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In this paper, we demonstrate Q-band power performance of carbon doped AlN/GaN high electron 

mobility transistors (HEMTs) using a deep sub-micrometer gate length (120 nm). With a maximum 

drain current density ID of 1.5 A/mm associated to a high electron confinement and an extrinsic 

transconductance gm of 500 mS/mm, this structure shows excellent electrical characteristics. A 

maximum oscillation frequency fmax of 242 GHz has been observed As a result, a state-of-the-art 

combination at 40 GHz of output power density (POUT = 7 W/mm) and power added efficiency (PAE) 

of 52% up to VDS = 25V has been obtained. The achievement of such outstanding performance is 

attributed to the reduced thermal resistance (RTH) as compared to the commonly used double 

heterostructure by means of Raman thermography. 

Keywords: High electron mobility transistors (HEMTs), Double heterostructure field effect transistor 

(DHFET), GaN, Raman thermography, output power density (POUT), power added efficiency (PAE). 

1.   Introduction 

The requirements for the emerging wireless communication systems such as 5G 

significantly increases the need for compact solid-state high power amplification based on 

gallium nitride (GaN) material. Achieving both high power-added-efficiency (PAE) and 

output-power-density (POUT) in the millimeter-wave range represents currently one of the 

key goals for the GaN technology. Indeed, higher PAE not only saves electrical power 

usage but also can reduce the size and cost of high power amplifiers (HPAs), due to the 

lower amount of heat dissipated. For instance, in space applications, the traveling wave 

tube amplifiers (TWTA) are still commonly used, because of the high PAE while 

delivering high POUT. Despite excellent PAE demonstrated so far with GaN devices up to 

 
 

 

 

mailto:riad.kabouche@ed.univ-lille1.fr
mailto:farid.medjdoub@univ-lille.fr


Ka band [1]-[5], a limited set of data in the Q band (40 GHz) and above are available. As 

shown by HRL laboratory [6],[7] the double heterostructure field effect transistor 

(DHFET) using an AlGaN back barrier allowed combining a high electron confinement 

with high frequency performance together with low trapping effects [8]-[14]. However, 

AlGaN alloys have the drawback to provide much lower thermal conductivity than the 

binaries GaN or AlN [15], which in turn causes an increase in the peak channel temperature 

during operation [16]. Compared to Fe doped GaN buffers, carbon-doped HEMT structures 

show lower memory effects [17], lower risk of diffusion and the elimination of 

contamination risks when used in Si CMOS-based foundries. That is why, this structure is 

widely used for high voltage power applications. In this work, a carbon-doped HEMT 

structure [19], using a 0.12 µm gate technology has been evaluated and compared to a 

DHFET [20] with the aim of pushing the bias operation in the millimeter-wave range while 

maintaining a reduced junction temperature.  

2.   Device Fabrication  

The AlN/GaN heterostructures were grown by metal organic chemical vapor deposition 

(MOCVD) on 4 in. SiC substrates. The HEMT structure consists of a transition layer to 

GaN, a 1 µm-thick carbon-doped GaN buffer layer followed by a 150 nm thick un-doped 

GaN channel, a 4 nm ultrathin AlN barrier layer and a 10-nm-thick in situ Si3N4 cap layer 

(Fig. 1). The in-situ SiN layer is used both as early passivation as well as to prevent strain 

relaxation [21]-[23]. The channel thickness has been chosen with respect to the trade-off 

between the electron confinement and the trapping effects. In the second structure called 

DHFET, the GaN buffer layer is replaced by a 1 µm-thick Al0.08Ga0.92N layer as shown in 

Figure 1. Room temperature Hall measurements showed high electron sheet concentrations 

of 1.8×1013 and 1.6×1013 cm-2 with an electron mobility of about 1100 cm2V-1s-1 in the 

HEMT and DHFET heterostructures, respectively. The device fabrication details can be 

found in [20]. Ohmic contact resistance (Rc) extracted from linear transmission line 

method (TLM) was as low as 0.3 Ω.mm for both heterostructures. A 0.12 µm Ni/Au T-

gate length was defined by e-beam lithography (see Fig. 1). The gate-source and gate drain 

spacing were 0.3 and 2 µm, respectively, and the unit device width was 50 µm. 

 

Fig. 1.  a) FIB view of the 0.12 µm T-gate and schematic cross section of b) DHFET and c) C-doped HEMT. 

3.   DC AND SMALL SIGNAL CHARACTERIZATIONS  
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DC characterizations have been performed with a Keysight A2902A parameter analyzer. 

Fig. 2 shows some typical ID-VDS characteristics for both structures. The gate source 

voltage was swept from -6V to +2V with a step of 0.5 V. For the DHFET, a maximum 

drain current density (IDmax) of 1.3 A/mm is observed. The devices based on the HEMT 

structure deliver a higher IDmax of 1.5 A/mm under the same conditions reflecting the higher 

carrier concentration. 

Fig. 2. Output characteristics of a 2×50 µm AlN/GaN DHFET and HEMT. 

The transfer characteristics of both structures at VDS = 6, 8 and 10 V appear in Fig. 3. 

Excellent device pinch-off behavior was obtained, which is illustrated by the low off-state 

leakage current below 10 µA/mm and the high breakdown voltages of 80V and 110V for 

the HEMT and DHFET structures, respectively. A low threshold voltage shift as a function 

of VDS is also observed in both cases. This confirms that a good electron confinement can 

be also obtained without the insertion of an AlGaN back barrier, despite the use of short 

gate lengths (< 150 nm). In addition, a slightly higher extrinsic transconductance is 

observed for the HEMT structure with a gm around 500 mS/mm at VDS=10V against 470 

mS/mm at VDS =10V for the DHFET. The current-gain and power-gain cut-off frequencies 

are extracted from the scattering (S) parameters using Rhode and Schwarz ZVA67GHz 

network analyzer at VDS = 20V. The quiescent current bias point has been varied around 

the peak transconductance so that the maximum frequency performances are extracted. The 

DHFET yields a fT = 45 GHz and fmax = 235 GHz, while slightly better RF performances 

are achieved for the HEMT with fT = 60 GHz and fmax = 242 GHz (see Fig. 4). This indicates 

that we may benefit from a shorter effective gate length with the HEMT structure at such 

high bias. Fig. 5 show the pulsed I-V characteristics performed with a quiescent drain 

voltage (VQ,DS) up to 25V at VGS = +1V (all pulse conditions are described on Fig. 5). For 

both structures, a low gate-lag and a rather similar drain-lag of about 20% are observed. 

 

 

 

 

 

 

 

Fig. 3. Transfer characteristics at VDS = 6, 8, 10 V of a 2×50 µm AlN/GaN DHFET and HEMT. 

 



 

 

 

 

 

 

 

 

Fig. 4. RF performance of a 2×50 µm AlN/GaN DHFET and HEMT. 

 

 

 

 

 

 

 

 
 

Fig. 5. Pulsed I-V characteristics of a 2×50 µm AlN/GaN DHFET and HEMT. 

4.   LARGE SIGNAL CHARACTERIZATION AT 40 GHZ  

Large signal characterizations have been realized on a nonlinear vector network analyzer 

system (Keysight Network Analyser PNA-X, N5245A-NVNA) capable of on-wafer large 

signal device characterization up to the Q-band in continuous and pulsed mode. Further 

details can be found in [24]. On both structures, load-pull measurements have been carried 

out in pulsed mode (1 µs width and 1% duty cycle). It can be stressed that the same 

measurement conditions with a drain current density of 100 mA/mm has been used for the 

HEMTs and DHFETs. Fig. 6 shows the pulsed power performance of a 2×25 μm AlN/GaN 

HEMT at 40 GHz with VDS = 15V, 20V, and 25 V. The rather low gain is due to the biasing 

conditions in deep class AB. A high saturated POUT of 7 W/mm was achieved with a peak 

PAE of 52% (corresponding to a drain efficiency of 74%) associated to a linear power gain 

above 8 dB. Furthermore, at VDS = 10 V a PAE as high as 56% (corresponding to a drain 

efficiency of 75%) combined with an output power density of 1.6 W/mm have been 

reached. Similarly, the pulsed power performance of a 2×25 µm DHFET structure at 40 

GHz is shown in Fig. 7. The output power density evolves linearly as a function of the 

drain bias (see Figure 8) up to VDS = 25V for both structures reflecting the high material 

quality and associated processing. It is worth noting that the HEMT structure shows the 

ability to deliver a PAE above 50% up to VDS = 25V. 

For the DHFET, an increasing evolution of the PAE up to VDS = 20V is observed, reaching 

more than 45% associated to an output power density of 5.1 W/mm at VDS = 20V. 

Nevertheless, at VDS = 25V a strong degradation is observed with a PAE decreasing to 

35%. It can be noticed that no device degradation (Fig. 9) is observed in both cases (such 

as an eventual gate leakage current increase) subsequent to the number of pulsed power 
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sweeps. Thus, the significant drop of the PAE at VDS = 25V is attributed to the self-heating, 

despite the pulsed mode. In turn, the 1µs pulse width is large enough to allow the increase 

of the junction temperature at such a high voltage within the DHFET structure. As can be 

seen from the benchmark in Fig. 10, the achieved PAE / POUT combination at 40 GHz 

compares favorably to the state-of-the-art, especially for power densities above 5 W/mm. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Pulsed power performance of a 2×25 µm AlN/GaN HEMT at 40 GHz with VDS = 15, 20, 25V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Pulsed power performance of a 2×25 µm AlN/GaN DHFET at 40 GHz with VDS = 15, 20, 25V. 
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Fig. 8. Pulsed output power density (triangle) and PAE (circle) of both structures versus VDS at 40 GHz. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9 Evolution of the gate leakage for the HEMTs (filled) and DHFETs (empty) at 40 GHz. 
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Fig. 10. Benchmark of peak PAE vs output RF power density for Q and V band [12], [15], [25]-[30]. 

5.   RAMAN THERMOGRAPHY MEASUREMENT  

The performance enhancement observed on the carbon-doped GaN HEMTs was attributed 

to a better thermal dissipation. To verify this statement, we assessed the channel 

temperature of these devices using Raman thermography [31]-[35]. These measurements 
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were carried out on same dimensions 2×50 µm DHFET and HEMT GaN/SiC devices. 

Thermal shift of Eg Raman peak of TiO2 nanoparticles (NP) [36] deposited on the device 

surface, with respect to a reference value at the device pinch-off, was used to determine 

device surface temperature. This was measured by confocal Renishaw InVia Raman 

microscope in backscattering configuration under 488 nm laser excitation. A schematic 

representation of Raman TiO2 NP temperature measurement location, on top of the 

passivation at the drain edge of the gate is displayed in Fig. 11. A finite elements steady-

state thermal model (Fig. 12) was subsequently calibrated with the measured surface 

temperature data and used for the junction temperature (TJ) extraction. 

. 

Fig. 11. Schematic representation of Raman TiO2 NP temperature measurement. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Device thermal modeling fitted to the experimental data. 

 

The determined peak junction temperatures are shown in Fig. 13. We note that the 

temperature rise difference between TTiO2 NP and TJ was ~3.5% and ~5.5% for the DHFET 

and the HEMT, respectively as the device surface is close to the highest temperature 

location in the device. As expected, the DHFET reached much higher TJ (approaching 

~60%) than the HEMT for Pdiss > 5 W/mm. The thermal resistance RTH = ΔT/Pdiss was 

extracted from the slope of fitted trend lines of TJ vs Pdiss. Overall, the results showed that 



RTH of the HEMT (10°C mm/W) was ~43% lower as compared to the DHFET (17.5°C 

mm/W) and comparable to reported values of GaN on SiC devices of similar dimensions 

[37], confirming the results we obtained from the electrical measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.  Peak channel temperature of the HEMTs and DHFETs as a function of the dissipated power density. 

The table specifies the current used for each extracted junction temperature. 

 

6.   Conclusion 

This work shows that a careful architecture of buffer layers should be employed in order 

to perform high performance millimeter-wave GaN devices. The use of higher bias 

operation (VDS ≥ 20 V) is possible when using deep sub-micrometer gate lengths only if 

the thermal resistance induced by the buffer layers is reduced. In particular, it is shown that 

a thick AlGaN back barrier (DHFET structure) with 8% Al into the buffer results in a 

significant drop of the PAE at VDS > 20V even in pulsed mode. This is illustrated by a 

much higher thermal resistance (obtained by Raman Thermography measurements) as 

compared to the HEMT structure. The optimized AlN/GaN HEMT structure enabled to 

deliver a state-of-the-art combination of PAE (> 50%) and an output power density of 7 

W/mm at 40 GHz and VDS = 25V. 
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