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S U M M A R Y
Joint analysis of the seismic velocities and geoid, gravity and gravity gradients are used
to constrain the viscosity profile within the mantle as well as the lateral density variations.
Recent ESA’s Gravity field and steady-state Ocean Circulation Explorer measurements of
the second-order derivatives of the Earth’s gravity potential give new possibilities to deter-
mine these mantle properties. Using a simple mantle model and seismic tomography results,
we investigate how the gravitational potential, the three components of the gravity vector and
the gravity gradients can bring information on the radial viscosity profile and on the mantle
mass anomalies. We start with lateral density variations in the Earth’s mantle based either on
slab history or deduced from seismic tomography. The main uncertainties are: for the latter
case, the relationship between seismic velocity and density—the so-called density/velocity
scaling factor—and for the former case, the variation with depth of the density contrast be-
tween the cold slabs and the surrounding mantle. We perform a Monte Carlo search for the
viscosity and the density/velocity scaling factor profiles within the mantle, which allows to fit
the observed geoid, gravity and gradients of gravity. We compute the posterior probability dis-
tribution of the unknown parameters, and find that the gravity gradients improve the estimate
of the scaling factor within the upper mantle, because of their sensitivity to the masses within
the upper mantle, whereas the geoid and the gravity better constrain the scaling factor in the
lower mantle. In the upper mantle, it is less than 0.02 in the upper part and about 0.08–0.14 in
the lower part, and it is significantly larger for depths greater than 1200 km (about 0.32–0.34).
In any case, the density/velocity scaling factor between 670 and 1150 km depth is not well
constrained. We show that the viscosity of the upper part of the mantle is strongly correlated
with the viscosity of the lower part of the mantle and that the viscosity profile is characterized
by a decrease in the lower part of the upper mantle (about 1020–2 × 1020 Pa s) and by an
increase (about 1023–2 × 1023 Pa s) at the top of the lower mantle (between 670 and 1150 km).
The viscosity of the mantle below 1150 km depth is well estimated in our Monte Carlo search
and is about 1022–4 × 1022 Pa s.

Key words: Satellite geodesy; Gravity anomalies and Earth structure; Mantle processes;
Dynamics: gravity and tectonics.

1 I N T RO D U C T I O N

From 2009 to 2013, the ESA’s Gravity field and steady-state Ocean
Circulation Explorer (GOCE) satellite measured the spatial deriva-
tives of the Earth’s gravity field in three different directions. These
measurements have led to a better understanding of the physics
of the upper mantle, with new insights into the geodynamics of
the lithosphere, into mantle composition and rheology, uplift and

subduction processes (Ebbing et al. 2014; Bouman et al. 2015).
Recently, Panet et al. (2014) analysis has demonstrated the sensitiv-
ity of these new data to lower mantle structure, which arises from
the symmetries between the gradiometric differentiation directions
and the global north–south/east–west organization of Earth’s deep
mass structure. The gradients improve geometry and depth infor-
mation as compared to geoid data. For example, remnant slabs in
the upper part of the lower mantle below North America, and in the

C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 257

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/205/1/257/2594820 by C

N
R

S - ISTO
 user on 18 August 2020

mailto:greff@ipgp.fr


258 M. Greff-Lefftz et al.

mid-lower mantle below Central Asia may be detected in the east–
west gradients, and the subducted lithosphere related to the Tethys
ocean closure, in the north–south gradients. This high sensitivity
of gradients to the geometry of the masses opens new possibilities
for investigating the dynamics of the mantle from global to regional
scales by combining the gravity gradients with seismic tomography.
Joint inversion of the observed geoid and seismic velocities has been
commonly used to constrain the viscosity profile within the man-
tle as well as the lateral density variations. The main uncertainty
is the relationship between seismic velocity and density, the so-
called density/velocity scaling factor, because of the large number
of effects that occur in these velocity variations, particularly temper-
ature and chemical composition. Indeed, seismic anomalies caused
by a combination of thermal and compositional effects cannot be
simply converted to density anomalies. But because these com-
positional variations are probably most prominent at lithosphere
depth—where the contribution of the associated density anomalies
to the long-wavelength geoid are probably smaller than those at
greater depth—we assume that the approach of a velocity–density
scaling factor may be acceptable. Space gravimetry provides inde-
pendent information, complementary to seismology, to image the
structure of the mantle mass anomalies, and therefore the associ-
ated changes in temperature and composition. Since the pioneering
studies for inferring the mantle structure from gravimetric data (e.g.
Hager 1984; Ricard et al. 1989; Forte et al. 1994), several works
have focused on how seismically inferred mantle structure may be
used to explain geodynamic data. On the one hand, some studies
search for the radial viscosity profile which fit the geoid and free-air
gravity assuming a conversion factor (e.g. Soldati et al. 2009), or
using constraints from mineral physics (Steinberger & Calderwood
2006). On the other hand, other authors fix the viscosity profile from
Glacial Isostatic Adjustment (GIA) data (sea-level change for the
past 20 kyr, present-day rate of surface vertical displacements and of
the geoid, secular drift of the Earth’s rotational axis, etc.) and derive
the conversion factor which explains the geoid, the free-air anomaly,
the dynamic topography as well as the non-hydrostatic flattening
of the core–mantle boundary (Forte 2007; Simmons et al. 2009).
Marquart et al. (2005) proposed a joint estimation of the viscosity
and the scaling factor profiles taking into account the mantle density
distribution deduced from a slab subduction history model (Ricard
et al. 1993) and an S-wave tomography model. Lateral variations in
mantle rheology (Moucha et al. 2007), as well as density jumps at
the transition zone discontinuities (Kaban & Trubitsyn 2012) have
also been investigated.

Here we investigate how the gravity and the gradients of gravity
data can provide new informations on the radial profile of viscosity
and on the mantle mass anomalies.

The paper is organized as follows. In Section 2, we present our
theoretical approach. In Section 3, we estimate the viscosities and
the scaling factor for a two-layer and a three-layer mantle, with an
heterogeneity structure given by the tomographic model S40RTS
(Ritsema et al. 2011); we discuss the sensitivity of the method as
a function of the number of layers within the mantle. In Section 4,
these estimations are done for a four-layer mantle model using two
different tomographic models: S40RTS , and the recent tomographic
model SEMUCB-WM1 (French & Romanowicz 2014); the fit be-
tween the models and the observations is discussed. We present the
geoid, the components of the gravity and of the gravity gradients
for the best models and we discuss our results and especially the
discrepancies between computed and observed data. In Section 5,
to complete our study, we use a simple geodynamic model for the
large-scale pattern of mantle mass anomalies derived from slab sub-

duction history and we jointly estimate the viscosity profile and the
depth-dependent density contrast between the slabs and the sur-
rounding mantle which provide the best fit between the models and
the observations.

2 T H E O R E T I C A L A P P ROA C H

2.1 Model

The distribution of the lateral variations of the density anomalies δρ

within the mantle is deduced from an S-wave tomography model. A
major issue arises from the uncertainties in the relationship between
seismic velocity and density. Theoretical mineral physics estimates
are usually based on temperature effects alone, despite the fact that
compositional effects may be important (for a review, see Forte
2007). Thermally induced density variations together with mineral
phase changes and possible chemical differentiation favour a depth-
dependent scaling factor (Forte & Perry 2000; Forte et al. 2002).

We denote the scaling or conversion factor as c(r ) = ( d ln ρ

d ln Vs
), with

r the radius, such that:

δρ(r, θ, ϕ)

ρ(r )
= c(r )

δVs(r, θ, ϕ)

Vs(r )
(1)

where ρ(r) and Vs(r) are, respectively, the radial profile of density
and of shear velocity and δVs(r, θ , ϕ) represents the shear veloc-
ity anomalies (i.e. the lateral variations with respect to the radial
profile). θ is the geocentric colatitude and ϕ the longitude.

We expand the density anomalies, at each depth, on the basis of
the spherical harmonic functions Y m

n (θ, ϕ), normalized to 4π :

δρ(r, θ, ϕ) =
∑
n,m

δρm
n (r )Y m

n (θ, ϕ)

The total gravitational potential outside the Earth is:

W (r, θ, ϕ) = U (r, θ ) + V (r, θ, ϕ) (2)

where U(r, θ ) is the gravitational potential of an idealized elliptical,
rotating Earth model, at hydrostatic equilibrium, with the radial pro-
file of density ρ(r) and V(r, θ , ϕ) the perturbation of the gravitational
potential induced by the lateral mantle mass anomalies.

Because the mantle is not rigid, these mass anomalies involve
internal mass redistributions and associated surface readjustments
that have to be taken into account in the computation of the gravita-
tional potential, in addition to the direct effect of the mass (Richards
& Hager 1984). The perturbation of the gravitational potential out-
side the Earth is:

V (r, θ, ϕ) =
∑
n,m

(a

r

)n+1
V m

n (a)Y m
n (θ, ϕ) (3)

where a is the semi-major axis of the ellipsoidal Earth. V m
n (a) are

the coefficients of the spherical harmonics expansion of the sur-
face gravitational potential induced by the mantle mass anomalies.
Because the hydrostatic flattening induced by the rotation is small
[∼ 1

300 � 1], the deformations induced by the mass anomalies are
computed as perturbations with respect to a spheroidal reference
shape. Consequently, to compute the V m

n (a) coefficients, we use a
‘degree n geoid kernel’, that is to say a transfer function between
the degree n coefficients of the spherical harmonics expansion of
the mantle mass anomaly δρm

n and that of the gravitational potential
V m

n (a) (Richards & Hager 1984).

V m
n (a) = 4πGa

2n + 1

∫ a

CMB
Gn(r )δρm

n (r )dr (4)
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where Gn(r), the degree n geoid kernel, depends on the geometrical
and physical properties of the spherical reference Earth, comprising
here a constant density mantle and core and a depth-dependent
viscosity ν(r).

Because we neglect the lateral variations in the viscosity and
scaling factor profiles, we can only investigate the long-wavelength
mantle density anomalies, and consequently we will take into ac-
count only the degrees ranging from 2 up to 20 in our analysis.

We work in a local reference frame, where X in the southward
axis, Y the eastward one and Z the upward one (right-handed frame).
Its origin is at the observation point and the coordinate system
associated with it is the spherical coordinate system (r, θ , ϕ) (e.g.
Casotto & Fantino 2009).

The three components of the gravity vector induced by the mantle
mass anomalies �g = −�∇V , in this local frame, may be written as:

VZ = −∂r V VX = −1

r
∂θ V VY = − 1

r sin θ
∂ϕV (5)

The nine components of the Eötvös tensor, that is to say the gradients
of the gravity vector, induced by the mantle mass anomalies, may
be written as (Koop 1993):

VZ Z = ∂2
rr V VX X = 1

r

(
∂2

θθ V

r
+ ∂r V

)

VY Y = ∂2
ϕϕV

r 2 sin2 θ
+ ∂r V

r
+ cot θ∂θ V

r 2

VZ X = 1

r

(
−∂2

rθ V + ∂θ V

r

)
VZY = 1

r sin θ

(
∂2

rϕ V − ∂ϕV

r

)

VXY = 1

r 2 sin θ

(
cot θ∂ϕV − ∂2

θϕV
)

; VY X = VXY ;

VX Z = VZ X ; VY Z = VZY (6)

For given lateral density variations, the surface geoid, the gravity
and the gravity gradients at the altitude of the GOCE satellite (about
255 km) may be computed, from these formulae, using the geoid
kernels associated to the chosen viscosity profiles.

We assume a radially layered incompressible mantle model with
viscosity and conversion factor constant in each layer, and we
fix the viscosity of the lithosphere. From mineral physics stud-
ies (Karato & Karki 2001; Cammarano et al. 2003, 2005; Stixrude
2007) as well as from a geodynamics study (Marquart et al. 2005)
or joint geodynamic and mineral physics studies (Steinberger &
Calderwood 2006; Forte 2007), the full range of possible values
for the scaling factor appears to be comprised between 0 and 0.4.
Viscosity profiles within the mantle are constrained from geophys-
ical data sensitive to the long-term rheology of the mantle: studies
of postglacial uplift (e.g. Mitrovica 1996) constrain the absolute
value of the viscosity, whereas studies of steady-state geoid asso-
ciated with mantle convection constrain the relative variations of
the viscosity with depth (Kaufmann & Lambeck 2000; Forte 2007).
From these results, we assume that the viscosity of the upper man-
tle ranges from 1019 to 1021 Pa s while that of the lower mantle is
between 1021 and 1024 Pa s.

Within these limits, we perform a Monte Carlo search for the
viscosity and the density/velocity scaling factor profiles within the
mantle which allow us to fit the observed geoid, gravity and gravity
gradients.

2.2 Data

Our data are global maps of the non-hydrostatic surface geoid, and
gravity and gravity gradients at satellite altitude. We have built these
maps from models based on different data sets (CHAMP, GRACE
and GOCE) in order to obtain if possible, independent datasets:

(1) For the non-hydrostatic surface geoid, we use the coefficients,
up to degree 20, of the spherical harmonics expansion of the geoid
derived from CHAMP (EIGEN-CHAMP05S model; Flechtner et al.
2010). The long-wavelength information from GRACE/LAGEOS
is superior to the CHAMP-derived long-wavelength information,
but the difference is very small as compared to the amplitude of the
large-scale mantle structure signal studied here.

(2) For the gravity, we use the combined gravity field model
EIGEN-GL04C (using coefficients, up to degree 20, of the spher-
ical harmonics expansion of the geoid), which is obtained from a
combination of GRACE and LAGEOS missions observations plus
0.5◦ × 0.5◦ gravimetry and altimetry surface grids (Foerste et al.
2008).

(3) For the gravity gradients, we use the global grids at 255 km
height above the reference ellipsoid (WGS84), (available from
ftp.dgfi.badw.de/pub/goce2/Gradient-Grids) (Bouman et al. 2013)
which combine GRACE with GOCE data. Note that our data sets
are then not fully independent.

For the scales up to degree 20 that are used here, it makes very
little difference by which mission and which method the gravity
field was obtained, when compared to the amplitude of the studied
signals. So, at this level of accuracy, the gravity field coefficients up
to degree 20 will be very similar for all three, and gradients and sec-
ond derivatives may be obtained with eqs (5) and (6). Nevertheless
we choose to use these global grids instead of deriving the gradients
from the coefficients of the spherical harmonics expansion of the
observed geoid.

We construct maps referring to an idealized elliptical, ro-
tating Earth model, at hydrostatic equilibrium, with internal
structure given by the PREM model deduced from seismology
(Nakiboglu 1979, 1982; Dziewonski & Anderson 1981; Chambat
el al. 2010) with the gravity potential U(r, θ ) introduced in eq. (2).
An important consequence is that our non-hydrostatic geoid will
differ at even degrees and order 0 from the reference geoid clas-
sically associated to the WGS84 ellipsoid used by geodesists. Our
reference model is centred at the centre of mass and the mass of the
Earth is conserved. Consequently, the degrees 0 and 1 coefficients
of the spherical harmonics expansion of the non-hydrostatic poten-
tial are zero (for more details about degree one deformations, see
Greff-Lefftz et al. 2010).

The gravity gradients are given on global grids with a constant
step size of 0.2◦ for the geographic coordinates. Consequently, for
our computation, we use the ellipsoidal coordinates instead of the
spherical ones. We denote the radius of our reference ellipsoid as
rE:

rE (	, ϕ) = a

√
1 + (e4 − 2e2) sin2 	√

1 − e2 sin2 	
(7)

where e is the eccentricity [e2 = 1 − b2

a2 ], with b the semi-minor
axis of the ellipsoidal Earth and 	 the geodetic latitude, which is
related to the eccentricity and geocentric colatitude as:

tan 	 = 1

(1 − e2) tan θ
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The gravitational potential Vobs will be plotted on this hydrostatic
reference ellipsoid, that is, at r = rE. Its mean value is:

V obs = 1

SE

∫ 2π

0

∫ π/2

−π/2
V obs(rE , 	, ϕ)d S (8)

with d S = (1 − e2) cos 	

1 − e2 sin2 	
d	dϕ and

SE =
∫ 2π

0

∫ π/2

−π/2
d S = 2π

[
1 + 1 − e2

2e
ln

(
1 + e

1 − e

)]

The gravity and the gradients are computed on the global grids
derived by Bouman et al. (2013), that is to say at the altitude h above
our hydrostatic reference ellipsoid, a surface with radius rh related
to the radius of the reference ellipsoid as:

rh(	,ϕ) = (a + h)

a
rE (	, ϕ) (9)

and the mean values over this surface are, for example, for VXX:

V obs
X X = 1

SE

∫ 2π

0

∫ π/2

−π/2
V obs

X X (rh, 	, ϕ)d S (10)

On the same surfaces, we can compute the standard deviation σ data.
For example, for the gravitational potential, at r = rE and the VXX

component of the gravity gradient at r = rh:

σ 2
V = 1

SE

∫
S

[
V obs(rE , 	, ϕ)

]2
d S − V obs

2
;

σ 2
VX X

= 1

SE

∫
S

[
V obs

X X (rh, 	, ϕ)
]2

d S − V obs
X X

2
(11)

We have N = 10 data sets, hereafter noted Xi(r, 	, ϕ), for i =
1, . . . , N: the surface geoid X1(rE , 	, ϕ) = V obs(rE ,	,ϕ)

go
where go

is the gravity of the reference sphere, the three components of
the gravity vector [X2(rh, 	, ϕ) = V obs

X (rh, 	, ϕ), X3(rh, 	, ϕ) =
V obs

Y (rh, 	, ϕ), X4(rh, 	, ϕ) = V obs
Z (rh, 	, ϕ)] and the six com-

ponents of the gravity gradients [X5(rh, 	, ϕ) = V obs
Z Z (rh, 	, ϕ),

X6(rh, 	, ϕ) = V obs
X X (rh, 	, ϕ), X7(rh, 	, ϕ) = V obs

Y Y (rh, 	, ϕ),
X8(rh, 	, ϕ) = V obs

Z X (rh, 	, ϕ), X9(rh, 	, ϕ) = V obs
ZY (rh, 	, ϕ),

X10(rh, 	, ϕ) = V obs
XY (rh, 	, ϕ)].

These N data sets are not independent, so we also compute
their covariance matrix. We note Xi the expected value of the data
Xi(r, θ , ϕ), defined by:

Xi = 1

SE

∫ 2π

0

∫ π/2

−π/2
Xi (r, 	, ϕ)d S (12)

and consequently

Xi X j = 1

SE

∫ 2π

0

∫ π/2

−π/2
Xi (r, 	, ϕ)X j (r, 	, ϕ)d S (13)

where r stands for rE or rh, following the data.
The elements of the 10 × 10 covariance matrix over the data,

noted CD, are then:

C D
i j = Xi X j − Xi X j (14)

Note that diagonal elements are the variances computed in
(eq. 11). If the N data sets are independent, this matrix will be
diagonal. The mean value Xi , the standard deviation σXi as well as
the elements of the covariance matrix C D

i j are given in Appendix A.
Note that, in this paper, the geoid will always be computed on

the hydrostatic reference ellipsoid (r = rE), whereas the gravity and
the gravity gradient will be computed at the altitude h above this
ellipsoid (r = rh).

2.3 Measure of the fit between model and data

We measure the quality of the fit between the surface modeled versus
observed geoid, and between the modeled gravity and gradients and
the observed ones at the satellite altitude h using N = 10 variance
reduction estimates �data:

�Geoid =
[

1−
1

SE

∫
S(V obs(rE , 	, ϕ)−V mod(rE , 	, ϕ))2d S

σ 2
V

]
(15)

�VZ =
[

1 −
1

SE

∫
S(V obs

Z (rh, 	, ϕ) − V mod
Z (rh, 	, ϕ))2d S

σ 2
VZ

]
(16)

and, for example, �VX X :

�VX X =
[

1 −
1

SE

∫
S(V obs

X X (rh, 	, ϕ) − V mod
X X (rh, 	, ϕ))2d S

σ 2
VX X

]
(17)

Consequently, if a variance reduction �Xi = 1, it means that
100 per cent of the observed data Xi satisfy the model predictions.

3 J O I N T A NA LY S I S B A S E D O N S E I S M I C
T O M O G R A P H Y: S E N S I T I V I T Y
O F T H E M E T H O D

In this section, we assess the sensitivity of the gravity potential, grav-
ity and gravity gradients to mantle viscosity and velocity–density
scaling factor. We estimate the viscosity profile and the scaling
factor for a two-layer or a three-layer mantle model, starting from
the coefficients of the spherical harmonics expansion, up to degree
20, of the S-wave tomography model S40RTS, derived by Ritsema
et al. (2011). We test two simple Earth models: the classical two-
layer mantle with an upper mantle and a lower mantle, and then
a three-layer mantle in which we divide the lower mantle into two
parts. When we increase the number of layers in the mantle, we
increase the number of parameters that have to be estimated: from
four parameters for the two-layer mantle, to six parameters for the
three-layer mantle. The quality of the estimation of these parameters
will be discussed.

3.1 Two-layer mantle and S40RTS tomographic model

We first test a two-layer mantle, that is to say a viscous Earth model
with a 100 km thick lithosphere, an upper mantle (100–670 km),
a lower mantle (670–2891 km) and an inviscid fluid core. Because
studies of steady-state gravity functionals associated with mantle
convection only constrain the relative variations of the viscosity
with depth, we set the value of the viscosity of the lithosphere: we
arbitrary choose a value of about ν1 = 1.1 × 1022 Pa s, a value
obtained by Ricard et al. (1993) from a joint inversion of mantle
density heterogeneities based on slab history and the geoid. Ricard
et al. (2006) investigated the crustal and lithospheric sources of the
gravity field and showed that for the lowest degrees, the isostatically
compensated crustal and lithospheric signal is much lower in ampli-
tude than the mantle one. Consequently, we neglect this lithospheric
contribution, that is to say we assume that the scaling factor within
the lithosphere is equal to zero. We note, respectively, ν2 (ν3) and c2

(c3) the viscosity and the scaling factor of the upper mantle (lower
mantle).

For realistic values of the viscosity—between 1019 and
1023 Pa s—and upper and lower limits 0–0.4 for the conversion

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/205/1/257/2594820 by C

N
R

S - ISTO
 user on 18 August 2020



Gravity gradients and mantle dynamics 261

Figure 1. Variance reduction for the surface geoid and for the gravity at the altitude of the GOCE satellite.

factor, we have performed a Monte Carlo search for these four
parameters and more than 2.56 × 106 different combinations of c2,
ν2, c3 and ν3 have been calculated. For each type of data, we have
obtained a four-variable function for the variance reduction, such
as �Geoid(c2, c3, ν2, ν3). Because we cannot plot a 4-D function, we
compute, for each pair of parameters, the maximum value of the
variance reduction obtained for all other parameters. For example,
for the geoid variance reduction, we plot at the top left of Fig. 1(a)
the function f (ν2, ν3) = Maxc2,c3�

Geoid(c2, c3, ν2, ν3). The darkest
grey surface of the curve corresponds to the values of the param-
eters (ν2, ν3) leading to a variance reduction for the geoid greater
than 0.7, that is to say with more than 70 per cent of the observed
surface geoid data satisfying the model predictions. Note that there
is a large range of possible values for the viscosities: nevertheless,
the ratio ν3/ν2 remains constant and is determined to a value of
about 50. The black star in the figure corresponds to the best model
for the geoid.

We plot similar curves for the three components of the gravity at
the satellite altitude (Figs 1b–d) and for the six components of the
gradients of gravity at the satellite altitude (Fig. 2). For the gravity
vector, the best variance reduction is obtained for the north–south
component VX whereas it is always smaller for the east–west compo-
nent VY. For the gradients of gravity, the variance reduction exceeds
0.3 only for VZZ, VXX and VZX. All components with longitude deriva-
tive exhibit weaker variance reduction. This may be explained by

the lack of north/south structures in the tomographic model. Indeed,
comparisons between different seismic tomography models found
in the literature show a discrepancy between these various velocity
perturbations in the region between 420 and 1150 km (Lee et al.
2011), a zone where remnant slabs may be present, for example,
below North America (see Section 5).

We compute 10 best models obtained for each data set and we
plot in Fig. 3 the obtained values for the scaling factor and for the
viscosity. Note that whatever the data set, the best fit is obtained
for similar values of viscosities and the viscosity ratio remains
close to 50. This is not the case for the scaling factors which seem
larger when obtained from the geoid and the gravity than from the
gradients of gravity, probably because they are sensitive to structures
at different depth; however c3 > c2 for all the data.

To reconcile these 10 best models into a single best model, we
combine the informations from these different data sets using a
probability function p(c2, c3, ν2, ν3) defined by:

p(c2, c3, ν2, ν3) = exp

[
− 1

2

N∑
i=1

N∑
j=1

1

SE

×
∫ 2π

0

∫ π/2

−π/2
(Xmod

i − X obs
i )C D−1

i j (Xmod
j − X obs

j )d S

]
(18)

with N = 10, CD being the covariance matrix defined in (14).
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262 M. Greff-Lefftz et al.

Figure 2. Variance reduction for the six components of the gravity gradient at the altitude of the GOCE satellite.

The values of the parameters obtained for the maximum prob-
ability are given in Table 1 (column ‘Best model’) and are plot-
ted as a dashed line in Fig. 3. The viscosity estimates for each
single data set do not differ much and are close to the values ob-
tained for the maximal probability. This is not true for the scal-
ing factors which show a large dispersion, especially in the lower
mantle.

The N variance reductions �data associated with this best model
are given in Table 6. The variation reduction �Geoid associated with

the best model obtained for the maximum probability is less than
0.7: this low value (in comparison with the large areas with geoid
variance reductions in excess of 0.7 shown in Fig. 1) may be ex-
plained by the fact that the upper-mantle scaling factor determined
using only geoid is about two times larger than the one obtained for
the best model (Fig. 3).

In order to interpret our results, we compute the probability
distribution of one parameter regardless of the other parameters,
that is to say the marginal distribution. For example, the marginal
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Gravity gradients and mantle dynamics 263

Figure 3. Estimates of the scaling factor (left) and of the viscosity (right) for the two-layer model. 10 best models obtained for each of 10 data sets: c2 as black
square and c3 as black circle, on the left figure, and ν2 as black square and ν3 as black circle, on the right. Dashed line: best model obtained from the maximum
probability.

Table 1. Scaling factor and log10 (viscosity in Pa s) values for the two-layer mantle model: expected
value and standard deviation computed from (20). Best model obtained from the maximum probability
(eq. 18).

Scaling factor log10 (Viscosity in Pa s)

Expected value Expected value
Layer ± Best model ± Best model

standard deviation standard deviation

Upper mantle 0.117 ± 0.085 0.096 20.04 ± 0.55 20.30

Lower mantle 0.168 ± 0.101 0.233 21.86 ± 0.41 22.03

distribution of c2 is simply the probability distribution of c2 inte-
grating over information about c3, ν2 and ν3.

p̃(c2) =
∫

c3

∫
ν2

∫
ν3

p(c2, c3, ν2, ν3) dc3 dν2 dν3∫
c2

∫
c3

∫
ν2

∫
ν3

p(c2, c3, ν2, ν3) dc2 dc3 dν2 dν3
(19)

We plot in Fig. 4(a) the marginal probability for the scaling factors
(top, in black for c2, in blue for c3) and for the viscosities (bottom,
in black for ν2, in blue for ν3).

We have divided the 4-D space of parameters into 4 × 20 inter-
vals. Our a-priori knowledge of one parameter is a uniform distribu-
tion in the explored interval: all the values have the same probability,
equal to 1

20 = 0.05 as we have divided each dimension into 20 in-
tervals. The distribution that we get a posteriori (Fig. 4) represents
the information obtained after inversion. So the more the marginal
probability differs from a uniform distribution (0.05), the more in-
formation is gained.

The values of c2 and c3 obtained for the maximum probability
(c2 = 0.096 and c3 = 0.233, indicated with dashed lines in Fig. 4a)
have a marginal probability of about 0.093 and 0.054, respectively.
c3 is therefore not well estimated because the marginal probability
is only slightly larger than the uniform probability of 0.05. For the
viscosity, the marginal probability is equal to 0.057 for log10(ν2)
= 20.30 and 0.089 for log10(ν3) = 22.03. According to the curve

shapes, we can conclude that the viscosity of the lower mantle is
better estimated than that of the upper mantle, in our joint inversion.

To quantify the accuracy of this estimation, we compute the
standard deviation of the parameters c2, c3, log10(ν2), log10(ν3). If
the random variable X is discrete with probability density function
x1 → p1, . . . , xM → pM, then the standard deviation of X is the
quantity σ X such that:

σX =
√∑M

i=1 pi (xi − x)2∑M
k=1 pk

with

x =
∑M

k=1 pk xk∑M
k=1 pk

the expected value. (20)

Note that these numbers may be partly dependent on the intervals
chosen, especially for those cases where the marginal probability
distribution remains close to 0.05.

The obtained values for the scaling factor and for the log10 of the
viscosities are given in Table 1. Note that our best model is within the
error bars. Our procedure essentially gives different weighting (e.g.
compared to only considering the geoid, or only vertical gravity) to
different parts of the data set. So to estimate the relative importance
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264 M. Greff-Lefftz et al.

Figure 4. Marginal probability for the scaling factor (top) and for the viscosity (bottom) for the four mantle models discussed in the text: (a) two-layer mantle:
c2 and ν2 in black, c3 and ν3 in blue, for S40RTS tomographic model. (b) Three-layer mantle: c2 and ν2 in black, c3 and ν3 in green, c4 and ν4 in blue, for
S40RTS tomographic model. (c) Four-layer mantle: c2 and ν2 in black, c3 and ν3 in red, c4 and ν4 in green, c5 and ν5 in blue, for S40RTS tomographic model
(d) same as (c) for SEMUCB tomographic model. Note that the viscosity scale is different.

of each data, we compute 10 probability functions such as, for
example, for the geoid:

pgeoid(c2, c3, ν2, ν3) = e
−N (1−�Geoid)

2 (21)

The associated marginal probabilities are plotted in Fig. 5, top for the
scaling factor and bottom for the viscosity. We find that the gradients
of the gravity improve the estimate of the radially averaged scaling
factor within the upper mantle—because they are sensitive to masses
within the upper mantle—, whereas the geoid and the gravity better
constrain that of the lower mantle. For the viscosity, we find that
the probability functions are very similar, whatever the data used
in the estimation: the geoid, the gravity and the gravity gradients
depend on the dynamic topography, both at the surface and at the
core–mantle boundary (Richards & Hager 1984) and consequently
are sensitive to both upper and lower mantle viscosities.

3.2 Three-layer mantle and S40RTS tomographic model

To improve the fit between models and observations, we increase
the number of layers within the mantle, that is to say the number of
parameters that have to be estimated. In this part, we test a three-

layer mantle: the upper mantle (100–670 km), a top layer of the lower
mantle (670–1150 km) and the lowermost mantle (1150–2891 km).
We denote the viscosity and scaling factor of the upper mantle, the
top of the lower mantle and the bottom of the mantle as ν2, ν3, ν4

and c2, c3, c4.
We have performed a Monte Carlo search for these six parame-

ters and more than 18 × 106 different combinations of c2, ν2, c3, ν3,
c4 and ν4 have been calculated. We compute 10 variance reductions
which are now functions of six parameters, and similarly to the pre-
vious section, we compute for each pair of parameters the maximum
variance obtained for all the other parameters (Appendix B, Figs B1
and B2). We plot the values of the scaling factor and the viscosity, in
Fig. 6, for the 10 best models obtained for each of 10 data sets. The
values obtained for the maximum probability, (eq. 18) are plotted
as a dashed line and reported in Table 2 in the column ‘Best model’.
The N variance reductions �data associated with this best model are
given in Table 6.

The viscosity estimates for single data sets do not differ much and
are close to the values obtained for the maximal probability. This
is not true for the scaling factors which show a large dispersion,
especially in the lower mantle.

The expected values and the standard deviations obtained for the
scaling factor and for the log10 of the viscosity are given in Table 2.
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Gravity gradients and mantle dynamics 265

Figure 5. Marginal probability associated with each data sets, top for the scaling factor and bottom for the viscosity: upper-mantle parameter in black and
lower mantle parameter in brown.

The marginal probability for the scaling factor and for the viscosity
is plotted in Fig. 4(b).

From these results, we argue that it is not possible to robustly
constrain with this method the scaling factor and the viscosity of

the layer 670–1150 km. As a matter of fact, we find, on the one
hand, that the marginal probabilities for these two parameters are
only slightly above 0.05 and consequently that they are not well
determined in our inversion, and on another hand, that adding this
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266 M. Greff-Lefftz et al.

Figure 6. Estimates of the scaling factor (left) and of the viscosity (right) for the three-layered model. Best models obtained for each of 10 data: c2 as black
square, c3 as green open circle and c4 as blue circle, on the left figure, and ν2 as black square, ν3 as green open circle and ν4 as blue circle, on the right. Best
models obtained from the maximum probability: dashed line.

Table 2. Same as Table 2 for a three-layer mantle.

Scaling factor log10 (Viscosity in Pa s)

Expected value Expected value
Layer ± Best model ± Best model

standard deviation standard deviation

Upper mantle 0.094 ± 0.069 0.060 20.21 ± 0.50 20.15

670–1150 km 0.165 ± 0.107 0.127 22.84 ± 0.52 23.12

1150–2890 km 0.182 ± 0.107 0.249 21.78 ± 0.43 21.77

670–1150 km layer does not seem to notably increase the variance
reductions (see Fig. 1 and Appendix B).

4 F I NA L M O D E L S B A S E D O N S E I S M I C
T O M O G R A P H Y F O R A F O U R - L AY E R
M A N T L E

In this part, we will use two different four-layer mantle models
starting from two different S-wave tomography models.

4.1 Four-layer mantle and S40RTS tomographic model

We test a four-layer mantle consisting of a two-layer upper mantle
(100–280 km and 280–670 km), and a two-layer lower mantle (670–
1150 km and 1150–2891 km), and we use the S40RTS tomographic
model. Thus, we only have one additional layer in the upper mantle
compared with the three-layer model investigated in the previous
section, and compared with the two-layer model, the upper and
lower mantle have been split in two. We denote the viscosity and
scaling factor of the four layers as ν2, ν3, ν4, ν5 and c2, c3, c4,
c5, respectively, from the top to the bottom of the mantle. We have
performed a Monte Carlo search for these eight parameters and
more than 48 × 106 different combinations of c2, ν2, c3, ν3, c4, ν4,
c5 and ν5 have been calculated.

We compute 10 variance reductions which are now functions of
eight parameters, and similarly to the previous sections, we compute
for each pair of parameters the maximum variance obtained for all
the other parameters (Appendix B, Figs B3 and B4). As for the two-
and three-layer mantle models, we find that all the components with
longitude derivative involve weak variance reduction.

We plot the obtained scaling factors and viscosities in Fig. 7,
for the 10 best models associated with each of 10 data sets. The
values obtained for the maximum probability (eq. 18) are plotted
as a dashed line for the upper mantle and as a dotted-dashed line
for the lower mantle and reported in the column ‘Best model’ of
Table 3. The N variance reductions �data associated with this best
model are given in Table 6.

The marginal probabilities for the scaling factor and for the vis-
cosity are plotted in Fig. 4(c): note that the marginal probability for
the viscosity in the upper mantle and at the top of the lower mantle
is very close to 0.05 and consequently the value of this parameter
is not well estimated from our inversion. The expected values and
standard deviations obtained for the scaling factor and for the log10

of the viscosities are given in Table 3.

4.2 Four-layer mantle and SEMUCB tomographic model

To improve our results, we change the upper-mantle stratification
and we investigate the influence of the tomographic model.
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Gravity gradients and mantle dynamics 267

Figure 7. Estimates of the scaling factor (left) and of the viscosity (right) for the four-layered model for the S40RTS tomographic model. Best models obtained
for each of 10 data: c2 as black square, c3 as red open square, c4 as green open circle and c5 as blue circle, on the left figure, and ν2 as black square, ν3 as red
open square, ν4 as green open circle and ν5 as blue circle, on the right. Best models obtained from the maximum probability: dashed line for the upper mantle
and dotted-dashed line for the lower mantle.

Table 3. Same as Table 2 for the four-layer mantle.

Scaling factor log10 (Viscosity in Pa s)

Expected value Expected value
Layer ± Best model ± Best model

standard deviation standard deviation

100–280 km 0.130 ± 0.095 0.004 20.94 ± 0.56 21.22

280–670 km 0.103 ± 0.078 0.081 20.16 ± 0.53 20.08

670–1150 km 0.177 ± 0.109 0.146 22.90 ± 0.52 23.23

1150–2890 km 0.188 ± 0.107 0.321 21.83 ± 0.42 21.91

We assume an upper mantle with two layers (100–420 km and
420–670 km) and a two-layer lower mantle (670–1150 km and
1150–2891 km). We perform a Monte Carlo search for the eight
parameters ν2, ν3, ν4, ν5 and c2, c3, c4, c5, the viscosity and the
scaling factor of the four layers, for the recent tomographic model
SEMUCB (French & Romanowicz 2014), taking into account the
degrees ranging from 2 up to 20.

We compute 10 variance reductions, and, for each pair of param-
eters, the maximum variance obtained for all the other parameters
(Appendix B, Figs B5 and B6). We obtain larger variance reduc-
tions for VY, VYY, VZY and VXY—the components with derivative with
respect to the longitude—than the ones obtained for the S-wave to-
mography model S40RTS. This may be due to a better resolution of
this recent SEMUCB model to longitudinal mass anomalies.

We plot the values of the scaling factors and of the viscosities
in Fig. 8, for 10 best models obtained for each of 10 datasets. The
values obtained for the maximum probability (eq. 18), are plotted
as a dashed line for the upper mantle and as a dotted-dashed line
for the lower mantle and reported in the column ‘Best model’ of
Table 4. The N variance reductions �data associated with this best
model are given in Table 6.

The marginal probability for the scaling factor and for the viscos-
ity is plotted in Fig. 4(d). The obtained expected values and standard

deviations for the scaling factor and for the log10 of the viscosities
are given in Table 4.

4.3 Best models for a four-layer mantle

We plot in Fig. 9 the best four-layer models obtained for S40RTS
(black line) and SEMUCB (red line) tomographic models: in solid
line, when we use the maximum probability (eq. 18) to estimate the
scaling factors and the viscosities (Best model in Tables 3 and 4).

There is no significant difference between these models for the
viscosity profile. The viscosity decreases in the lower part of the
upper mantle (about 1020–2 × 1020 Pa s) and increases in the upper
part of the lower mantle (about 1023 Pa s).

We now discuss the robustness of these results:

(1) The value of the viscosity in the upper part of the mantle (ν2)
obtained with the use of the maximum probability is quite surprising
in comparison with the ones obtained using each single data: the
black squares in the right-hand panel of Figs 7 and 8 do not cluster
around the corresponding dashed line. It means that our best model
for this parameter is not robust: the marginal probability for ν2 is a
quasi-uniform distribution, close to 0.05 (Figs 4c and d), meaning
that any value is almost as likely as another.
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268 M. Greff-Lefftz et al.

Figure 8. Same as in Fig. 7 for the SEMUCB tomographic model.

Table 4. Same as in Table 4 for the tomographic model SEMUCB (French & Romanowicz 2014) and
for another upper-mantle stratification.

Scaling factor log10 (Viscosity in Pa s)

Expected value Expected value
Layer ± Best model ± Best model

standard deviation standard deviation

100–420 km 0.038 ± 0.030 0.013 20.89 ± 0.54 20.82

420–670 km 0.147 ± 0.098 0.140 20.25 ± 0.52 20.20

670–1150 km 0.145 ± 0.101 0.065 22.96 ± 0.54 23.10

1150–2890 km 0.183 ± 0.107 0.339 21.96 ± 0.44 22.07

1e+19 1e+20 1e+21 1e+22 1e+23 1e+24
Viscosity (Pa s)

4000

5000

6000

S40RTS
SEMUCB
Slabs+Domes

0 0.1 0.2 0.3 0.4
Scaling Factor

4000

5000

6000

Figure 9. Estimates for the viscosity (left figure) and for the scaling factor (right figure) obtained for S40RTS (black line) and SEMUCB (red line) tomographic
models: (1) solid line: scaling factor and the viscosity estimated from the maximum probability (best models in Table 4 and 5); (2) dashed line: scaling factor
and the viscosity estimated from the geoid; (3) cyan line: viscosity estimated from the ‘Slabs+Domes’ model (Section 5).
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(2) For both S40RTS and SEMUCB, the viscosity in the
lower part of the upper mantle is less than in its upper part.
But this feature is still controversial: Lee et al. (2011) taking
into account the uncertainty variations in seismic model consid-
ered in the inversion process have argued that this is not a robust
result.

(3) Similarly to the best model obtained for a three-layer mantle,
we obtain that the large value of the viscosity of the 670–1150 km
layer is not a robust feature, because the marginal probability for
this viscosity has a rather broad maximum only slightly above 0.05
(see green plots on Figs 4b–d).

(4) The viscosity of the lower mantle is well estimated in our
Monte Carlo search and is about 1022 Pa s.

Let us now discuss the consistency of our results with studies
based on GIA. The Haskell constraint on the average mantle vis-
cosity, revisited by Mitrovica (1996), is about 0.65–1.1 × 1021 Pa s
where the average resolved by the data encompasses a region
which extends from the base of the lithosphere to a depth near
1400 km. This constraint is based on the analysis of decay times
associated with uplift at different sites near the centre of previ-
ously glaciated regions, which provide a measure of mantle viscos-
ity independent on the uncertainties in the space–time history of
the late Pleistocene ice sheets. This constraint has been limited to
the Maxwell rheology to represent the mechanical behaviour of
the mantle. Most of the studies on global scale GIA predict a rela-
tively low value for the lower mantle viscosity, in contradiction with
results derived here and from longer timescale geodynamic inver-
sions. A recent study (by Caron, Métivier, Greff-Lefftz, Fleitout and
Rouby, GJI, in revision) includes transient relaxation, via Burgers
rheology, in global scale GIA calculations that invert for both ice
history and rheological parameters. They address the importance of
this transient response by comparing inversions using Maxwell and
Burgers rheologies. Their Bayesian approach allows them to study
the non-uniqueness of the GIA solutions, revealing a large trade-off
effect between the lower mantle and ice distribution and two local
maxima in the probability density function. One of them agrees
with long-term mantle dynamics. Because of that, we think that the
viscosity profile obtained in our Monte Carlo search is consistent
with studies based on GIA.

In the upper part of the mantle, the scaling factor is low: it
essentially means that seismic velocities and densities are mostly
unrelated, the chemical density anomalies being presumably more
prominent at shallow depths (less than 200 km). In the upper man-
tle, the scaling factor increases with depth and is well constrained
(marginal probability around 0.1). In the lower mantle, it is larger in
the lowest part with values larger than 0.3 for all the models. Within
the layer 670–1150 km, the scaling factor c4 is strongly dependent
on the S-wave anomalies models and on the data sets used in the in-
version: its value is slightly smaller than the one of the immediately
above layer for SEMUCB, whereas its value increases within depth
for S40RTS. This may be explained by the differences between the
two tomographic models in this zone. But keep in mind that its
marginal probability is of about 0.06, slightly above 0.05.

To investigate the informations provided by the gravity data and
by the gravity gradients data, we compare these best models with
the ones obtained if we take into account only the geoid data in the
estimation of the eight parameters (dashed black line for S40RTS
and dashed red line for SEMUCB), in Fig. 9. All models are quite
similar for the viscosity and for scaling factor in the lower part of
the mantle, whereas larger differences are observed for the scaling

factor in the upper parts of the mantle, due to the informations
provided by the gravity gradients.

4.4 Geoid, gravity and gravimetric gradients for the best
models

We compute and plot the geoid, and the three components of the
gravity in Fig. 10 associated with the two best models described
above (solid lines in Fig. 9), as well as the six components of the
gravity gradient (Fig. 11), using only the coefficients of the spherical
harmonics expansion of the seismic velocity up to degree 20. Note,
at first glance, the good correlations between the calculated signal
and the observed data (also plotted using only the coefficients of
the spherical harmonics expansion of the gravitational potential up
to degree 20). To investigate these results in more details, we plot,
for the tomographic model S40RTS, the discrepancy between the
observed and calculated geoid, gravity and gravity gradients, in
Figs 12 and 13 (for a better visualization, the scale is different than
those of Figs 10 and 11).

We now discuss how to explain some discrepancies between es-
timated models and observations. The Large Low Shear Velocity
Provinces (LLSVP) at the bottom of the mantle generate two bumps
in the geoid just above them (Richards & Engebretson 1992). The
amplitude of the French Polynesia geoid anomaly is larger in the ob-
servations than in our model. The modeled geoid high over Africa is
located in the southwest part of the continent whereas the observed
one is in its northern part. This difference may be due to lateral vari-
ations of the scaling factor at the bottom of the mantle: the LLSVPs
are thought to consist of thermochemical piles whereas the fast
S-wave anomalies at the bottom of the mantle may be related to
cold slabs. A unique conversion factor at the bottom of the man-
tle is thus not realistic, even for these large-wavelength anomalies
(e.g. Tkalcic & Romanowicz 2002). This can also explain the un-
derestimated geoid anomaly above India or above Siberia induced
by remnants of subducted Jurassic lithosphere. Another cause of
discrepancy is that the viscous rheology of our lithosphere (with
the value of 1.1 × 1022 Pa s set for the viscosity in our model) is
not valid at regional scale over cratons. Indeed a ‘soft’ lithosphere,
which is necessary to explain the geoid at large wavelength, corre-
sponds to an effective ‘soft’ viscosity in order to take into account
plate tectonics. We also note significant differences at the oceanic
ridges, for example, in the Atlantic ocean or in the Red Sea: lateral
variations of the scaling factor should be introduced in the upper
mantle to simultaneously explain the geoid over the old continents
and over the young oceanic ridge. The differences corresponding to
regions where postglacial rebound is important (white small circles
in Figs 12 and 13) show the static contribution of GIA (Métivier
& Greff-Lefftz 2012). A recent study (Métivier et al. 2015) inves-
tigates the question of a remaining GIA signal in the present-day
static gravity field assuming different models of ice history and
different viscosity profiles. The study points out the remarkable
signature of the former ice sheets in the present-day gravity gra-
dients. Consequently, mantle convection is not the only candidate
to explain Laurentian, Fennoscandian and Antarctican anomalies in
the gravitational data.

Finally, a comparison between the different seismic tomography
models found in the literature shows discrepancies in the velocity
perturbations as a function of depth, especially between 420 and
1150 km (Lee et al. 2011, their fig. 2a). This region seems not well
constrained by seismic data. So, to investigate the sensitivity of the
viscosity to the mass anomalies in this zone, we will use in the next
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270 M. Greff-Lefftz et al.

Figure 10. Surface geoid (column 1), gravity at the altitude of the GOCE satellite VZ (column 2), VX (column 3) and VY (column 4). For each data type,
the computed data for the two tomographic models (S40RTS and SEMUCB) and for the geodynamic model as well as the observed data are plotted up to
degree 20.

section a geodynamic model for the large-scale pattern of mantle
dynamics with contributions due to subducted lithosphere and to
long-wavelength convective instabilities.

5 J O I N T A NA LY S I S B A S E D O N A
G E O DY NA M I C M O D E L

We use a simple geodynamic model for the large-scale pattern of
mantle dynamics, in which we combine contributions due to sub-
ducted lithosphere and long-wavelength upwellings (Rouby et al.
2010). We use the model of mantle density heterogeneity derived by
Ricard et al. (1993), based on plate-motion reconstructions under
the assumption that subducted slabs have been sinking vertically
into the mantle since 120 Ma. Plates are supposed to subduct down
to the core–mantle boundary; the model assumes that their thick-
ness increases by a factor 4 in the lower mantle. This factor as well
as the sinking speed are dependent on the viscosity ratio between
lower and upper mantle. The slabs are modeled as large sheets of
cold material sinking down to the lower mantle with a density con-
trast �ρ with respect to the PREM average densities throughout the
mantle. This density contrast can vary as a function of depth since
slabs pond in the transition zone and atop 1000 km.

The distribution of mass anomalies associated with deep struc-
tures such as thermochemical domes is based on an analysis of deep
mantle seismic tomography, assuming a constant density contrast
�ρD.

In the initial geodynamic model, �ρ was set to 80 kg m−3

(Ricard et al. 1993) and �ρD = −50 kg m−3 (Rouby et al. 2010).
So we put here �ρD = − 5

8 �ρ.
We perform a Monte Carlo search for the viscosity ν2, ν3, ν4 and

for the density contrast of the slabs and of the domes with respect

to the surrounding mantle �ρ2, �ρ3 and �ρ4 of the three layers.
We are aware that it is somewhat inconsistent to use a given den-
sity model and then vary the viscosity structure, whereas different
viscosity structure would imply different sinking speed and hence
different density structure. But the geometry of our ‘Slabs+Domes’
model is well correlated with the tomographic model for large wave-
lengths, and the results presented here will be discussed in term of
the sensitivity of the gravity gradients.

We use the geometry of our ‘Slabs+Domes’ model and try to in-
fer, from the gravity data, the viscosity profile and the depth variable
density contrast between the subducted plates and the surrounding
mantle. Because most of the masses are in the lower mantle in this
geodynamic mantle density heterogeneities model, and in order to
save computation time, we use our three-layer mantle instead of the
four-layer model: upper mantle (100–670 km), upper part of the
lower mantle (670–1150 km) and lower mantle (1150 km—CMB).

We compute 10 variance reductions which are now functions
of six parameters, and similarly to the previous sections, for each
pair of parameters, we compute the maximum variance reduction
obtained for all the other parameters (Appendix B, Figs B7 and B8).

The values obtained for the maximum probability (eq. 18) are
given in Table 5 and the viscosity profile is plotted in Fig. 9 (cyan
line). The N variance reductions associated with this best model are
given in the sixth column of the Table 6.

We compute the marginal probability and find that the density
contrast �ρ2 in the upper mantle and the viscosity in the top of the
lower mantle ν3 are not well estimated, with associated marginal
probabilities about 0.05. An explanation for the density contrast
�ρ2 may be that, in the upper mantle, the diving slabs are narrow—
100 km thick—sheets; consequently, they are not seen by our large-
wavelength gravity signal expanded in spherical harmonics up to
degree 20 (
2000 km).
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Figure 11. Gravity gradients at the altitude of the GOCE satellite: for each data type, the computed model for the two tomographic models (S40RTS and
SEMUCB) and for the geodynamic model up to degree 20 are plotted as well as the observed data on the global grids with a constant step size of 0.2◦.

The expected values and standard deviations obtained for the den-
sity contrast and for the log10 of the viscosities are given in Table 5.
Note that the viscosities are very similar to the ones obtained from
the S-wave S40RTS tomographic data, for the three-layer mantle.

The viscosities of the upper and lower mantles are also similar
to the ones obtained by Ricard et al. (1993) with a viscosity ratio
ν4
ν2

of about 40. In the layer 670–1150 km, the density contrast

between the slabs and the surrounding mantle is about 9 kg m−3,
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Figure 12. Discrepancy between the observation and the model obtained for S40RTS tomographic model, for the geoid at the surface (left-top), the gravity at
the altitude of the GOCE satellite Vz (right-top), Vx (left-bottom) and Vy (right-bottom). The white small circle indicate the location of the ancient ice sheets,
regions where Glacial Isostatic Adjustment is important.

Figure 13. Discrepancy between the observation and the model obtained for S40RTS tomographic model, for the six components of the gravity gradient at
the altitude of the GOCE satellite.

a value smaller than the 80 kg m−3 set by Ricard et al. (1993),
suggesting that there are too many slabs in this part of the lower
mantle in our model. In the lower mantle, we obtain a density
contrast about 52 kg m−3 for the slabs and −32.5 kg m−3 for the
domes—note that these values are based on a radially averaged
estimation.

We compute and plot the geoid, and the three components of
gravity associated with the best model described above, in Fig. 10,
from degree 2 up to 20, as well as the six components of the gravity
gradient at the GOCE satellite altitude (Fig. 11).

The north–south elongated VYY anomalies in our model over
Asia and America follow the belt of geoid lows that surrounds the
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Table 5. Density contrast of the slabs with respect to the lower mantle (in kg m−3) and log10 (viscosity
in Pa s) values for our geodynamic mantle density heterogeneities model: expected value and standard
deviation computed from (20), best model obtained from the maximum probability (eq. 18).

Density (kg m−3) log10 (Viscosity in Pa s)

Expected value Expected value
± Best model ± Best model

standard deviation standard deviation

Upper mantle 56 ± 34 44 20.23 ± 0.51 20.96

670–1150 km 22 ± 16 9 22.92 ± 0.55 23.69

1150–2890 km 35 ± 25 52 21.96 ± 0.47 22.57

Table 6. Variance reductions for the best models given, respectively, in Tables 1–5.

Mantle Two-layer Three-layer Four-layer Four-layer Three-layer
Tomographic model S40RTS S40RTS S40RTS SEMUCB ‘Slabs+Domes’

�Geoid 0.648 0.723 0.806 0.796 0.706
�VZ 0.535 0.590 0.649 0.661 0.607
�VX 0.568 0.634 0.678 0.663 0.644
�VY 0.425 0.454 0.522 0.582 0.500
�VZ Z 0.311 0.336 0.364 0.398 0.376
�VX X 0.324 0.345 0.349 0.334 0.357
�VY Y 0.267 0.293 0.336 0.410 0.357
�VZ X 0.326 0.356 0.368 0.370 0.378
�VZY 0.236 0.249 0.286 0.357 0.310
�VXY 0.183 0.193 0.212 0.266 0.236

Pacific Ocean, recording Mesozoic slabs remnants in the lower
mantle, with an enhanced geometric and depth information as com-
pared to geoid data. The VZZ maxima in the Pacific Ocean and
South of the African continent coincide with the locations of the
LLSVP at the bottom of the lower mantle and the geoid highs but
with a too small amplitude. The VXX-gradient directionality under-
lines elongated east–west negative anomalies, following the former
Tethyan subduction system and along the present-day Indonesia
subduction.

These results extend the previous analysis of Panet et al. (2014)
to a wider range of models.

6 C O N C LU S I O N S

In this paper, we have performed a joint analysis of the gradiometric
data with seismological and geodynamic observations to estimate
the viscosity and the mass anomalies within the mantle.

We have first used lateral variations in the Earth’s mantle deduced
from two seismic tomography models and we have estimated the ra-
dial profiles for the density/velocity scaling factor and the viscosity
which provide the best fit to the surface geoid, the gravity and the
gravity gradients at the GOCE satellite altitude. We have found that
the gradient of gravity improves the estimate of the scaling factor
within the upper mantle, whereas the geoid and the gravity better
constrain the lower mantle. In the upper mantle, the scaling factor is
less than 0.02 for the upper part and about 0.08–0.14 for the lower
part. Significantly larger values are found for depth greater than
1200 km (about 0.32–0.34).

In all cases, the scaling factor in the top of the lower mantle
(between 670 and 1150 km depth) is not well estimated. To assess
whether this lack of resolution would be related to a lack of signal
in tomography models at these depths, mantle lateral variations
associated with cold slabs sinking vertically into the mantle have
then been used to estimate the density contrast between the slab

and the surrounding mantle as well as the mantle viscosity profiles.
Our results have shown that there is too much slabs mass in the
670–1150 km layer in our model.

The viscosity profile obtained for these different mantle den-
sity heterogeneities are similar and characterized by a decrease in
the lower part of the upper mantle (about 1020–2 × 1020 Pa s) and
by an increase (about 1023–2 × 1023 Pa s) at the top of the lower
mantle (between 670 and 1150 km). The viscosity of the mantle
below 1150 km depth is well estimated, with values about 1022–
4 × 1022 Pa s.

A recent study (Rudolph et al. 2015) based on a reanalysis of
the long-wavelength non-hydrostatic geoid and having no a-priori
assumption about the layering of the mantle has obtained a decrease
of the viscosity between 670 and ∼800 km, following by an increase
in a layer between ∼800 and 1000 km. This study has assumed a
fixed scaling factor (from Stixrude & Lithgow-Bertelloni 2007)
ranging from 0.3 up to 0.5, that is to say similar to the one we
have estimated from the geoid alone and greatly larger than the one
we have estimated from our maximum probability. In our analysis,
we have chosen to estimate simultaneously the scaling factor and the
viscosity. So, because the number of reliably estimated parameters
cannot considerably increase, we have set the locations of the layers.
It is consequently difficult to compare our results with theirs. We
have done a simple last test: we have changed the depth of the
different layers between 670 and 1150 km (670–800 km and 800–
1150 km) and we have reiterated our analysis to investigate the
contribution of the gravimetric gradients to infer mantle properties
in this region. We have obtained a similar decrease of the viscosity
between 670 and 800 km following by an increase in the layer 800–
1150 km. Nevertheless we have found that these parameters are
not well estimated, with a marginal probability slightly above the
uniform distribution.

Finally, a future study could be a similar joint analysis of GOCE
gravity gradients with seismological observations to infer a scal-
ing factor in the lower mantle with lateral variations, at least in
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the LLSVPs, to reduce the discrepancy between the observed and
calculated data in these regions.

Shallow sources such as the static contribution of the GIA, plumes
in the upper-mantle or oceanic ridges will be interpreted at regional
scales from the residual geoid, gravity and gravity gradients.
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A P P E N D I X A : M E A N VA LU E S A N D C OVA R I A N C E M AT R I X

We note Xi(r, θ , ϕ) the data i, where r stands for rE or rh following the data. We compute the mean value of the data i, Xi :

Xi = 1

SE

∫ 2π

0

∫ π/2

−π/2
Xi (r, 	, ϕ)d S

Note that on our hydrostatic reference ellipsoid, the mean values of VX, VXX, VYY and VZX are not equal to zero. These are terms related to
derivative with respect to the colatitude.

The covariance matrix CD is computed from:

Ci j = Xi X j − Xi X j with Xi X j = 1

SE

∫ 2π

0

∫ π/2

−π/2
Xi (r, 	, ϕ)X j (r, 	, ϕ)d S

The standard deviation for the data i is simply σXi =
√

Xi Xi − Xi Xi

And the covariance matrix is:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1721.62 804.539 −54.6287 0.247410 6251.75 −3015.42 −3236.33 −452.026 −8.05868 −314.002

804.539 406.384 −21.9682 0.827751 3588.72 −1730.28 −1858.44 −181.159 1.24925 −216.885

−54.6287 −21.9682 176.136 −24.4173 −139.037 −13.0891 152.126 1518.50 −263.106 −6.91264

0.247410 0.827751 −24.4173 128.134 9.41114 −1.24925 −8.16189 −262.886 1301.99 −16.9193

6251.75 3588.72 −139.037 9.41114 39151.5 −19062.6 −20088.9 −1145.46 19.5071 −2463.65

−3015.42 −1730.28 −13.0891 −1.24925 −19062.6 11505.4 7557.27 102.836 1.51413 1163.65

−3236.33 −1858.44 152.126 −8.16189 −20088.9 7557.27 12531.6 1042.62 −21.0212 1300.0

−452.026 −181.159 1518.50 −262.886 −1145.46 102.836 1042.62 23251.9 −2983.85 −19.6161

−8.05868 1.24925 −263.106 1301.99 19.5071 1.51413 −21.0212 −2983.85 15914.2 −33.3791

−314.002 −216.885 −6.91264 −16.9193 −2463.65 1163.65 1300.0 −19.6161 −33.3791 2517.35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table A1.

Data Geoid VZ VX VY VZZ VXX VYY VZX VZY VXY

(m) (mGal) (mGal) (mGal) (mE) (mE) (mE) (mE) (mE) (mE)

i 1 2 3 4 5 6 7 8 9 10
Xi 0 0 0.7 0 0 −14 14 6 0 0
σXi 41 20 13 11 198 107 112 152 126 50
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A P P E N D I X B : VA R I A N C E R E D U C T I O N

Variance reduction for the three-layered model

Variance reduction for the surface geoid, for the gravity and the gravity gradients at the altitude h above the hydrostatic reference ellipsoid.
There are 15 possible combinations of two out of six variables. We only plot here the nine combinations related to pairs of viscosity, pairs of
scaling factor or pairs of viscosity and scaling factor in the same layer.

Figure B1. Variance reduction for the surface geoid and for the gravity at the altitude of the GOCE satellite. The black star corresponds to the best model for
the data.
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Figure B2. Variance reduction for the six components of the gravimetric gradients at the altitude of the GOCE satellite. The black star corresponds to the best
model obtained for the data.
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Variance reduction for the four-layered model—S40RTS

Variance reduction for the surface geoid, for the gravity and the gravity gradients at the altitude h above the hydrostatic reference ellipsoid.
There are 28 possible combinations of two out of eight variables. We only plot here the 16 combinations related to pairs of viscosity, pairs of
scaling factor or pairs of viscosity and scaling factor in the same layer.

Figure B3. Same as Fig. B1.
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Figure B4. Same as Fig. B2.
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Variance reduction for the four-layered model—SEMUCB

Variance reduction for the surface geoid, for the gravity and the gravity gradients at the altitude h above the hydrostatic reference ellipsoid.

Figure B5. Same as Fig. B1.
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Figure B6. Same as Fig. B2.
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Variance reduction for the three-layered model—‘Slabs+Domes’

Variance reduction for the surface geoid, for the gravity and the gravity gradients at the altitude h above the hydrostatic reference ellipsoid.

Figure B7. Same as Fig. B1.
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Figure B8. Same as Fig. B2.
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