into account?
Fourth, the reduction of multiband models down to an ef-
fective one-band model often results from a perturbative
treatment. Yet, the relative proximity of the Cu:3dx2−y2

and O:2p energy levels prevents this treatment from be-
ing rapidly converging, and an alternative procedure to
this downfolding procedure might be precious. Fifth, the
Fermi surface of La1.78Sr0.22CuO4 as measured by Horio
et al. [41] is not to be interpreted within a Hubbard model
on the square lattice.

In this work, we therefore propose to re-examine the
influence of the oxygen ions, including the apical ones,
on the electronic structure with a particular emphasis
on the form of the inter-layer couplings. More specifi-
cally, we take the single-layer La-based cuprate super-
conductors La2−x Srx CuO4 (LSCO) as examples [1]. Their

layered body-centered tetragonal structure (BCT) [42] is
explicitely taken into account. In this context, we neglect
all Cu:3d orbitals but the 3dx2−y2 one, so that the underly-
ing effective low-energy model still consists of a one-band
Hubbard model, but because of the BCT structure, we
retain the six relevant O:2p orbitals that shape the con-
duction band. The often advocated Cu:4s orbital is incor-
porated in our model, too [35, 43–46].

The paper is organized as follows: we shortly review
existing microscopical models in Section 2. We set up
a three-dimensional eight-band tight-binding model in
Section 3 where we show that all included orbitals have
a sizeable influence on the dispersion of the conduction
band. We also argue that the other oxygen orbitals may
be safely neglected. In Section 4, we start the discussion
by giving a set of optimized parameters which yields an
almost perfect agreement with DFT results by Markiewicz
et al. [47]. We then address downfolding procedures to
derive an effective one-band model. We first show that
the perturbative treatment to fifth order does not show
sign of convergence to the exact result for realistic val-
ues of the charge transfer gap. However, this allows us to
qualitatively discuss the different higher order superex-
change processes contributing to the effective hopping
integrals. The latter are then numerically computed by
means of the Fourier transform of the exact conduction
band. Finally, we discuss the peculiar calculated Fermi
surface of the 3D model which is compared to the recent
experimental results by Horio et al. [41]. The density of
states is addressed as well. The paper is summarized and
concluded in Section 5.

2 Emery and related microscopical
models

Below, we propose a starting point to the description
of the low-energy physics of superconducting La-based
cuprates (La2CuO4 as parent compound). This model
goes beyond the popular three-band tight-binding Emery
model [48–50] which we summarize below, as it will serve
as a basis for comparison. Since it is based on a single
CuO2 layer, it entails no dispersion in the direction per-
pendicular to them, in contrast to DFT calculations that
are performed for the 3D compounds [47, 51].

In real space, the one-body term describing an ideal
CuO2 layer reads:

Ĥ (0)
E = εd

∑
i,σ

n̂d
i,σ+εp

(∑
j,σ

n̂(X )
j,σ +∑

l,σ
n̂(Y )

l,σ

)
+ T̂pd + T̂pp , (1)

2 Copyright line will be provided by the publisher
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with

T̂pd = tpd

∑
i,σ

d̂ †
i,σ

(
p̂(X )

x,i+ a
2 ex,σ

− p̂(X )
x,i− a

2 ex,σ
− p̂(Y )

y,i+ a
2 ey,σ

+p̂(Y )
y,i− a

2 ey,σ

)
+h.c. and,

T̂pp = tpp
∑
i,σ

p̂(X )†
x,i+ a

2 ex,σ

(
p̂(Y )

y,i− a
2 ey,σ

− p̂(Y )
y,i+ a

2 ey,σ

)
+ p̂(X )†

x,i− a
2 ex,σ

(
p̂(Y )

y,i+ a
2 ey,σ

− p̂(Y )
y,i− a

2 ey,σ

)
+h.c. ,

(2)

where i ≡ Ri is the position of the Cu site in the CuO2 pla-
quette of the Bravais lattice. The lattice parameter a is the
shortest Cu-Cu distance, and d̂ †

i,σ is the creation operator
of an electron with the spin σ = (↑,↓) on the Cu:3dx2−y2 or-
bital on site i with on-site energy εd and occupation num-
ber operator n̂d

i,σ. Two O:2p oxygen orbitals are embodied

in the model through the p̂(X )†
x,j,σ (j ≡ Ri +aex /2), and p̂(Y )†

y,l,σ
(l ≡ Ri + aey /2) creation operators. The on-site oxygen

energy is εp with the occupation number operators n̂(X )
j,σ

and n̂(Y )
l,σ . The kinetic part of the Hamiltonian Eq. (2) refers

to the hopping amplitude tpd = 〈3dx2−y2,i|T̂pd |p(X )
x,i+aex /2〉

= −〈3dx2−y2 |T̂pd |p(Y )
y,i+aey /2〉 between the 2p(X )

x and 2p(Y )
y

oxygen orbitals and the 3dx2−y2 orbital, and the hop-
ping amplitude between both oxygen orbitals given by
tpp =−〈p(X )

x,i+aex /2|T̂pp |p(Y )
y,i+aey /2〉. The form of the kinetic

part of the Emery model is better known in momentum
space. Applying the Fourier transform on Eqs. (1) and (2),
the non-interacting Emery three-band Hamiltonian in
momentum space is given by:

Ĥ (0)
E = ∑

k,σ
Φ̂†

k,σ

 εd 2i tpd px −2i tpd py

−2i tpd px εp −4tpp px py

2i tpd py −4tpp px py εp

Φ̂k,σ

(3)

with

px ≡ sin

(
kx a

2

)
, py ≡ sin

(
ky a

2

)
. (4)

Here, all creation operators of electrons on Cu:3d and
O:2p orbitals with the momentum k and spin σ are gath-

ered in the three-component operator Φ̂†
k,σ =

(
d̂ †

k,σ, p̂(X )†
x,k,σ,

p̂(Y )†
y,k,σ

)
. Consensus about the value of the parameters

does not seem to have been reached but typical val-
ues in tpd unit are given by: εd − εp ' 2.5− 3.5tpd and
tpp ' 0.5−0.6tpd , with tpd ' 1.2−1.5 eV [2, 35, 48, 52–57].

Since a realistic non-interacting Hamiltonian which
can be implemented in quantum correlated treatments is

crucial in order to correctly describe the unconventional
properties of the superconducting cuprates [4, 58], other
models have been put forward. For instance, a generic
2D four-band model for CuO2 planes was suggested by
Labbé and Bok [59]. Later, Andersen et al. [43] derived
a 2D 8-band model extending the Emery model which
interpolates the LDA band structure of stoichiometric
YBa2Cu3O7. They thereby showed that the shape of the
Fermi surface is entirely characterized by the in-plane
hopping parameters t , t ′ '−0.30t and t ′′ ' 0.20t . In order
to shed light on their DFT results for LSCO, Markiewicz et
al. [47] introduced a phenomenological effective model.
Using, E3D (kx ,ky ,kz ) = εM + E2D (kx ,ky ) + Ez (kx ,ky ,kz )
the purely 2D contribution reads:

E2D (kx ,ky ) =−2t
[
cos(kx a)+cos(ky a)

]
−4t ′ cos(kx a)cos(ky a)

−2t ′′
[
cos(2kx a)+cos(2ky a)

]
−4t ′′′

[
cos(kx a)cos(2ky a)+cos(ky a)cos(2kx a)

]
,

(5)

where t , t ′, t ′′ and t ′′′ represent first, second, third and
fourth nearest-neighbor in-plane hopping integrals. Re-
garding the out-of-plane dispersion Markiewicz et al. en-
tangle all three space dimensions using:

Ez (kx ,ky ,kz ) =−2tzπxπyπz
[
cos(kx a)−cos(ky a)

]2 (6)

where

πx ≡ cos(kx a/2) , πy ≡ cos(ky a/2) , πz ≡ cos(kz c/2) , (7)

and tz denotes an inter-layer hopping parameter. The off-
set by (a/2, a/2) of the successive CuO2 layers is taken
into account through the factor πxπy [47]. The constant
εM makes E3D (0,0,0) vanishing. This model has also
been used in order to fit the experimental out-of-plane
Fermi surface of overdoped LSCO (δ = 0.22) obtained with
ARPES [41]. In addition, a three-dimensional (3D) four-
band tight-binding model was derived by Mishonov et al.
[45] in order to explain the observation of the 3D Fermi
surface in Tl2Ba2CuO6+δ [60].

3 Extended three-dimensional model

The goal of this section is to set up a tight-binding
model for La-based cuprates. More specifically we at-
tempt to reproduce the dispersion of the band based on
the Cu:3dx2−y2 orbital along the main symmetry lines of
the Brillouin zone, including the ouf-of-plane ones, as
obtained by DFT calculations by Markiewicz et al. [47].
There is an extensive literature on copper orbitals that

Copyright line will be provided by the publisher 3
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may play an important role to high-Tc superconductivity
(HTSC) [2, 3, 61]. It has predominantly been focused on
the 3dx2−y2 , 3d3z2−r 2 , and 4s orbitals that are closest to the
Fermi energy [35,43,58,62,63]. The assumption that some
form of the one-band Hubbard model harbors the key
ingredient to HTSC leads to neglect the 3d3z2−r 2 (filled)
orbital altogether, as it may not be simply integrated out
because of the strong interaction of these electrons with
the ones populating the 3dx2−y2 orbitals. In other words,
keeping both eg orbitals unavoidably results in a two-
band Hubbard model [63, 64]. Since the interaction of the
latter electrons with the 4s electrons is much weaker, inte-
grating out the latter is better justified and we explicitly
take them into account in our tight-binding model, as
proposed in Refs. [35, 43].

We start the construction of our model by consider-
ing the four inequivalent oxygen ions building octahedra
surrounding a given copper atom: there are two in-plane
oxygen ions O(X ) and O(Y ) along the x and y directions
respectively and two apical oxygens O(a) and O(b), located
above and below each copper ion, respectively. This leads
to twelve nearly degenerate O:2p orbitals to be consid-
ered. Yet, as will be addressed below, only six of them sig-
nificantly contribute to the dispersion of the Cu:3dx2−y2

band. Structure wise, the numerical value of the lattice
parameters is given by: a = b = 3.78 Å and c = 13.18 Å.
The position of the copper site and the oxygen sites in
a unit-cell i are given by RCu = Ri , RO(X ) = Ri + aex /2,
RO(Y ) = Ri + aey /2, RO(a) = Ri + dCu−Oap ez and RO(b) =
Ri −dCu−Oap ez . The distance r ≡ dCu−Oap = 2.42 Å= 0.64a
characterizes the elongation of the octahedra. Let us ob-
serve here that symmetry forces a whole series of hopping
amplitudes to vanish. In particular one has:

〈3dx2−y2 |T̂ |p(X ,Y )
z 〉 = 〈3dx2−y2 |T̂ |p(a,b)

x,y 〉 = 0 (8)

and

〈4s|T̂ |p(X ,Y )
z 〉 = 〈4s|T̂ |p(a,b)

x,y 〉 = 0. (9)

Hence those six oxygen orbitals do at best play a mi-
nor role and are therefore neglected. Accordingly, all
along this work we consider the eight orbitals: Cu:3dx2−y2 ,

Cu:4s, O(X ) : 2p(X )
x , O(Y ) : 2p(Y )

y , O(X ) : 2p(X )
y , O(Y ) : 2p(Y )

x ,

O(a) : 2p(a)
z , O(b) : 2p(b)

z , in this order. Further arguments
for this choice can be found in Refs. [35, 43, 65–71]. These
eight orbitals are labeled by an index µ that runs from
1 to 8. Subsets of orbitals involving all of them but the
Cu:3dx2−y2 one are labeled by an index ν that runs from
2 to 8, subsets of orbitals involving the in-plane oxygen
orbitals are labeled by an index κ running from 3 to 6,
while the subset of apical oxygen orbitals is labeled by ρ

that runs from 7 to 8. Our eight-band tight-binding Hamil-
tonian may be expressed as:

Ĥ(8) = Ĥ0 + T̂ + Ĥd , (10)

where Ĥ0 stands for the on-site orbital energies relative to
εd which denotes the on-site energy of the 3dx2−y2 orbital

and T̂ is the kinetic energy term. Introducing the Fourier
transform d̂k,σ of the annihilation operator of an electron
on site i with spin σ on the 3dx2−y2 orbital:

d̂k,σ = 1p
L

∑
k,σ

e−i k·Ri d̂i ,σ , (11)

and analogous expressions for the other orbitals, Ĥ0 reads:

Ĥ0 =
∑
k,σ

[
−∆pd

∑
κ

n̂p
k,σ,κ−∆z

∑
ρ

n̂pz

k,σ,ρ +∆s n̂s
k,σ

]
, (12)

where∆pd = εd −εp ,∆z = εd −εz ,∆s = εs−εd . Additionally,

εp , εz and εs , denote the on-site energies of the 2p(X ,Y )
x,y ,

2pz and Cu:4s orbitals, respectively. The various n̂k,σ,µ op-
erators represent the occupation number operators of a
given orbital with momentum k and spin σ. L is the size
of the lattice. Gathering all creation operators in the eight-

component operator Ψ̂†
k,σ,µ =

(
d̂ †

k,σ , ŝ†
k,σ, p̂(X )†

x,k,σ, p̂(Y )†
y,k,σ,

p̂(X )†
y,k,σ, p̂(Y )†

x,k,σ, p̂(a)†
z,k,σ, p̂(b)†

z,k,σ

)
, the kinetic energy may be

written as:

T̂ = ∑
k,σ

∑
µ,µ′

tµ,µ′
k Ψ̂†

k,σ,µΨ̂k,σ,µ′ . (13)

Here tµ,µ′
k is the hopping integral in momentum space

between orbital µ and orbital µ′. Finally, we have

Ĥd = εd

∑
k,σ

∑
µ
Ψ̂†

k,σ,µΨ̂k,σ,µ . (14)

Altogether, we focus on the one-body Hamiltonian

Ĥ = Ĥ0 + T̂ (15)

expressed as:

Ĥ = ∑
k,σ

∑
µ,µ′

Ψ̂†
k,σ,µHµ,µ′

k Ψ̂k,σ,µ′ , (16)

with

Hk =


Ak∥ Bk∥ Ckz

B †
k∥

Dk∥ Ek

C †
kz

E †
k Fk

 . (17)

Here, the Hamiltonian matrix is expressed in terms of the
sub-matrices Ak∥ , Dk∥ and Fk entailing the tight-binding

4 Copyright line will be provided by the publisher
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Hamiltonians in the copper, in-plane oxygen, and out-
of-plane oxygen orbital subspaces, respectively. The cou-
pling between these subspaces is accounted for by the
submatrices Bk∥ , Ckz and Ek. While the Hamiltonian ma-
trix Eq. (17) depends on the momentum k = (k∥,kz ), we
clarified the momentum dependence of the sub-matrices,
that are derived below.

3.1 In-plane hopping integrals

In this sub-section, we set up the contribution to the
Hamiltonian arising from the copper and in-plane oxy-
gen orbitals. This leads to a two-dimensional model. The
positions in the unit-cell i of the O(X ) and O(Y ) ions are
respectively labeled by j ≡ Ri +aex /2 and l ≡ Ri +aey /2.

3.1.1 Oxygen - copper and direct copper - copper
hopping integrals

The strong d-p σ-hybridization has already been pre-
sented in Section 2. Then, in agreement with arguments
given in Refs. [35, 43] we include in the model the ef-
fect of the Cu:4s orbital. It strongly hybridizes with the
nearest neighboring O(X ):2p(X )

x and O(Y ):2p(Y )
y orbitals.

They are located at relative positions ±aex /2 and ±aey /2
and the corresponding hopping matrix elements are
±tsp = 〈4si|T̂ |p(X )

x,i±aex /2〉. Symmetry implies that ±tsp =
〈4si|T̂ |p(Y )

y,i±aey /2〉. Note that the matrix elements of the

kinetic energy between the Cu:4s orbital and the remain-
ing O(X ) and O(Y ) orbitals vanish. Since the Cu:4s orbital
is more extended than the 3d one we also include di-
rect nearest neighbor 4s-4s hopping amplitude −tss =
〈4si|T̂ |4si±aex 〉 and the next nearest neighbor one −t ′ss =
〈4si|T̂ |4si±a(ex+ey )〉, together with their symmetry related
counterparts. The matrices Ak∥ and Bk∥ then follow as:

Ak∥ =
( |3dx2−y2〉 |4s〉

0 0
0 ∆̃k∥

)
, (18)

where we introduced the short-hand notation:

∆̃k∥ =∆s −2tss (cos(kx a)+cos(ky a))

−4t ′ss cos(kx a)cos(ky a) ,
(19)

and

Bk∥ =
( |p(X )

x 〉 |p(Y )
y 〉 |p(X )

y 〉 |p(Y )
x 〉

2i tpd px −2i tpd py 0 0
2i tsp px 2i tsp py 0 0

)
. (20)

The matrix Bk∥ accounts for the coupling between the Cu
(3d and 4s) orbitals and the involved in-plane oxygen one.
With the above sign convention tpd , tsp , tss and t ′ss are all
positive.

3.1.2 Oxygen-Oxygen hopping integrals

a) Neighboring oxygen ions along the axes of the square
lattice

We first consider the hopping integrals between the
in-plane 2p(X ,Y )

x,y oxygen orbitals. While the ionic radius
of Cu2+ is commonly accepted to be close to 0.75 Å, the
one of O2− is 1.35 Å, which results into a strong hybridiza-
tion of the oxygen orbitals among themselves. Indeed, the
diameter of the O2− ions is comparable to the distance be-
tween nearest-neighbors O(X ) and O(Y ) oxygen ions on a
CuO2 plaquette given by a/

p
2 = 2.68 Å. We thus introduce

the σ-type hopping integral between nearest-neighbor
2p(X )

x orbitals, tσ′ = 〈p(X )
x,j |T̂ |p(X )

x,j±aex
〉 as depicted in Fig. 1.

Similarly, tσ′ = 〈p(X )
y,j |T̂ |p(X )

y,j±aey
〉 is the hopping amplitude

between nearest-neighbor 2p(X )
y orbitals. Likewise, for

symmetry reasons, 〈p(Y )
y,l |T̂ |p(Y )

y,l±aey
〉 and 〈p(Y )

x,l |T̂ |p(Y )
x,l±aex

〉
will be given by tσ′ as well. In addition,π-type coupling be-
tween two O(X ) neighbors linked along ±aey and ±aex are
also considered. They are both accounted for by the hop-
ping integral −tπ′ = 〈p(X )

x,j |T̂ |p(X )
x,j±aey

〉 = 〈p(X )
y,j |T̂ |p(X )

y,j±aex
〉.

Symmetry implies that the π-type hopping integrals in-
volving the oxygen O(Y ) ions are again given by −tπ′ =
〈p(Y )

x,l |T̂ |p(Y )
x,l±aey

〉 = 〈p(Y )
y,l |T̂ |p(Y )

y,l±aex
〉. With the above used

sign conventions, tσ′ and tπ′ are positive. Furthermore
symmetry forces all matrix elements 〈p(X ,Y )

x,y,j |T̂ |p(X ,Y )
z,j 〉 to

vanish.

b) Neighboring oxygen ions along the diagonal axis of the
square lattice

In order to introduce theσ- andπ-type hopping matrix
elements between nearest-neighbor O(X ) and O(Y ) ions
we take advantage of a transformation consisting in a rota-
tion byπ/4 around ez of the 2p(X ,Y )

x,y orbitals for each given

oxygen site. It leads to define p̂(β)
ξ

= (p̂(β)
x + p̂(β)

y )/
p

2 and

p̂(β)
η = (−p̂(β)

x + p̂(β)
y )/

p
2 where β ∈ (X ,Y ). With this trans-

formation we obtain an alternative (or rotated) 2p oxygen
orbital basis in which σ- and π-hybridization along the di-
agonal directions between all oxygen ions of the lattice is
easily taken into account. We thus consider hybridization
between 2p(X )

ξ
and 2p(Y )

ξ
along (ex +ey )/

p
2 with the asso-

ciated hopping integral tσ = 〈p(X )
ξ,j |T̂ |p(Y )

ξ,j±a(ex+ey )/2〉. The

same hopping amplitude tσ is obtained when the 2p(X ,Y )
η

Copyright line will be provided by the publisher 5
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Figure 1 (Color online) Illustration of tpd , tσ′ , tpp and tσ′′ in-
plane hopping amplitudes. Note that tpp = (tσ+ tπ)/2 and tσ′′

are introduced using the rotated orbital basis (2p(X ,Y )
ξ

, 2p(X ,Y )
η ).

orbitals are considered along the orthogonal direction: tσ
= 〈p(X )

η,j |T̂ |p(Y )
η,j±a(ex−ey )/2〉. Furthermore, concerning the π-

type hybridization, we have −tπ = 〈p(X )
η,j |T̂ |p(Y )

η,j±a(ex+ey )/2〉
along (ex+ey )/

p
2 and −tπ = 〈p(X )

ξ,j |T̂ |p(Y )
ξ,j±a(ex−ey )/2〉 along

(ex −ey )/
p

2.

We also take into account, in this basis, the σ-coupling
between next-nearest neighbors O(X ) and O(Y ) ions. This

leads to the hopping integral tσ′′ = 〈p(β)
ξ,w|T̂ |p(β)

ξ,w±a(ex+ey )〉.
Symmetry implies tσ′′ = 〈p(β)

η,w|T̂ |p(β)
η,w±a(ex−ey )〉, with w ∈

(j, l). The corresponding π-type hopping amplitudes are
clearly smaller than the σ-type ones, and may be ne-
glected (see Fig. 1). Then the hopping amplitude between
σ-type 2p:O(X ,Y ) next-nearest neighbor orbitals is tσ′′/2
in the natural basis. The matrix Dk∥ embodying the tight-
binding model for the four in-plane 2p oxygen orbitals
therefore results as:

Dk∥ =



|p(X )
x 〉 |p(Y )

y 〉 |p(X )
y 〉 |p(Y )

x 〉

∆̄k∥ −4tpp px py −2tσ′′p2x p2y 4t (2)
ppπxπy

−4tpp px py ∆̄′
k∥

4t (2)
ppπxπy −2tσ′′p2x p2y

−2tσ′′p2x p2y 4t (2)
ppπxπy ∆̄′

k∥
−4tpp px py

4t (2)
ppπxπy −2tσ′′p2x p2y −4tpp px py ∆̄k∥


(21)

where we have defined:

∆̄k∥ =−∆pd +2(tσ′ cos(kx a)− tπ′ cos(ky a))

+2tσ′′ cos(kx a)cos(ky a)

∆̄′
k∥ =−∆pd +2(tσ′ cos(ky a)− tπ′ cos(kx a))

+2tσ′′ cos(kx a)cos(ky a) ,

(22)

together with

tpp = tσ+ tπ
2

, t (2)
pp = tσ− tπ

2
. (23)

In addition, we introduced

p2x ≡ sin(kx a) , p2y ≡ sin(ky a) . (24)

Furthermore, we note that tpp is identical to the O(X )-O(Y )

hopping integral involved in the Emery model Eq. (3) [48].
However, the smaller hopping amplitude t (2)

pp is neglected
in the Emery model. While the alternative orbital basis
(2p(X ,Y )

ξ
, 2p(X ,Y )

η ) eases the derivation of Dk∥ , the latter is
written in the natural basis. This completes the derivation
of a two-dimensional model.

3.2 Out-of-plane hopping integrals

In this subsection we derive the main contributions lead-
ing to dispersion perpendicular to the CuO2 layers. Be-
cause of the body-centered tetragonal structure there is
no obvious leading term describing the hopping of an
electron on a Cu:3dx2−y2 orbital in one layer to the same
orbital on a neighboring layer. Such processes involve at
least the apical oxygens through their 2pz orbitals, which
themselves couple to the Cu:4s orbital [35, 66, 69, 71] and
to in-plane O:2p orbitals. With this, one can attempt to
model the rather broad dispersion along kz found in
DFT calculations [47]. Below, the position in the unit-
cell of apical oxygens O(a) and O(b) are labeled by m ≡
Ri +dCu−Oap ez and n ≡ Ri −dCu−Oap ez , respectively.

3.2.1 Coupling of the apical oxygen ions to the in-plane
orbitals

Here, we describe the coupling of the apical oxygen ions
to the copper and in-plane oxygen ions. First, the hop-
ping amplitude associated to the Cu:4s and its nearest
neighbors in ez direction O(a,b):2pz orbitals is given by
tspz = 〈p(a)

z,m|T̂ |4si〉 and −tspz = 〈p(b)
z,n|T̂ |4si〉 (as shown

by the blue arrows in Fig. 2). Second, symmetry yields
〈p(a,b)

z,i±r ez
|T̂ |3dx2−y2,i〉 = 0. Hence, the couplings between

6 Copyright line will be provided by the publisher
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the Cu orbitals and the 2p(a,b)
z apical oxygen orbitals may

be gathered in:

Ckz =
( |p(a)

z 〉 |p(b)
z 〉

0 0
tspz e i r kz −tspz e−i r kz

)
. (25)

In addition, the 2p(a,b)
z apical oxygen orbitals signifi-

cantly hybridize with the in-plane 2p(X ,Y )
x,y oxygen ones.

Indeed, with the distance between a copper ion and an
apical oxygen ion being dCu−Oap ' 0.64a the distance be-
tween an apical oxygen ion and an in-plane oxygen ion
in the unit-cell is dO−Oap ' 0.80a. This is comparable
to the in-plane distance dO(X)−O(Y) ' 0.707a in the unit-
cell. Then, taking the point of view of apical oxygens,
the O(a):2p(a)

z orbital hybridizes with 2p(X )
x orbital along

δ(±)
− = ±aex /2−dCu−Oap ez with the associated hopping

integral ∓tpz = 〈p(a)
z,m|T̂ |p(X )

x,m+δ(±)−
〉 and 2p(Y )

y along δ′(±)
− =

±aey /2− dCu−Oap ez with ∓tpz = 〈p(a)
z,m|T̂ |p(Y )

y,m+δ′(±)−
〉. Be-

sides, O(b):2p(b)
z orbital also hybridizes with 2p(X )

x orbital
along δ(±)

+ = ±aex +dCu−Oap ez with the associated hop-

ping integral ±tpz = 〈p(b)
z,n|T̂ |p(X )

x,n+δ(±)
+
〉 and 2p(Y )

y along

δ′(±)
+ = ±aey +dCu−Oap ez with ±tpz = 〈p(b)

z,n|T̂ |py,n+δ′(±)
+

〉.
These couplings are illustrated in Fig. 2 by green arrows.

Furthermore, the coupling between the 2p(a,b)
z api-

cal orbitals (belonging to the nearest upper and lower
CuO2 layers) with in-plane 2p(Y )

x and 2p(X )
y orbitals should

be considered, too. Below, the distance between the
current CuO2 layer and the next-layer apical oxygen

ions is denoted by v ≡ d (next−layer)
Oap

= c/2 − dCu−Oap '
1.1a. Let us begin with O(b) : 2p(b)

z located in the up-

per layer at (a/2, a/2, d(next−layer)
Oap

). It hybridizes with

the 2p(Y )
x orbital. The associated hopping amplitude is

∓t ′′pz
= 〈p(b)

z,ν+ |T̂ |p(Y )
x,ν+−vez±ex /2〉. Here we introduced ν± =

a(ex +ey )/2±d (next−layer)
Oap

ez the position of an O(b) (O(a))

ion in the upper (lower) layer relative to the Cu ion in
the current layer. The next-layer O(b) also hybridizes
with the 2p(X )

y orbital with the associated hopping ampli-

tude ∓t ′′pz
= 〈p(b)

z,ν+ |T̂ |p(X )
y,ν+−vez±ey /2〉. Symmetry implies

that the apical oxygen O(a):2p(a)
z orbital belonging to the

lower layer at (a/2, a/2, -d(next−layer)
Oap

) hybridizes (with op-

posite sign) with the in-plane 2p(Y )
x and 2p(X )

y orbitals.
Therefore, the associated hopping integrals are ±t ′′pz

=

〈p(a)
z,ν− |T̂ |p(Y )

x,ν−+vez±ex /2〉 = 〈p(a)
z,ν− |T̂ |p(X )

y,ν−+vez±ey /2〉. These

couplings between in-plane 2p orbitals and out-of-plane

Figure 2 (Color online) Illustration of the body-centered tetrag-
onal lattice of single-layer La-based cuprate involving the
2p(X ,Y )

x,y in-plane oxygen, 2p(a,b)
z out-of-plane apical oxygen,

and Cu:4s orbitals. The inter-layer coupling is also illustrated.

2p(a,b)
z orbitals may be gathered in:

Ek =


|p(a)

z 〉 |p(b)
z 〉

2i tpz px e i r kz −2i tpz px e−i r kz

2i tpz py e i r kz −2i tpz py e−i r kz

−2i t ′′pz
py e−i vkz 2i t ′′pz

py e i vkz

−2i t ′′pz
px e−i vkz 2i t ′′pz

px e i vkz

 . (26)

3.2.2 Apical oxygens - Apical oxygens hopping
amplitudes

To complete the model we now proceed with the deriva-
tion of the tight-binding Hamiltonian in the out-of-plane
oxygen orbital subspace. Since neither the 2p(a,b)

x nor the
2p(a,b)

y orbitals couple to the 3dx2−y2 and 4s copper or-

bitals we are left with the 2p(a,b)
z orbitals only. Further

contributions to dispersion in the direction perpendic-
ular to CuO2 layers come from the 2pz orbitals of the
apical oxygens. With the body-centered tetragonal sym-
metry of the lattice, each apical oxygen O(a) (O(b)) is
surrounded by four nearest-neighbor apical oxygen O(b)

(O(a)) ions belonging to the upper (lower) next CuO2

layer. For example, we illustrate in Fig. 2 (magenta ar-
rows) the coupling between the O(a) apical oxygen lo-
cated at (0, 0, dCu−Oap ) of the reference unit-cell with

one of its apical nearest neighbor O(b) located at (a/2,
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a/2, c/2-dCu−Oap ) in the unit-cell centered at (a/2, a/2,
c/2). Since their distance is as small as dCu−Oap , the as-
sociated hopping amplitude t ′pz

has to be taken into ac-

count. Concerning the apical oxygen O(a) located at m,
the four nearest-neighbor inter-plane apical oxygens O(b)

are located at (±a/2, ±a/2, dCu−Oap + dO(a)−O(b) ) where
u ≡ dO(a)−O(b) = c/2− 2dCu−Oap = 0.465a is the distance
along the c-axis between two inter-plane apical oxygen
ions. Thus, we introduce the corresponding hopping in-
tegrals t ′pz

= 〈p(a)
z,m|T̂ |p(b)

z,m+a(±ex±ey )/2+uez
〉. Symmetry im-

plies: t ′pz
= 〈p(b)

z,n|T̂ |p(a)
z,n+a(±ex±ey )/2−uez

〉. The coupling be-

tween O(a) and O(b) in the unit-cell is also taken into ac-
count through t ′′′pz

= 〈p(a)
z,m|T̂ |p(b)

z,n〉. Note that theπ-overlap

between the O(a):2pz orbitals - and between the O(b):2pz

orbitals - is of order tπ′′ and may be neglected. Then, the
matrix Fk which accounts for the coupling between inter-
layer apical oxygen orbitals is given by:

Fk =
( |p(a)

z 〉 |p(b)
z 〉

−∆z 4t ′pz
πxπy e i ukz + t ′′′pz

e2i r kz

4t ′pz
πxπy e−i ukz + t ′′′pz

e−2i r kz −∆z

)

(27)

Let us note that all previously defined tight-binding pa-
rameters are taken positive (the sign of the orbital lobes
are taken care of through the adopted sign convention).
Symmetry implies that many seemingly large hopping
amplitudes actually vanish (see, e. g., Eqs. (8,9)). We ne-
glected hybridizations implying the 2p(X ,Y )

z orbitals be-
cause they are smaller than the largest retained ones, so
that our model is an eight-band model that may hardly
be improved on in the tight-binding framework. Below,
our model will be tested against the LDA results obtained
by Markiewicz et al. [47], as well as against the one-band
tight-binding model they use to capture their numerical
findings.

4 Results and discussion

The purpose of this section is to establish an effective one-
band model for Cu:3dx2−y2 band through the downfolding
of the other seven bands. Because of the relatively small
value of the gap between the oxygen bands and the cop-
per one, one may infer that numerous relevant effective
hopping integrals will come into play. Our procedure will
hence allow for highlighting their origin in the multiband
model, and for addressing what can and cannot follow
from the Emery model Eq. (3).

Γ X M Γ

-5

0

5

E
(k

) 
(t

p
d
)

k
||

Figure 3 (Color online) Electronic structure along path 1 (full
lines) and path 2 (dashed lines) arising from the eight-band
tight-binding model. The used tight-binding parameters are
given in Table 1.

4.1 Electronic structure and comparison to DFT

We now proceed with the dispersion of the bands result-
ing from the tight-binding Hamiltonian Eq. (15). In the
following we focus on the path 1 connecting the symme-
try points Γ=(0, 0, 0), X=(π/a, 0, 0) and M=(π/a, π/a, 0)
as well as on the path 2 connecting the symmetry points
Z=(0, 0, 2π/c), R=(π/a, 0, 2π/c), and A=(π/a, π/a, 2π/c).
The electronic structure of the model is shown in Fig. 3.
The six lowest in energy bands have O:2p character: the
four in-plane ones are lower in energy than the two out-of-
plane ones. Not only do they show large dispersion along
paths 1 and 2, but all six bands display strong dependence
on kz as well. Regarding the bands originating from the Cu
ions, the highest in energy one has a predominant Cu:4s
character while the second highest in energy one has pre-
dominant Cu:3dx2−y2 character. On their own the former
shows a weak k∥ dependence, while the latter is fully local.
Hence they inheritate their dispersion from their coupling
to the oxygens. The so-obtained band widths are smaller
than for the oxygen based ones, but dispersion along the
three directions is obtained for both Cu-based bands.

Let us now focus on the Cu:3dx2−y2 conduction band
(the only one crossing the Fermi level), of dispersion
Ecb(k). As will be discussed in sub-section 4.3, the con-
duction band shows strong sensitivity to the choice of the
parameter set entering the Hamiltonian, not only from

8 Copyright line will be provided by the publisher
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Table 1 Summary of the set of optimal tight-binding parameters in units of tpd fitting the LDA dispersion of the conduction
band (Fig. 4).

∆pd ,opt = 3.5 ∆z,opt = 2.6 ∆s,opt = 6.5 tσ,opt = 0.95 tσ′ ,opt = 0.13 tσ′′ ,opt = 0.4 tsp,opt = 1.3 tπ,opt = 0.2375

tss,opt = 0.40 t ′ss,opt = 0.10 tspz ,opt = 1.4 tpz ,opt = 0.95 t ′pz ,opt = 0.45 t ′′pz ,opt = 0.10 t ′′′pz ,opt = 0 tπ′ ,opt = 0.0325
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Tight binding (this work)

Tight binding (Markiewicz et al.)

LDA (Markiewicz et al.)

k
||

(a)

(b)

Figure 4 (Color online) (a) Comparison of the dispersion of the
conduction band as obtained within DFT by Markiewicz et al.
[47] (circles) to our tight-binding model. Here, Ecb(π/a,0,0)
defines the zero of energy and the kz = 2π/c line is shifted by
1 eV, for clarity. (b) Energy difference ∆Ez (k∥) Eq. (28) as a
function of k∥. The used tight-binding parameters are given in
Table 1, together with t/tpd = 0.283.

the point of view of the band width, but also from the
point of view of the shape of the band. Hence we first
stick to an optimal set of tight-binding parameters (see
Table 1) which provides a good fit of the conduction band
as obtained from DFT by Markiewicz et al. for the LSCO
compound [47]. The dispersion of the conduction band
for kz = 0 and kz = 2π/c obtained from our model is com-
pared to a set of data points from LDA calculations [47] in

Fig. 4 and Fig. 5. Regarding path 1 that encompasses the
symmetry lines Γ-X-M-Γ, Figs. 4(a) and 5 demonstrate an
almost perfect agreement between our model and DFT
calculations. A good agreement is also found along path 2,
at the exception of the vicinity of the Z point. The energy
difference:

∆Ez (k∥) = Ecb(k∥,kz = 2π/c)−Ecb(k∥,kz = 0) (28)

is also plotted in Fig. 4(b). Amazingly no kz -dispersion
arise above the X-M-Γ symmetry line. It only appears
above the Γ-X symmetry line (anti-nodal direction). This
feature is shared by the Markiewicz 3D tight-binding
model [47] (Eqs. (5, 6)) and is exhibited by LDA calcu-
lations [47, 51]. It has also been observed in recent ARPES
experiments [41].

A more accurate comparison of the calculated disper-
sion along Γ-X to LDA is presented in Fig. 5. Clearly, the
dispersion yielded by our model is in good agreement with
the DFT results in the vicinity of (π/a, 0, kz ) that is close
to the Fermi energy for a half-filled band. The agreement
remains good for k = (π/2a, 0, kz ) but degrades when
going towards the bottom of the band. In Fig. 5 we also
compare the tight-binding model set up by Markiewicz
et al. [47] (see Eqs. (5, 6)) to their DFT results, in which
case good agreement is obtained only in the very vicinity
of the (π/a, 0, kz ) symmetry line. In fact, for both mod-
els, the dispersion of the LDA conduction band along Γ-Z
is poorly accounted for. At first glance this could be at-
tributed to the neglected terms. Yet, the largest (though
small) of them do not bring dispersion of the conduction
band along Γ-Z, so that this rather points to a limitation of
a tight-binding description that neglects other Cu orbitals.
Yet, when sticking to the vicinity of half-filling, this primar-
ily affects rather high energy excitations, which turn out
to be larger than the ones involving the top of the (here
neglected) 3d3z2−r 2 band [72].

4.2 Analytical approach: microscopical origin of the
effective hopping amplitudes from downfolding

Below, we discuss the connection between hopping pro-
cesses involved in our model and within a one-band effec-
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Figure 5 (Color online) Dependence on kz of the conduction
band as a function of k∥ along Γ-X. The shaded blue region
is bounded by the band for kz = 0 and kz = 2π/c. The used
tight-binding parameters are given in Table 1, together with
t/tpd = 0.283.

tive description of the conduction band through a down-
folding of the multiband Hamiltonian Eq. (15). Indeed, as
previously seen in Section 2, cuprates are often described
within the Emery model [48, 49] and it was suggested
that this model can be reduced to an equivalent effective
single-band Mott-Hubbard system with the Zhang-Rice
singlet band playing the role of the lower Hubbard band
[73]. This point of view supports the early proposal by P.
W. Anderson [25] that essential physics of cuprates would
be captured by a one-band Hubbard-like model in which
the kinetic part is made of the nearest neighbor and the
next-nearest neighbor integrals t and t ′ in addition to
the local repulsive interaction that favors electron local-
ization. However, such a description is only based on a
square lattice and neglects the body-centered tetragonal
structure of single-layer La-based cuprates responsible
for inter-plane coupling. Here, focusing on the kinetic
part of the model, we follow this route by integrating out
the oxygen and the Cu:4s degrees of freedom in order to
obtain a one-band effective model describing the conduc-
tion band. The one-band Hamiltonian has the k depen-
dence of a Fourier series. Then, the copper band expres-
sion for the dispersion has an in-plane part E∥(k∥) and an

inter-plane part Ez (k), which, up to a constant ensuring
E(0) = 0, reads:

E(k∥,kz ) = E∥(kx ,ky )+Ez (kx ,ky ,kz ) = 1

L

∑
i , j

ti , j e i k·(Ri−R j ) ,

(29)

where the in-plane dispersion used in this paper is:

E∥(kx ,ky ) =−2t
[
cos(kx a)+cos(ky a)

]
−4t ′ cos(kx a)cos(ky a)−2t ′′

[
cos(2kx a)+cos(2ky a)

]
−4t ′′′

[
cos(2kx a)cos(ky a)+cos(2ky a)cos(kx a)

]
−4t (4) cos(2kx a)cos(2ky a)

−2t (5) [cos(3kx a)+cos(3ky a)
]

−4t (6) [cos(3kx a)cos(ky a)+cos(3ky a)cos(kx a)
]

−4t (7) [cos(3kx a)cos(2ky a)+cos(3ky a)cos(2kx a)
]

.

(30)

Above, t (n)=-ti , j denote the hopping integrals to the (n+1)
nearest neighbors on the copper lattice as illustrated in
Fig. 6(a). Further smaller hopping amplitudes are ne-
glected. Furthermore, according to the BCT structure con-
sidered here (see Fig. 2), inter-plane hopping amplitudes
between two CuO2 layers lead to the dispersion relation:

Ez (kx ,ky ,kz ) =−8πz (kz )

{
θcos

(
kx a

2

)
cos

(
ky a

2

)

+θ′
[

cos

(
3kx a

2

)
cos

(
ky a

2

)
+cos

(
3ky a

2

)
cos

(
kx a

2

)]

+θ′′ cos

(
3kx a

2

)
cos

(
3ky a

2

)

+θ′′′
[

cos

(
5kx a

2

)
cos

(
ky a

2

)
+cos

(
5ky a

2

)
cos

(
kx a

2

)]

+θ(4)
[
cos

(
5kx a

2

)
cos

(
3ky a

2

)
+cos

(
5ky a

2

)
cos

(
3kx a

2

)]

+θ(5) cos

(
5kx a

2

)
cos

(
5ky a

2

)}
−2t(0,0,c) cos(kz c) .

(31)

Here θ, θ′, θ′′, θ′′′, θ(4), and θ(5) corresponds to the inter-
plane hopping amplitudes onto copper neighbors lo-
cated in (± a

2 ex± a
2 ey± c

2 ez ), (± 3a
2 ex± a

2 ey± c
2 ez ), (± 3a

2 ex±
3a
2 ey ± c

2 ez ), (± 5a
2 ex ± a

2 ey ± c
2 ez ), (± 5a

2 ex ± 3a
2 ey ± c

2 ez ),
(± 5a

2 ex ± 5a
2 ey ± c

2 ez ), respectively. They are depicted in
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(a)

(b)

Figure 6 (Color online) Illustration of the copper ion positions
on a BCT lattice and related effective hopping amplitudes. (a)
The largest in-plane hopping integrals (between Cu ions) are
denoted by t ,t ′,t ′′,t ′′′, and t (4). (b) The largest inter-plane
hopping integrals are denoted by θ, θ′ and θ′′. The CuO2

layers are shifted by (a/2, a/2).

Fig. 6(b). Here t(0,0,c) corresponds to the hopping ampli-
tude to neighbors located in (0, 0, c).

By using the Rayleigh-Schrödinger perturbation the-
ory (PT) as encompassed in Lindgren’s notation to fourth
order (see appendix), one obtains the effective conduc-
tion band as:

E∥(k∥)eff = E (2)(k∥)+E (3)(k∥)+E (4)(k∥) , (32)

since the first order contribution vanishes. Here E (2)(k∥),
E (3)(k∥) and E (4)(k∥) are the second, third, and fourth or-
der contribution to the effective dispersion, respectively:

E (2)(k∥) =−4t 2
pd

(
p2

x

∆̄k∥
+

p2
y

∆̄′
k∥

)
(33)

E (3)(k∥) =
32t 2

pd tpp p2
x p2

y

∆̄k∥∆̄
′
k∥

(34)

E (4)(k∥) =
16t 4

pd

∆̄2
k∥
∆̄′2

k∥

(
∆̄′2

k∥

∆̄k∥
p4

x +
∆̄2

k∥

∆̄′
k∥

p4
y +p2

x p2
y

(
∆̄k∥ + ∆̄′

k∥

))

−
16t 2

pd t 2
sp

∆̄k∥∆̄
′
k∥
∆̃k∥

(
∆̄′

k∥

∆̄k∥
p4

x +
∆̄k∥

∆̄′
k∥

p4
y −2p2

x p2
y

)

+
32t 2

pd t 2
pz

∆̄k∥∆̄
′
k∥
∆z

(
∆̄′

k∥

∆̄k∥
p4

x +
∆̄k∥

∆̄′
k∥

p4
y −2p2

x p2
y

)

−
64t 2

pd t 2
pp p2

x p2
y

∆̄k∥∆̄
′
k∥

(
p2

x

∆̄k∥
+

p2
y

∆̄′
k∥

)

−
64t 2

pd t (2)2

pp π2
xπ

2
y

∆̄k∥∆̄
′
k∥

(
∆̄′

k∥

∆̄2
k∥

p2
x +

∆̄k∥

∆̄′2
k∥

p2
y

)

−
16t 2

pd t 2
σ′′p

2
2x p2

2y

∆̄k∥∆̄
′
k∥

(
p2

x

∆̄k∥
+

p2
y

∆̄′
k∥

)

−
64t 2

pd tσ′′ t (2)
pp px py p2x p2yπxπy

∆̄2
k∥
∆̄′2

k∥

(
∆̄k∥ + ∆̄′

k∥

)
.

(35)

No kz dependence arises at this order in PT.
In Fig. 7 we compare the in-plane dispersion of the

3dx2−y2 band obtained from numerical diagonalization to
the perturbative results obtained to second, third and
fourth orders. Rapid convergence for all k∥ values is
reached for large values of ∆pd (Fig. 7(a)). For instance,
for ∆pd = 10.5tpd , the dispersion obtained to fourth order
in perturbation theory is found to almost perfectly repro-
duce the dispersion obtained by diagonalizing the eight-
band Hamiltonian Eq. (16). Yet, this good agreement gets
gradually lost when reducing the charge transfer gap. In-
deed, for ∆pd = 3.5tpd , which is a broadly accepted value
for LSCO [2, 52], the effective dispersion to second order
agrees better to exact diagonalization than the one ob-
tained to third order. Going to fourth order only yields a
small improvement (see Fig. 7(b)). No good agreement
could be obtained for∆pd = 2.5tpd (see Fig. 7(c)). Further-
more, we show in Fig. 8 that the bandwidth is correctly
recovered for large values ∆pd > 8tpd , only. Thus, for real-
istic values of the charge transfer gap the convergence of
the perturbative approach to the exact conduction band
is at best very slow. Such a difficulty is not specific to
our model, but arises as well when tackling the Emery
model Eq. (3), and no accurate dispersion relation for re-
alistic values of ∆pd and tpp can be obtained. Therefore,
either higher orders in perturbation theory are needed to
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Figure 7 (Color online) Comparison between the exact con-
duction band with the effective one obtained from perturbation
theory for different values of the charge transfer gap. The used
tight-binding parameters are given in Table 1.

improve the approximation of the conduction band, or
the perturbation theory breaks down altogether. In the
former case, this implies that smaller hopping integrals
become relevant and yield new hopping processes (for
example, tσ′′ or t ′pz

) which are essential to the 3dx2−y2

band dispersion. This idea is crucial in order to explain
the size of the longer-ranged in-plane and inter-plane
hopping amplitudes t ′′, t ′′′ and tz invoked to fit the ex-
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Figure 8 (Color online) The exact bandwidth of the conduction
band is compared to different orders in perturbation theory. A
good approximation of the bandwidth is obtained for ∆pd &
5tpd . The used tight-binding parameters are given in Table 1.

perimental (ARPES) and LDA Fermi surfaces as reported
in Tables 2 and 3. Indeed, as can be seen in Eqs. (33, 34,
35), the kz -dispersion along Γ-X is not captured by the
fourth order. In fact, one needs to go to the fifth order
to obtain inter-plane coupling. It follows from contribu-
tions to Ĥ (5)

eff given in the appendix. We expand this term
according to the matrix elements of our model Eq. (15).
Inter-plane contributions contained in Eq. (54) to the ef-
fective dispersion of the conduction band are given by:

Ez,eff(k) =

−128t 2
pd t 2

pz
t ′pz

πxπyπz

(
p4

x

∆2
z∆̄

2
k∥

+
p4

y

∆2
z∆̄

′2
k∥

−
2p2

x p2
y

∆2
z∆̄

′
k∥
∆̄k∥

)

−256t 2
pd tpz t ′′pz

t (2)
ppπxπyπz

[
p4

x

∆z∆̄
3
k∥

+
p4

y

∆z∆̄
′3
k∥

−
p2

x p2
y

∆z∆̄k∥∆̄
′
k∥

(
1

∆̄k∥
+ 1

∆̄′
k∥

)]
.

(36)

In Fig. 9, we plot the energy difference∆Ez (k∥) Eq. (28)
along path 1, obtained both with numerical diagonaliza-
tion and with the effective dispersion Ez,eff(k) (Eq. 36). For
small value of ∆pd (e. g. ∆pd = 2.5tpd ), ∆Ez (k∥) from PT
poorly compares to the exact one. Increasing ∆pd yields
a slightly better agreement but convergence to the exact
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Table 2 In-plane tight-binding parameters set determined from LDA calculations or ARPES data and compared to the ones
from the Emery model (∆pd = 3.5tpd , tpp = 0.6tpd ) and this work (parameters given in Table 1).

In-plane t t ′/t t ′′/t t ′′′/t t (4)/t

ARPES (Ref. [47]) 0.25 (eV) -0.09 0.07 0.105 ·
ARPES (Ref. [74]) 0.195 (eV) -0.095 0.075 0.09 0.02

LDA (Ref. [47]) 0.43 (eV) -0.09 0.07 0.08 ·
Emery model 0.29 (tpd ) -0.11 0.05 -0.0056 -0.0003

This work 0.28 (tpd ) -0.136 0.068 0.061 -0.017

value is at best slow, as already observed in the case of the
in-plane dispersion (Fig. 7). For realistic ∆pd = 3.5tpd , the
kz -dependence of the dispersion is not well captured.

Therefore, the Rayleigh-Schrödinger perturbation the-
ory is not suitable to properly describe the dispersion
of the conduction band. Indeed, since the first contri-
bution to the kz -dependence of the conduction band
arises at fifth order in PT, good converging behavior of
the latter is mandatory. Yet, Figs. 8 and 9 show that this
happens for unrealistically large values of ∆pd /tpd , only.
However, this approach yields important qualitative in-
formations about how hopping processes emerging from
the coupling between oxygen and copper orbitals con-
tribute to the dispersion of the conduction band when
the high-energy degrees freedom are integrated out. In-
deed, with the charge transfer gap larger than all hop-
ping integrals involved in the model and neglecting tπ′ , a
first order expansion of Eq. (36) in power of 1/∆pd (e. g.

Γ X M Γ

0

0.2

0.4

∆
E

z(k
||) 

(t
p

d)

Exact, ∆
pd

 = 2.5t
pd

5
th

 order in PT, ∆
pd

 = 2.5t
pd

Exact, ∆
pd

 = 3.5t
pd

5
th

 order in PT, ∆
pd

 = 3.5t
pd

Exact, ∆
pd

 = 7.0t
pd

5
th

 order in PT, ∆
pd

 = 7.0t
pd

Exact, ∆
pd

 = 10.5t
pd

5
th

 order in PT, ∆
pd

 = 10.5t
pd

Γ X
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

∆
E

z(k
||)(E

x
)  -

 ∆
E

z(k
||)(P

T
)  (

t p
d
)

k
||

k
||

Figure 9 (Color online) The exact ∆Ez (k∥) Eq. (28) is com-
pared to the one determined from the fifth order in perturbation
theory for different values of ∆pd . The used tight-binding pa-
rameters are given in Table 1.

1/∆pd (1− tα/∆pd ) ' (1/∆pd )(1+ tα/∆pd )) leads to:

Ez,eff(k) =−2tzπxπyπz
[
cos(kx a)−cos(ky a)

]2

− 2t ′z
∆pd

πxπyπz
[
cos(kx a)−cos(ky a)

]2×
[

tσ′′ cos(kx a)cos(ky a)

− tσ′

2

(
cos(kx a)+cos(ky a)−1

)]
,

(37)

with

tz =
16t 2

pd tpz

∆z∆
2
pd

(
tpz t ′pz

∆z
+

2t ′′pz
t (2)

pp

∆pd

)

t ′z =
64t 2

pd tpz

∆z∆
2
pd

(
tpz t ′pz

∆z
+

3t ′′pz
t (2)

pp

∆pd

)
.

(38)

Hence the dispersion along kz predominantly fol-
lows from hopping processes ∼ t 2

pd t 2
pz

t ′pz
/∆2

pd∆
2
z and

∼ t 2
pd tpz t ′′pz

t (2)
pp /∆3

pd∆z . Therefore, the Cu:4s orbital is not

involved in the leading order contributions to the inter-
layer hopping as proposed in Refs. [35,43,70]. Instead, this
role is devoted to in-plane and apical oxygens. Strikingly,
we show in Eq. (37) that the dominant term, proportional
to tz , is exactly the inter-layer part of the phenomenolog-
ical formula proposed by Markiewicz et al. [47] in order
to fit LDA results for LSCO Eq. (6) while the second term
enriches it. The former term was also used in Ref. [41] to
fit the three-dimensional Fermi surface of overdoped La-
based cuprates. The factor γ ≡ [

cos(kx a)−cos(ky a)
]

of
d-wave symmetry suppresses dispersion along kz above
the high-symmetry line Γ-M observed in our model (see
Fig. 4). We may note that band structures calculated for bi-
layers Bi-2212 [47, 75], Tl-2201 [45], tri-layer Tl-2223 and
four-layer Tl-2234 [76] revealed that the dominant inter-
layer hopping exhibits a γ2-modulation, too. In addition,
Chakravarty et al. [77] assumed the same γ2-modulation
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Table 3 Comparison of inter-layer tight-binding parameters to the ones determined from LDA.

Inter-plane θ/t θ′/t θ′′/t θ′′′/t θ(4)/t θ(5)/t

LDA (Ref. [47]) 0.015 -0.0075 -0.015 0.0075 · ·
This work 0.0285 -0.0070 -0.0224 0.0068 -0.0054 -0.0049

of the inter-layer hopping term which thus plays an im-
portant role in the inter-layer pair tunneling mechanism
for boosting Tc . In our model, γ arises from the layer-
to-layer hybridization between O:2pz apical oxygen or-
bitals through the in-plane O:2px,y ones, see Eq. (37). This
leads to virtual processes involving hopping from, e. g., an
O:2px orbital to a nearest O:2pz orbital, then to a nearest
layer O:2pz orbital, and then to an O:2px,y orbital.

However, this perturbative treatment yields a tight-
binding model different from the one of Ref. [47] (Eqs. (5,
6)) as it contains other longer-ranged hopping terms in-
cluded in the contribution proportional to t ′z (Eq. (38)).
Let us now remark that Eq. (6) may be recast in the form
of Eq. (31), since:

−2tzπzπxπy
[
cos(kx a)−cos(ky a)

]2 =

−2tzπz

(
1

2
cos

(
kx a

2

)
cos

(
ky a

2

)

−1

4

[
cos

(
3kx a

2

)
cos

(
ky a

2

)
+cos

(
3ky a

2

)
cos

(
kx a

2

)]

−1

2
cos

(
3kx a

2

)
cos

(
3ky a

2

)

+1

4

[
cos

(
5kx a

2

)
cos

(
ky a

2

)
+ cos

(
5ky a

2

)
cos

(
kx a

2

)])
.

(39)

Hence Eq. (6) corresponds to Eq. (31) under the assump-
tion tz = 8θ = −16θ′ = −8θ′′ = 16θ′′′, which may not be
justified within in our model, unless all contributions to
the out-of-plane hopping amplitudes are neglected, but
the leading one. In our model, the multiplicity of pro-
cesses involved in t ′z is higher than those involved in tz ,
see Eq. (38). In addition, the in-plane tσ′′ and tσ′ inte-
grals involved in the term proportional to t ′z significantly
contribute to the effective inter-plane hopping integrals.
Therefore, the implicit relation between tz , θ, θ′, θ′′ and
θ′′′ involved in the formula Eq. (6) used in Ref. [41, 47] is
broken in our model. Indeed, by expanding Eq. (37) on
the basis of Eq. (31), we explicit the microscopical hop-
ping processes contribution to the inter-plane effective

hopping integrals θ, θ′, θ′′ and θ′′′. We obtain:

θ =
2t 2

pd tpz

∆2
pd∆z

[
tpz t ′pz

∆z

(
1− tσ′′ − tσ′

∆pd

)

+
2t ′′pz

t (2)
pp

∆pd

(
1− 3(tσ′′ − tσ′)

2∆pd

)]

θ′ =
−t 2

pd tpz

∆2
pd∆z

[
tpz t ′pz

∆z

(
1− 2(tσ′′ − tσ′)

∆pd

)

+
2t ′′pz

t (2)
pp

∆pd

(
1− 3(tσ′′ − tσ′)

2∆pd

)]

θ′′ =
−2t 2

pd tpz

∆2
pd∆z

[
tpz t ′pz

∆z

(
1− 2tσ′′ − tσ′

∆pd

)

+
2t ′′pz

t (2)
pp

∆pd

(
1− 3(2tσ′′ − tσ′)

2∆pd

)]

θ′′′ =
t 2

pd tpz

∆2
pd∆z

[
tpz t ′pz

∆z

(
1− (3tσ′′ −2tσ′)

∆pd

)

+
2t ′′pz

t (2)
pp

∆pd

(
1− 3(3tσ′′ −2tσ′)

2∆pd

)]
.

(40)

These are the main inter-plane effective hopping ampli-
tudes. As a matter of fact, the nearest neighbor θ and
the second nearest neighbor θ′′ are the dominating inter-
plane hopping integrals. Their amplitudes are very close
to one another, while θ′ is smaller by a factor close to 2,
only. Despite the needed fifth perturbative order, inter-
plane hopping processes must be taken into account
since ∆z < ∆pd [58]. The underlying microscopic mecha-
nism implies hopping from the Cu:3dx2−y2 orbital to an
in-plane oxygen one, then to an apical oxygen one, then
to an apical oxygen one belonging to the next CuO2 layer,
then to an in-plane oxygen one in this layer, and finally
to the Cu:3dx2−y2 one in this layer. The various θ’s are

proportional, to leading order, to t 2
pd t 2

pz
t ′pz

/∆2
pd∆

2
z . Fur-

thermore, the leading corrections may also significantly
contribute and become important for small values of ∆z

and ∆pd , which is the relevant experimental situation.
Besides, hopping processes through the direct coupling
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between in-plane oxygen orbitals and next-layer apical
oxygen orbital of order t 2

pd tpz t ′′pz
t (2)

pp /∆3
pd∆z contribute

as well. In addition, in-plane hopping integrals tσ′ and
tσ′′ trigger longer-ranged hopping processes and are con-
tributing to the anisotropy of the inter-plane effective
hopping integrals.

Furthermore, a similar study to the in-plane effective
dispersion can be performed. Fourth order in PT suffices
to obtain the leading contributions. Then, by linearizing
Eq. (52) and performing a Taylor expansion as done for
Eq. (36), one obtains the in-plane effective hopping inte-
grals as:

t = tE +
t 2

pd

∆2
pd

(tσ′′ −2tσ′)+
t 2

pd

∆3
pd

[
4tpp (2tσ′′ −3tσ′)

+2t 2
σ′′ + 3t 2

σ′ −2t (2)2

pp −4tσ′ tσ′′
]

t ′ = t ′E +
2t 2

pd

∆2
pd

(
2t 2

pz

∆z
−

t 2
sp

∆s
− tσ′′

)
+

2t 2
pd

∆3
pd

[3tσ′ tσ′′

− 4tpp (tσ′′ − tσ′)
]

t ′′ = t ′′E +
2t 2

pd

∆2
pd

(
−

t 2
pz

∆z
+

t 2
sp

2∆s
+ tσ′

2

)
+

2t 2
pd

∆3
pd

[
t (2)2

pp

− 2tpp (tσ′′ − tσ′)+ tσ′′ t (2)
pp − t 2

σ′
]

t ′′′ = t ′′′E +
t 2

pd tσ′′

2∆2
pd

+
t 2

pd

∆3
pd

[
2tpp (tσ′′ − tσ′) +

t 2
σ′′

2

+t (2)2

pp −2tσ′ tσ′′
]

.

(41)

Where t (i )
E are the hopping integrals arising when down-

folding the Emery model Eq. (3) via the same perturbative
treatment:

tE =
t 2

pd

∆pd
+

4t 2
pd tpp

∆2
pd

+
14t 2

pd t 2
pp

∆3
pd

−
8t 4

pd

∆3
pd

t ′E =−
2t 2

pd tpp

∆2
pd

−
8t 2

pd t 2
pp

∆3
pd

+
2t 4

pd

∆3
pd

t ′′E =−
2t 2

pd t 2
pp

∆3
pd

+
t 4

pd

∆3
pd

t ′′′E =
t 2

pd t 2
pp

∆3
pd

.

(42)

Not only does our model capture the in-plane d-p and
O(X )-O(Y ) hopping processes involved in the Emery Model

Eq. (3), but the purpose of Eq. (41) is to show how the ef-
fective hopping parameters entailed in the Emery model
are modified within our model. Indeed, it turns out that
the added O-O hopping integrals tσ′ and tσ′′ modify the
copper lattice effective hopping parameters. For exam-
ple, the leading contribution to t ′′ follows from tσ′ . It is
proportional to tσ′(tpd /∆pd )2 while in the Emery model
t ′′ is proportional to (t 2

pp /∆pd )(tpd /∆pd )2 (to leading or-
der). Similarly, the main contribution to the third nearest
neighbor hopping amplitude t ′′′ is no longer governed
by (t 2

pp /∆pd )(tpd /∆pd )2 as in the Emery model, but by

tσ′′(tpd /∆pd )2. Furthermore, tσ′′ also yields a leading or-
der contribution to t ′. In addition, we find tσ′ and tσ′′

to produce longer-ranged hopping amplitudes of order
1/∆3

pd until t (7). Moreover, hopping processes involving

apical oxygen ions and Cu:4s orbitals yield sub-leading or-
der contributions to t ′ and t ′′. Indeed, hopping processes
involving the tpz hopping integral between in-plane oxy-
gen and apical oxygen orbitals (∼ t 2

pd t 2
pz

/∆2
pd∆z ) strongly

reduce the amplitude of t ′ and t ′′. This is compatible with
the recent experimental observation that t ′ decreases
when the apical oxygen ions are brought closer to the
basal plane [71], which further supports the empirical cor-
relation between t ′ and dCu−Oap found by Pavarini et al.
[35]. Moreover, we show that t ′ and t ′′ only are sensitive
to the apical oxygen ions, while t ′′′ is not at fourth order
in perturbation theory Eq. (41). Besides, as already shown
in Ref. [35], the tsp hopping integral resulting from the
hybridization between Cu:4s and in-plane oxygen orbitals
enhances t ′ and, to a lesser extent, t ′′ through hopping
processes (∼ t 2

pd t 2
sp /∆2

pd∆s ).

4.3 Numerical approach: role of microscopical
parameters

The previous section shows that the perturbative ap-
proach is suitable to interprete the different leading order
hopping processes involved in the multiband model. Yet,
this description in terms of higher order superexchange
processes is not accurate enough to quantitatively provide
the effective dispersion of the conduction band. A better
alternative consists in applying the Fourier transform of
the conduction band obtained via numerical diagonal-
ization. This quantitative approach allows us to find the
numerical values of the in-plane and inter-plane hopping
integrals which perfectly fit the conduction band and,
therefore, provides a realistic one-band effective model.
For instance, we obtain the hopping parameter θ as:

θ =
∫

dk

(2π)3 e i k·( a
2 (ex+ey)+ c

2 ez)Ecb(k) (43)
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and accordingly for the other ones.
The numerically obtained 3dx2−y2 band is very sensi-

tive to the choice of the tight-binding parameters of the
model introduced in Section 3. Then we have found a set
of optimal parameters yielding a good fit of the LDA con-
duction band (see Figs. 4 and 5). The parameters of the 8-
band model are expressed in tpd unit where tpd ' 1.2−1.5
eV [2,35,48,52–57]. Some of them are well known through
LDA calculations and we fix them to their typical value.
We accordingly set the optimal energy gaps between the
3dx2−y2 band and the other band as: ∆pd ,opt = 3.5tpd

[52, 55, 58], ∆s,opt = 6.5tpd [35, 43], and ∆z,opt = 2.6tpd

[58, 69]. Concerning typical values for the hopping am-
plitudes, we set: tsp,opt = 1.3tpd [35, 43], tπ = tσ/4 and
tπ′ = tσ′/4 according to Refs. [78, 79]. The uncertainty on
tσ, tσ′ and tσ′′ is larger. Here we choose tσ,opt = 0.95tpd

since tpp = (tσ + tπ)/2 ' 0.6tpd which is the typical ad-
mitted value of the O(X )-O(Y ) hopping matrix element
in the Emery model [2, 55, 69]. Since the distance be-
tween the involved oxygen ions increases: tσ,opt > tσ′,opt ,
tσ′′,opt . Then, we set tσ′′,opt = 0.4tpd according to Ref. [57]
in which a sizeable hopping amplitude is determined
between next-nearest neighbors O(β)-O(β) (β = X or Y)
oxygens from first-principle calculations for La-based
cuprates. However, the hopping amplitude between near-
est neighbors O(β)-O(β) oxygens was determined to be
small [57]. Accordingly, we set tσ′,opt = 0.13tpd . Besides,
we set tss,opt = 0.4tpd and t ′ss,opt = 0.1tpd according to the
inter-atomic distance between the copper atoms. Con-
cerning hopping integrals involving apical oxygens, no
consensus about their values has been reached in the
literature. All these unknown in-plane and out-of-plane
hopping amplitudes are determined in order to optimize
the k∥ dispersion of the calculated conduction band as
well as the effect of the kz -dispersion in order to pro-
vide a better comparison with LDA (Figs. 4 and 5). We
found optimal values: tspz ,opt = 1.4tpd , tpz ,opt = 0.95tpd ,
t ′pz ,opt = 0.45tpd , t ′′pz ,opt = 0.1tpd , and t ′′′pz ,opt = 0. These
values are consistent with the different inter-atomic dis-
tances involving apical oxygens which are detailed in Sec-
tion 3. The set of optimal parameter is reported in Table 1.

It turns out that some tight-binding parameters have
stronger impact on the dispersion of the conduction band
than others. In fact the unknown hopping integrals tσ′ ,
tπ′ , tss , tss′ and tspz modifies weakly the conduction band
and are, therefore non-critical. In contrast, tpz , t ′pz

and tσ′′

strongly affect the 3dx2−y2 dispersion because they give
birth to leading order hopping processes (see the pertur-
bative expansion Eqs. (40,41)). Indeed, Fig. 10(a) shows
the strong influence of the tσ′′ hopping integral around
its optimal value on the dispersion along path 1 of the
Brillouin zone. Increasing tσ′′ reduces the energy of the
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Figure 10 (Color online) (a) Dispersion of the conduction band
along path 1 (solid lines) and path 2 (dashed lines) with tσ′′

varied around its optimal value. (b) ∆Ez (k∥) with tσ′′ varied
around its optimal value. The other used tight-binding parame-
ters are given in Table 1.

band at X whereas the energy value at M (the bandwidth)
is strongly increased. Hence the entire dispersion along
Γ-X-M-Γ is modified. However, the dispersion along kz

of width ∆Ez (k∥) shown in Fig. 10(b) is largest above the
Γ-X line. It is hardly influenced by tσ′′ . Table 4 shows how
the in-plane and the inter-plane microscopic hopping pa-
rameters t (i )/t are modified by tσ′′ . When tσ′′ is increased,
then t is moderately increased in agreement with Eq. (41).
However, t ′/t and t ′′′/t strongly vary when tσ′′ is mod-
ified around its optimal value. Indeed, as shown in the
perturbative treatment Eq. (41), leading order hopping
processes, ∼−tσ′′ t 2

pd /∆2
pd , contribute to t ′. This indicates

that t ′ may get either increasingly negative when increas-
ing tσ′′ from tσ′′,opt , or possibly positive when decreasing
tσ′′ from tσ′′,opt . This trend is confirmed by the exact cal-
culation. Likewise, the decrease of t ′′′ when decreasing
tσ′′ from tσ′′,opt predicted by perturbation theory is real-
ized by the exact calculation, whereas t ′′ is weakly mod-
ified by tσ′′ since the leading order hopping processes,
∼ tσ′ t 2

pd /∆2
pd , follow from tσ′ . Besides, all inter-plane hop-

16 Copyright line will be provided by the publisher



October 30, 2019

Table 4 Dependence of the main in-plane and inter-plane effective hopping amplitudes on tσ′′ expressed in units of its
optimal value. The other used tight-binding parameters are given in Table 1.

tσ′′/tσ′′ ,opt t/tpd t ′/t t ′′/t t ′′′/t t (4)/t θ/t θ′/t θ′′/t

0 0.267 0.038 0.014 0.029 0.015 0.0303 -0.0089 -0.0258

0.5 0.275 -0.052 0.038 0.045 0.003 0.0293 -0.0079 -0.0241

1 0.283 -0.136 0.068 0.061 -0.017 0.0285 -0.0069 -0.0224

1.5 0.291 -0.222 0.103 0.074 -0.049 0.0279 -0.0059 -0.0209

ping parameters depend on tσ′′ as shown in the perturba-
tive treatment Eq. (40). However their magnitudes weakly
decrease when increasing tσ′′ (see Table 4).

Γ X M Γ
0

1

2

E
cb

(k
) 

(t
p

d)

t
p

z

 = 0

t
p

z

 = 0.5 t
p

z
,opt

t
p

z

 = t
p

z
,opt

t
p

z

 = 1.5 t
p

z
,opt

k
||

Γ X M Γ
0

0.1

0.2

0.3

0.4

0.5

∆
E

z(k
||) 

(t
p

d)

t
p

z

 = 0

 t
p

z

= 0.5 t
p

z,opt

 t
p

z

= t
p

z,opt

 t
p

z

= 1.5 t
p

z,opt

Tight binding (Markiewicz et al.)

LDA (Markiewicz et al.)

k
||

(a)

(b)

Figure 11 (Color online) (a) Dispersion of the conduction band
along path 1 (solid lines) and path 2 (dashed lines) with tpz var-
ied around its optimal value. (b)∆Ez (k∥) with tpz varied around
its optimal value. The other used tight-binding parameters are
given in Table 1.

Concerning the hopping integral tpz accounting for
the coupling between the 2p in-plane oxygen orbitals and
the 2pz apical oxygen orbitals, its impact on the disper-
sion of the conduction band is shown in Fig. 11. When
tpz = 0, there is only very small kz dispersion above Γ-X. It

originates from the terms ∼ t ′′pz
tspz , which lead to high or-

der inter-plane hopping processes (higher than five) and
non-vanishing inter-plane hopping integrals reported in
Table 5. An increase in tpz influences the dispersion of the
conduction band. Yet, regarding the symmetry lines, this
increase is not limited to Γ-M. As shown in Fig. 11(b), the
difference in energy of the dispersion along Γ-X and Z-R
strongly increases with tpz , in contrast to the bandwidth
that is not affected. Table 5 shows that the presence of
apical oxygens has a strong impact on the in-plane and
inter-plane microscopic hopping parameters. Indeed, t ′/t
is drastically reduced, in agreement with the perturbative
result Eq. (41). In addition, Eqs. (41, 42) reveal that Emery
processes to leading order ∼ −tpp t 2

pd /∆2
pd are in com-

petition with the out-of-plane processes ∼ t 2
pz

t 2
pd /∆2

pd∆z .

These numerical observations are in good agreement with
first-principle calculations by Pavarini et al. [35] showing
that the higher Cu-apical oxygen distance is correlated to
the higher |t ′/t | as experimentally supported [71, 80, 81].
In a similar way, t ′′/t is decreased by increasing tpz , in
agreement with Eq. (41), too. Surprisingly, t ′′′/t is signifi-
cantly enhanced when tpz is increased whereas no apical
hopping processes are seen in the perturbative expansion
up to fourth (Eq. (41)), and even to fifth order. In fact,
one needs to compute the sixth order to unravel the ori-
gin the rising of t ′′′/t with apical oxygen couplings and
the interesting term is given in the appendix by Eq. (55).
Ĥ (6)

eff contains non-negligible hopping processes which

are contributing to t ′′′ ∼ t 2
pd t 2

pz
t ′2pz

/∆2
pd∆

3
z and are origi-

nated from the inter-layer coupling (see Fig. 12). Besides,
inter-plane hopping integrals are naturally enhanced by
increasing tpz . As seen in Eq. (40), inter-plane hopping
processes ∼ t 2

pd t 2
pz

t ′pz
/∆2

pd∆
2
z are leading orders for θ and

θ′′ with opposite sign as numerically observed in Table 5.

Concerning the hopping integral t ′pz
accounting for

the coupling between inter-layer apical oxygens, Fig. 13
shows how it modifies the dispersion of the conduction
band. In agreement with Eq. (27), t ′pz

does not affect the
dispersion along X-M-Γ as expected from perturbation
theory Eq. (37). When t ′pz

= 0, there is naturally no inter-
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Table 5 Dependence of the main in-plane and inter-plane effective hopping amplitudes on tpz expressed in units of its
optimal value. The other used tight-binding parameters are given in Table 1.

tpz /tpz ,opt t/tpd t ′/t t ′′/t t ′′′/t t (4)/t θ/t θ′/t θ′′/t

0 0.295 -0.302 0.148 0.027 -0.043 0.0014 -0.0002 -0.0010

0.5 0.292 -0.258 0.126 0.037 -0.036 0.0082 -0.0017 -0.0065

1 0.283 -0.136 0.068 0.061 -0.017 0.0285 -0.0069 -0.0224

1.5 0.273 0.168 -0.039 0.086 -0.049 0.0857 -0.0267 -0.0508

Table 6 Dependence of the main in-plane and inter-plane effective hopping amplitudes on t ′pz
expressed in units of its

optimal value. The other used tight-binding parameters are given in Table 1.

t ′pz
/t ′pz ,opt t/tpd t ′/t t ′′/t t ′′′/t t (4)/t θ/t θ′/t θ′′/t

0 0.287 -0.136 0.067 0.053 -0.026 0.0026 -0.0007 -0.0019

0.5 0.286 -0.136 0.067 0.055 -0.024 0.0141 -0.0039 -0.0115

1 0.283 -0.136 0.068 0.061 -0.017 0.0285 -0.0069 -0.0224

1.5 0.277 -0.143 0.068 0.072 -0.0007 0.0508 -0.0094 -0.0364

Figure 12 (Color online) Illustration of non-negligible
inter-layer hopping processes contributing to t ′′′ ∼
tpd tpz t ′2pz

tpz tpd /∆2
pd∆

3
z and indicated by dashed ar-

row. Orange circles denote the in-plane oxygens, blue circles
denote the copper sites above which the apical oxygens are
located (orange dots), whereas shaded blue circles denote the
apical oxygens located below the next-layer copper sites.

plane coupling and the result is similar to the case tpz

= 0. When t ′pz
is increased, the splitting between kz = 0

and kz = 2π/c emerges along Γ-X and crosses the optimal
value. Table 6 shows that in-plane hopping parameters

are essentially independent of t ′pz
, yet with the exception

of t ′′′/t (due to sixth order inter-layer hopping processes
Eq. (55) illustrated in Fig. 12). Similarly to the previously
examined tpz case, t ′pz

yields hopping processes which es-
sentially affect the diagonal inter-plane hopping integrals
θ and θ′′, with opposite sign as numerically observed in
Table 6.

4.4 Numerical approach: optimal parameters

Having clarified the role of all tight-binding parame-
ters entering Eq. (15) we now set them to their opti-
mal value. After diagonalizing the Hamiltonian matrix
Eq. (17), we apply the Fourier transform of the Cu:3dx2−y2

band and we obtain the numerical value of the micro-
scopic hopping parameters which ultimately parame-
terize the conduction band through the one-band ef-
fective dispersion Eqs. (30) and (31). In-plane hopping
parameters are given by: t ′/t = −0.1364, t ′′/t = 0.0677,
t ′′′/t = 0.0608, t (4)/t =−0.0166, t (5)/t =−0.0017, t (6)/t =
0.0125, t (7)/t = 0.0071. Inter-plane hopping parameters
are given by: θ/t = 0.0285, θ′/t =−0.0070, θ′′/t =−0.0224,
θ′′′/t = 0.0068, θ(4)/t = −0.0052, θ(5)/t = −0.0047 and
t(0,0,c)/t =−0.0007. Fig. 14 shows the almost perfect fit of
the one-band effective dispersion of the conduction band
Eq. (29). Simplifying the effective model by retaining the
largest in-plane (t ′/t , t ′′/t , and t ′′′/t) and out-of-plane
(θ/t , and θ′′/t ) hopping integrals yields a good fit, too, yet
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Figure 13 (Color online) (a) Dispersion of the conduction band
along path 1 (solid lines) and path 2 (dashed lines) with t ′pz

var-
ied around its optimal value. (b)∆Ez (k∥) with t ′pz

varied around
its optimal value. The other used tight-binding parameters are
given in Table 1.

with a small discrepancy along Γ-X. This approximation
should nevertheless be sufficient for further purposes.

4.5 Fermi surface and density of states

Let us now turn to the Fermi surfaces following from our
model. In Fig. 15 we plot projections of the 3D Fermi sur-
face onto the k∥-plane for three important density values:
half-filling (n = 1), an underdoped case (n = 0.875) and an
overdoped one (n = 0.78). These projections are plotted
for several positive values of kz as they depend on |kz |,
only. At half-filling (Fig. 15(a)), we obtain hole-like, cylin-
drical Fermi surfaces, for all values of kz . They are open
in kz -direction and closed in the k∥ plane. In fact, in this
case, kz has very little influence on the projected Fermi
surface (PFS) in general, and virtually none for k∥ along
Γ-M since in that case, E(k) very weakly depends on kz .
We further notice that the hopping amplitudes beyond t
no longer lead to a nested Fermi surface.
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Figure 14 (Color online) The exact dispersion of the conduc-
tion band along path 1and path 2 (red full lines) is compared
to the effective one-band dispersion. i) With all hopping am-
plitudes retained (blue dashed lines), and ii) with t , t ′, t ′′,
t ′′′, θ, and θ′′ retained, only (green dotted lines). The used
tight-binding parameters are given in Table 1, together with
t/tpd = 0.283.

In the 1/8 hole doped case, Fig. 15(b), the Fermi sur-
face retains its closed cylindrical shape. Astonishingly
enough, the PFS around Γ (Z’) for kz = 2π/c (0) are nested,
with a nesting vector Q ' (0.84,0.84)π/a. One might then
infer that our model is most prone to develop an incom-
mensurate magnetic instability in this case, which might
result in the formation of a stripe order (a combination
of charge-density-wave and spin-density-wave modula-
tions) that has been reported in Eu-LSCO [82], Nd-LSCO
[29, 83] and LBCO [83, 84]. Besides, the influence of kz on
the PFSs is stronger than at half-filling. Indeed, for kz = 0,
the PFSs splits into two closed pieces: a smaller nested
one centered around the Z’-point and a larger one cen-
tered around the Γ-point that even goes beyond the X and
Y points of the square lattice. This piece has both hole and
electron characters, depending on whether k∥ is rather on
the nodal directions, or not. For kz = 2π/c the roles of Γ
and Z’ are exchanged. For kz close to π/c, the two pieces
join and the PFS shows hole-like character, only. Let us
stress that the PFS for kz = 0 is in good agreement with
2D Fermi surface map experimentally obtained via ARPES
[80, 81] and in LDA for hole doped LSCO cuprate [47, 51].

The PFSs consist of two pieces for all values of kz . For
small values of kz a smaller electron-like piece is centered
around Z’, while the larger one is centered around the
Γ-point. Again, this piece has both hole and electron char-
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Figure 15 (Color online) Projection of the Fermi surfaces on
the basal plane for several representative values of kz and elec-
tron density. (a) n = 1.0 (half-filling), (b) n = 0.875 (underdoped),
and (c) n = 0.78 (overdoped). Parameter: kz = 0 (black full line),
kz = π/2c (green dashed line), kz = π/c (green dotted line),
kz = 3π/2c (green full line), and kz = 2π/c (black dashed line).
The used tight-binding parameters are given in Table 1.

acter, depending on the direction of k∥. For large values of
kz the roles of Γ and Z’ are again exchanged. In fact, such
split PFSs, together with the staggering of their size and
straight and rounded shapes have been recently observed
in ARPES experiment on overdoped (δ= 22%) LSCO [41].
Since these features may neither be accounted for on the
square lattice nor on the cubic one, they originate from
the BCT structure. Furthermore it gives rise to peculiar
large momentum-low energy excitations that are absent
in simpler models.

Truly, these PFSs may equally well be obtained using
the conduction band arising from the diagonalization of
the Hamiltonian Eq. (17) or with its tight-binding form
Eqs. (30) and (31), in a broad density range around half-
filling. Given the rather involved form of the full tight-
binding model it is tempting to neglected the smallest
hopping amplitudes. This leads to retain nearest neigh-
bor hopping amplitudes, t and θ, followed by t ′, t ′′, t ′′′,
θ′, θ′′, and θ′′′, only (see Table 2 and Table 3). This ap-
proximation suffices to reproduce the Fermi surfaces with
a high accuracy in all considered cases. One may then
further consider neglecting θ′ and θ′′′ as well, since the
so obtained conduction band is in very good agreement
with the exact one (see Fig. 14). At half-filling, the result-
ing PFSs are in excellent agreement with the exact ones.
Yet, already from δ= 1/8 on, the agreement degrades and,
e. g., the (in-plane) PFSs no longer close around Γ and Z ′,
but around M . Yet, it only takes a small increase in dop-
ing to recover this feature. Finally, further simplifications
such as neglecting θ′′ as well, result into an even poorer
account of the conduction band. This may hardly come as
a surprise given the above discussed slow convergence of
the perturbative calculation of the effective model, which
itself follows from the relatively small value of the charge
transfer gap, and which unavoidably generates a larger
number of non-negligible hopping amplitudes.

The density of states of our model is shown in Fig. 16,
where it is compared to the simpler model where inter-
plane hopping is set to zero. Comparison to nearest neigh-
bor only hopping on both the square and the cubic lattices
is performed, too. Interestingly, our three-dimensional
model inherits features from both cases. Indeed, the den-
sity of states at the bottom of the band and at the top of
the band is finite, as in the 2D case. Yet, it now exhibits a
plateau surrounded by two Van Hove singularities in the
vicinity of the middle of the band as for the cubic lattice.
However, the plateau centered around −0.6t is of consid-
erably narrower width, as a consequence of the anisotropy
of the model. Expressed in terms of the charge carrier den-
sity, the plateau extends from (1-δ) = 0.81 to (1-δ) = 0.89.
Furthermore, one notices an additional Van Hove singu-
larity for small density; it does not exhibit any counterpart
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Figure 16 (Color online) The density of states of: our effective
3D model Eq. (29) (blue dashed-dotted line), the corresponding
2D model (black solid line), the tight-binding model to nearest
neighbor only on the square (dotted red line) and cubic (green
dashed line) lattices. Right inset: the Van Hove singularity of
our model close to the bottom of the band. Left inset: the
plateau exhibited by our model and surrounded by two Van
Hove singularities in the vicinity of the middle of the band.

for large density, as is expected for a particle-hole sym-
metric model. Finally, the 3D case remains strikingly close
to the 2D one. This behavior finds its explanation when
expanding Eq. (30) around the bottom of the band that is
located at the Γ-point. One finds Ecb(k) = ε0 +ε1(k2

x +k2
y )

where the kz -dependence is missing. A similar behavior is
found in the vicinity of the top of the band. The lack of kz -
dependence above the symmetry lines X-M-Γ contributes
to this feature, too.

5 Summary and conclusion

Summarizing, we have re-analyzed the conduction band
relevant to single-layer La-based superconducting cup-
rates in the tight-binding framework. We have shown that
it naturally emerges from an eight-band model involv-
ing two copper orbitals and six oxygen orbitals. As a con-
sequence of their strong mutual hybridization, longer-
ranged tight-binding parameters were taken into account.
In particular, we obtained that the retained apical oxygen
orbitals are not only crucial to the dispersion of the band
perpendicular to the basal plane, but also significantly
renormalize the in-plane dispersion as compared to the
Emery model. This allowed us to accurately reproduce
the DFT results of Markiewicz et al. [47], as well as to shed

light on the peculiar kz -dependence of the conduction
band.

We then proceeded to the determination of the param-
eters entering the tight-binding Hamiltonian character-
izing the conduction band. We first applied the Rayleigh-
Schrödinger perturbation theory in order to unravel the
microscopic processes contained in the eight-band model
that determine the various hopping parameters entering
the effective low-energy model. We have shown that the
model extends the Emery model on two aspects since, on
one hand, accounting for apical oxygens significantly af-
fects the in-plane hopping amplitudes (see Table 2), and,
on the other hand, it gives birth to out-of-plane disper-
sion. It turns out that perturbation theory to fifth order
is mandatory to obtain non-vanishing layer to layer hop-
ping that we found to be primarily governed by apical
oxygen orbitals. This extends the 3D model proposed by
Markiewicz et al. [47] (see Eq. (37)). Yet, because of the
relatively small value of the charge transfer gap, the per-
turbative approach lacks accuracy.

We then overcame this difficulty by directly computing
the hopping parameters through the Fourier transform of
the numerically obtained conduction band Eq. (43). This
leads to longer ranged hopping amplitudes that slowly
decay with distance, and one needs to take many of them
into account in order to accurately reproduce the conduc-
tion band and the Fermi surfaces. As revealed by Table 2
the so obtained main in-plane hopping amplitudes are in
very good agreement with the ones used to fit the Fermi
surfaces obtained with ARPES experiments on La-based
cuprates [80, 81]. In particular, we found t ′/t '−0.1 and
t ′′/t ′ '−0.5 and we obtained, in addition, (|t ′|+ |t ′′|)/t '
0.2 as reported for overdoped La1.78Sr0.22CuO4 [80, 81, 85].
Furthermore, we found t ′′′ ' t ′′, which was empirically
used to model ARPES data or DFT calculations [47, 74].
Regarding inter-layer couplings (see Table 3), we found
the magnitude of θ′ to be smaller than the one of θ and
θ′′. Furthermore, the relation between θ, θ′, θ′′, and θ′′′
assumed in Eq. (6) [47] could not be recovered, so that the
leading contribution to the dispersion perpendicular to
the layers is indeed given by Eq. (37). In the doped case
our model yields peculiar Fermi surfaces which projec-
tions on the basal plane alternate in size and shape. Since
this may not arise in tight-binding models on square or
cubic lattices this may be seen as a signature of the body-
centered tetragonal structure that is at the heart of this
work. It is compatible with recent ARPES measurements
of the 3D Fermi surface of overdoped LSCO [41]. Finally, it
would be of interest to carry out the corresponding anal-
ysis to other cuprate families, or to highly anisotropic
oxides such as PdCoO2 [86, 87], which structure entails
shifted layers such as Bi-2212 [47] or Tl-2201 [88, 89]. We
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also unraveled that simplifying Eqs. (30) and (31) down
to a model that only entails the in-plane t , t ′, t ′′, and t ′′′
as well as the out-of-plane θ, and θ′′ hopping amplitudes
(given in Tables 2 and 3) yields a reasonable description
of the conduction band and should therefore suffice for
future purposes. For instance, it would be of interest to
understand how the found peculiar form of nesting and in-
teraction generate magnetic or pairing instabilities within
a Hubbard model on the BCT lattice. Work along this line
is in progress.
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A Lindgren’s formulation of
Rayleigh-Schrödinger perturbation
theory

The above Eqs. (33, 34, 35, 36) have been derived using the
Rayleigh-Schrödinger perturbation theory. More specifi-
cally, we made use of Lindgren’s formulation [90] to set up
an effective tight-binding Hamiltonian and to put forward
the microscopic origin of the various hopping amplitudes.
Below, we summarize the main steps leading to an effec-
tive Hamiltonian at a given order in perturbation theory.
The Hamiltonian Ĥ Eqs. (16, 17) is separated into its di-
agonal part that plays the role of the unperturbed Hamil-
tonian,

∑
k,σ Ĥ0,σ(k) ≡∑

k,σ
∑
ν εν(k)Ψ̂†

k,σ,νΨ̂k,σ,ν, and its
off-diagonal part this is considered as the perturbation∑

k,σ Ĥ1,σ(k)

Ĥ = ∑
k,σ

(
Ĥ0,σ(k)+Ĥ1,σ(k)

)
. (44)

Usually, perturbation theory is applied to problems lack-
ing an exact solution. In our case the latter has been found,
but in numerical form, only, and our goal is not to recover
it. Instead, it is to shed light on both how the perturba-
tion generates the dispersion of the conduction band, and
on the microscopical origin of the various hopping am-
plitudes entering the effective one-band model. In Lind-
gren’s approach [90], the effective Hamiltonian acting on
the low energy sector of the Hilbert space, here spanned
by |dk,σ〉, is expressed in terms of a wave operator Ω̂(k)

[91] as:

Ĥ (i )
eff =

∑
k
|dk〉〈dk|Ĥ1(k)

(
Ω̂(0)(k)+ Ω̂(1)(k)+ Ω̂(2)(k)+ ...

+ Ω̂(i−1)(k)
)

,

(45)

where the dull index σ is omitted for simplicity. Having
measured all energies relative to εd forces the zeroth order
contribution to vanish. To zeroth order the wave opera-
tor is simply the projection operator onto the low-energy
sector of our model:

Ω̂(0)(k) = |dk〉〈dk| . (46)

Starting from Schrödinger’s equation, Lindgren obtained
a recursion formula for Ω̂(l )(k):

[Ω̂(l )(k),Ĥ0(k)] =(1−|dk〉〈dk|)Ĥ1(k)Ω̂(l−1)(k)

−
l−1∑

m=1
Ω̂(l−m)(k)Ĥ1(k)Ω̂(m−1)(k) .

(47)

The lowest orders are then explicitly obtained as:

Ω̂(1)(k) =∑
ν
|νk〉〈dk|

〈νk|Ĥ1(k)|dk〉
εd −εν(k)

(48)

Ω̂(2)(k) =∑
ν
|νk〉〈dk|

〈νk|Ĥ1(k)Ω̂(1)(k)− Ω̂(1)(k)Ĥ1(k)|dk〉
εd −εν(k)

(49)

Ω̂(3)(k) =∑
ν
|νk〉〈dk|×

〈νk|Ĥ1(k)Ω̂(2)(k)−Ω̂(1)(k)Ĥ1(k)Ω̂(1)(k)−Ω̂(2)(k)Ĥ1(k)|dk〉
εd −εν(k)

(50)

Ω̂(4)(k) =∑
ν
|νk〉〈dk|

× 〈νk|
[
Ĥ1(k)Ω̂(3)(k)− Ω̂(1)(k)Ĥ1(k)Ω̂(2)(k)

εd −εν(k)

− Ω̂(2)(k)Ĥ1(k)Ω̂(1)(k)+ Ω̂(3)(k)Ĥ1(k)
] |dk〉

εd −εν(k)
,

(51)
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where we have kept (the here vanishing) εd , for clarity.
Hence

Ĥ (4)
eff =∑

k
|dk〉〈dk|

[
εd +∑

ν

|hν(k)|2
εd −εν(k)

+ ∑
ν,ν′

hν(k)gν,ν′(k)hν′(k)

(εd −εν(k))(εd −εν′(k))

+ ∑
ν,ν′,ν′′

hν(k)gν,ν′(k)gν′,ν′′(k)h∗
ν′′(k)

(εd −εν(k))(εd −εν′(k))(εd −εν′′(k))

− ∑
ν,ν′

|hν(k)|2|hν′(k)|2
(εd −εν′(k))2(εd −εν′(k))

]
,

(52)

with

Ĥ1,d ,ν =
∑

k
tpd

(
h3(k)|dk〉〈p(X )

x,k |+h4(k)|dk〉〈p(Y )
y,k |

)
Ĥ1,ν,ν′ =

∑
k

∑
ν,ν′

gν,ν′(k)|νk〉〈ν′k| ,
(53)

where h3(k) = 2i tpd px and h4(k) =−2i tpd py . The matrix

elements 〈νk|Ĥ1(k)|ν′k〉 are denoted by gν,ν′(k). Regard-
ing the inter-layer coupling given by Eq. (27), it turns out
to appear at fifth order, from the contributions to Ĥ (5)

eff
reading:

∑
ν,ν′,ν′′,ν′′′

hν(k)gν,ν′(k)gν′,ν′′(k)gν′′,ν′′′(k)h∗
ν′′′(k)

(εd −εν(k))(εd −εν′(k))(εd −εν′′(k))(εd −εν′′′(k))
.

(54)

Besides, inter-layer couplings may significantly con-
tribute to in-plane hopping amplitudes. This is especially
relevant to t ′′′, from contribution to Ĥ (6)

eff of the form:

∑
ν,ν′,ν′′

hν(k)gν,ν′(k)gν′,ν′′(k)

(εd −εν(k))(εd −εν′(k))(εd −εν′′(k))

× ∑
ν′′′,ν′′′′

gν′′,ν′′′(k)gν′′′,ν′′′′(k)h∗
ν′′′′(k)

(εd −εν′′′(k))(εd −εν′′′′(k))
.

(55)

Key words. cuprates, high-Tc superconductivity, electronic
structure, tight-binding model, perturbation theory, non-
perturbative approaches
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