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Abstract
Performance of spoken language understanding applications de-
clines when spoken documents are automatically transcribed
in noisy conditions due to high Word Error Rates (WER). To
improve the robustness to transcription errors, recent solutions
propose to map these automatic transcriptions in a latent space.
These studies have proposed to compare classical topic-based
representations such as Latent Dirichlet Allocation (LDA), su-
pervised LDA and author-topic (AT) models. An original com-
pact representation, called c-vector, has recently been intro-
duced to walk around the tricky choice of the number of latent
topics in these topic-based representations. Moreover, c-vectors
allow to increase the robustness of document classification with
respect to transcription errors by compacting different LDA rep-
resentations of a same speech document in a reduced space and
then compensate most of the noise of the document representa-
tion. The main drawback of this method is the number of sub-
tasks needed to build the c-vector space. This paper proposes to
both improve this compact representation (c-vector) of spoken
documents and to reduce the number of needed sub-tasks, using
an original framework in a robust low dimensional space of fea-
tures from a set of AT models called “Latent Topic-based Sub-
space” (LTS). In comparison to LDA, the AT model considers
not only the dialogue content (words), but also the class related
to the document. Experiments are conducted on the DECODA
corpus containing speech conversations from the call-center of
the RATP Paris transportation company. Results show that the
original LTS representation outperforms the best previous com-
pact representation (c-vector), with a substantial gain of more
than 2.5% in terms of correctly labeled conversations.
Index Terms: author-topic model, factor analysis, c-vector,
document clustering.

1. Introduction
Performance of spoken language understanding applications
moves down when dealing with automatically transcribed
speech documents in noisy conditions, several word transcrip-
tion errors being encountered. This is the case of telephone
conversations, human/human interactions where automatic pro-
cessing faces many difficulties, especially due to the speech
recognition step required to transcribe the speech contents: the
speaker behavior may be unexpected, the mismatch between

This work was funded by the Gafes project supported by the French
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train/test conditions can be very large, speech signal could be
strongly impacted by various sources of variability such as en-
vironment and channel noises, acquisition devices. . . Recent re-
views for spoken conversation analysis, speech analytics, topic
identification and segmentation can be found in [1, 2, 3, 4, 5]
and [6] respectively. Some important problems in finding topic
dependent segments are the detection of segment boundaries
and modeling the fact that segments may overlap. An efficient
way to improve the ASR robustness is to map the conversa-
tions in a topic space abstracting the ASR outputs to achieve
classification of dialogues in this latent space. Numerous unsu-
pervised topic-spaces were proposed to represent effectively the
dialogue content such as Latent Dirichlet Allocation (LDA) [7]
or Author-Topic (AT) model [8].

Authors in [9] and [10] have respectively proposed to over-
come two drawbacks separately:

• efficiently choosing the size of a topic model by using
multiple latent representations obtained by varying the
size of the LDA topic space and compacting these repre-
sentations with the factor analysis [11, 9] (different sub-
processes are needed),

• building a topic model, called author-topic (AT)
model [8, 10], to take into consideration all informa-
tion contained into a document: the content itself (i.e.
words), the label (i.e. class) and the relation between
the distribution of words and the labels, considered as a
latent relation.

Firstly, this paper proposes to jointly overcome these two
drawbacks, the tricky choice of the “right” (i.e. optimal) size
of a topic model and taking into account the label as well as
the words contained in the document, by learning a set of topic
spaces from an AT model, and then, extracting a compact fea-
ture vector from these representations with the factor analy-
sis [11]. This approach requires multiple pre-processing tasks
or mappings (deep neural network [12], UBM-GMM, normal-
ization. . . ), best performance being observed on very noisy doc-
ument representations [13]. Nonetheless, this is not the case
with a small representation such as AT model [9] that globally
contains low noisy variability. Thus, this paper proposes to sec-
ondly consider the different AT spaces as a common homoge-
neous feature subspace, and to compact these multiple represen-
tations (super-vector) to directly extract a robust feature vector.
The rest of this paper is organized as follows. The proposed
approaches are described in Section 2. Section 3 presents the
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experimental protocol and reports the results. Finally, Section 5
concludes the work and gives some perspectives.

2. Proposed approach
The proposed original approach, called Latent Topic-based
Subspace (LTS), is compared with the classical representation
named c-vector. Both learn a set of AT-based spaces detailed
in section 2.1, then map each document in each topic space,
and finally compress these representations, the c-vector based
representation with the factor analysis and the LTS with the
Eigen Values Decomposition (EVD). Section 2.2 describes the
c-vector approach illustrated in Figure 1-(a)-(b)-(c), while the
second approach (LTS) is presented in Section 2.3. In the new
LTS technique, the multiple topic spaces are considered as a ho-
mogeneous latent subspace, and then avoids us to map the docu-
ments in the GMM. Moreover, the super-vectors (concatenation
of the representation of the document in each topic space) com-
pose the LTS and are compressed with a straightforward EVD to
extract a robust representation of the document. These methods
are described in the next sections.
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Figure 1: JFA + GMM subspace ((a)-(c)) and the LTS com-
pression (in blue) approaches.

2.1. Author-topic (AT) model

The Author-topic (AT) [8] model codes both the document con-
tent (words distribution) and the authors (authors distribution).
In our considered application, a document d is a human/human
conversation between an agent and a customer. The agent has
to label this dialogue with one of the 8 defined themes, a theme
being considered as an author. Thus, each dialogue d is com-
posed with a set of words w and a theme a. In this model, each
author is associated with a distribution over topics (θ), chosen
from a symmetric Dirichlet prior (−→α ) and a weighted mixture
to select a topic z. A word is then generated according to the
distribution φ corresponding to the topic z. This distribution φ
is drawn from a Dirichlet (

−→
β ). Thus, this model allows one to

code statistical dependencies between dialogue content (words
w) and label (theme a) through the distribution of the latent top-
ics z in the dialogue. Gibbs Sampling allows us to estimate the
AT model parameters, in order to represent an unseen dialogue
d with the rth author topic space of size T , and to obtain a fea-
ture vector V ar

k
d = P (ak|d) of the topic representation of an

unseen dialogue d with the rth author topic space ∆n
r of size

T . The kth (1 ≤ k ≤ A) feature is:

V
ar
k

d,r =

Nd∑
i=1

T∑
j=1

θrj,ak
φr
j,i (1)

where A is the number of themes; θrj,ak
= P (ak|zrj ) is the

probability of theme ak to be generated by the topic zrj in the
rth topic space of size T . φr

j,i = P (wi|zrj ) is the probability of
the word wi (Nd is the vocabulary size of d) to be generated by
the topic zrj .

1.5 1.0 0. 5 0 .0 0. 5 1 .0 1. 5

1.
5

1
.0

0
.5

0
.0

0
.5

1
.0

1
.5

a. Initiala. Initial: M

1.5 1.0 0. 5 0 .0 0. 5 1 .0 1. 5

1.
5

1.
0

0.
5

0
.0

0.
5

1
.0

1.
5

b. Rotation

b. Rotation: Pt

� 1 5 � 1 0 � 0 5 0 0 0 5 1 0 1 5

1.
5

1
.0

0
.5

0
.0

0
.5

1
.0

1
.5

c. Standar disation

1.
5

1.
0

0.
5

0
.0

0.
5

1
.0

1.
5c. Standardization: D-1/2

� 1 5 � 1 0 � 0 5 0 0 0 5 1 0 1 5

1.
5

1.
0

0.
5

0
.0

0.
5

1
.0

1.
5

d. Normalisation de longueur s

d. Normalization:   (x-x)t(x-x)

Figure 2: Effect of the standardization with the EFR algorithm.

2.2. C-vector based representation

This approach, initially proposed in [14], uses i-vectors to
model dialogue representation through each AT space in a ho-
mogeneous space. These short segments are considered as basic
semantic-based representation units. In our model, the segment
super-vector m(d,r) of concatenated Gaussian Mixture Model
(GMM) means of the representation V a

d of a transcription d
knowing a topic space r is modeled with:

m(d,r) = m+ Tx(d,r) (2)

where x(d,r) contains the coordinates of the AT-based repre-
sentation of the dialogue in the reduced total variability space
called c-vector; m is the mean super-vector of the UBM1. T is
the Total Variability matrix of low rank (MD × R), where M
is the number of Gaussians in the UBM and D is the feature
size. C-vector representation suffers from 3 raised issues: (i)
the c-vectors x of equation 2 have to be theoretically distributed
among the normal distribution N (0, I), (ii) the “radial” effect
should be removed, and (iii) the full rank total factor space

1The UBM is a GMM that represents all the possible observations.
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should be used to apply discriminant transformations. The solu-
tion to raise these 3 problems has been developed in [13] named
“Eigen Factor Radial” (EFR) algorithm by standardizing the c-
vectors as described in Figure 2.

2.3. Latent Topic-based Subspace (LTS)

The c-vector representation needs to map dialogues into a
UBM-GMM to obtain a super-vector of high dimension (size
of the topic-based representation multiplied by the number
of Gaussians in the UBM). The Latent Topic-based Subspace
(LTS) is composed with a set of latent spaces, and considers
each latent-space as a sub area where each document is mapped.
Thus, all topic-based representations of a document share a
common latent structure. These shared latent parameters de-
fine the latent topic-based subspace. Each super-vector sd of
a given document d from the document dataset of size N , is
partially associated with a small subset of latent features and
the residual part of this document representation is mapped in
a global features space shared by all representations that define
the latent subspace. The super-vector sd of a given dialogue
d, is obtained by concatenating the AT-based representations
V

ar
k

d,r for all r topic spaces. Thus, the matrix of super-vectors
S = [s0, . . . , sd, . . . , sN ] represents the documents in the LTS.
This matrix S of super-vectors sd is then compressed with an
EVD to obtain, as an outcome, a short representation hd in a
low dimensional space with a size depending on the number of
eigenvalues e considered:

S = P∆VT (3)

where P is a MD × N matrix of left singular vectors, V is
the N × N (N << MD) matrix of right singular vectors and
∆ is the diagonal matrix of singular values. N is the rank of
the matrix S. More information about EVD can respectively be
found in [15] and in [16]. The compact representation h(d,e) of
size e (number of eigenvalues considered) of a super-vector sd
from S, is defined as follows:

h(d,e) = (sd − s) .VT
e (4)

where Ve is the reduced eigenvectors matrix with respect to the
e highest eigenvalues contained in the diagonal matrix ∆, and
s is the centroid (mean) of all super-vectors of the documents
contained in the dataset. Moreover, this compact representa-
tion of a document based on the LST does not need to: 1) learn
a common space such as UBM-GMM, the topic spaces being
our homogeneous features space (Figure 1-(a) and (b)); 2) nor-
malize the super-vector with the EFR algorithm (or any other
normalization technique) (Figure 1-(c)).

3. Experimental Protocol
The effectiveness of the proposed compact representation in the
Latent Topic-based Subspace (LTS) is evaluated in the applica-
tion framework of the DECODA corpus [17]. It is composed of
1,514 telephone conversations, corresponding to about 74 hours
of signal, split into a train set (740 dialogues), a development set
(175 dialogues) and a test set (327 dialogues), and manually an-
notated with 8 (A = 8) conversation themes (or authors a in the
AT model): problems of itinerary, lost and found, time sched-
ules, transportation cards, state of the traffic, fares, infractions
and special offers.

Transcription of dialogues has been made by the LIA-
Speeral ASR system [18]. Acoustic model parameters were es-
timated from 150 hours of speech in telephone conditions. The

vocabulary contains 5,782 words. A 3-gram language model
(LM) was obtained by adapting a basic LM with the train set
transcriptions. A “stop list” of 126 words2 was used to remove
unnecessary words (mainly function words) which results in a
WER of 33.8% on the train, 45.2% on the development, and
49.5% on the test. These high WER are mainly due to speech
disfluencies and adverse acoustic environments (for example,
calls from noisy streets with mobile phones).

A classification approach based on Mahalanobis dis-
tance [19] is performed to find out the main theme of a given
dialogue. This probabilistic approach ignores the process by
which vectors were extracted. Once a compact vector is ob-
tained from a document, its representation mechanism is ig-
nored and it is regarded as an observation from a probabilis-
tic generative model. The Mahalanobis scoring metric assigns a
document d to the most likely themeC. Given a training dataset
of documents, let W denote the within-document covariance
matrix defined by:

W =

K∑
k=1

nt

N
Wk =

1

n

K∑
k=1

nt∑
i=0

(
xki − xk

)(
xki − xk

)t
(5)

where Wk is the covariance matrix of the kth theme Ck, nt

is the number of utterances for the theme Ck, N is the total
number of documents, and xk is the centroid (mean) of all doc-
uments xki of Ck. Not every document contributes to the co-
variance in an equivalent way. For this reason, the term nt

N
is

introduced in equation 5. If homoscedasticity (equality of the
class covariances) and Gaussian conditional density models are
assumed, a new observation x from the test dataset can be as-
signed to the most likely themeCkBayes using the classifier based
on the Bayes decision rule:

CkBayes = arg max
k

{
−1

2
(x− xk)t W−1 (x− xk) + ak

}
(6)

where ak = log (P (Ck)). It is noted that, with these assump-
tions, the Bayesian approach is similar to Fisher’s geometric
approach: x is assigned to the class of the nearest centroid, ac-
cording to the Mahalanobis metric [20] of W−1:

CkBayes = arg max
k

{
−1

2
||x− xk||2W−1 + ak

}
(7)

4. Experiments and Results
Section 4.1 presents the results obtained with two different di-
alogue representations based on AT models and the c-vector
technique. Then, the proposed original compact representation
based on a Latent Topic-based Subspace (LTS) is compared to
this c-vector representation in Section 4.2.

4.1. Impact of c-vector compression

Experiments are conducted using 500 AT spaces by varying
the number of topics from 5 to 505 (step of 1 topic). From
these multiple topic spaces, a classical way is to find the one
that reaches the best performance. Figure 3 presents the theme
classification performance obtained on the development (Fig-
ure 3-(a)) and test (Figure 3-(b)) sets using various AT-based
representation configurations (baseline).

2http://code.google.com/p/stop-words/
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Figure 3: Theme classification accuracies (%) using various au-
thor topic-based representations on the development and test
sets with different experimental configurations. X-axis repre-
sents the number n of classes contained into the topic space
(5 ≤ n ≤ 505).

Firstly, we can see that the baseline approach reached an ac-
curacy of 86.3% and 83.8% on the development and test sets re-
spectively. Nonetheless, one can note that the classification per-
formance is rather unstable, and may completely change from a
topic space configuration to another. The gap between the lower
and the higher classification results is also important, with a dif-
ference of 21.2 points. As a result, finding the best author-topic
(AT) space configuration seems crucial for this classification
task, particularly in the context of highly imperfect automatic
transcriptions. Note that if the operating point estimated on the
development set would be applied to the test set (best operating
point), the classification accuracy would reach 80.4% on the test
set (best development accuracy is reached with n = 202 top-
ics), while the best potential classification result reaches 83.8%.

Table 1 presents the c-vector representation coupled with
the EFR normalization algorithm [19]. We can firstly notice
that this compact representation allows us to outperform results
obtained with the best AT model, with a gain of 1.9 points on
the test set. The inconsistency of the classification performance
is not observed with this approach, as already observed in a pre-
vious work [9]. Indeed, the configuration that obtained the best
accuracy on the dev. set is also the same on the test set. More-
over, if we consider the different c-vector configurations, the
gap between accuracies is much smaller: classification accu-
racy does not go below 78.9% with the test set, while it reached
60.9% for the worst AT configuration (see Figure 3-(b)).

Table 1: Theme classification accuracy (%) in the total variabil-
ity space with different UBM and c-vector sizes.

size DEV TEST
of the Number of Gaussians in the GMM-UBM
c-vector 32 64 128 32 64 128

80 80.6 82.3 83.1 79.2 81.0 80,4
100 81.7 84.6 83.1 78.9 82.3 80.4
120 84.0 81.7 82.3 80.4 79.2 81.8

4.2. Impact of LTS compression

Results obtained using the original Latent Topic-based Sub-
space (LTS) representation are shown in Figure 4. In order to
better compare performance obtained by all approaches (AT/c-
vectors/LTS), best results are reported in Table 2. It is worth
emphasizing that these results are given in “real” application
condition, i.e. the best configuration (number of topics con-
tained into the topic space) being chosen with the development
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90

Max = 89.7

Min = 85.7

(a) Development set
40 100 140150170 200 250 300
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(b) Test set

Figure 4: Theme classification accuracies (%) using a compact
vector from the LTS on the development and test sets with dif-
ferent experimental configurations. X-axis represents the num-
ber of eigenvalues m considered (40 ≤ m ≤ 300).

set. As a result, a better operating point could exist in the test
set, which could explain the performance gap between results
reported in Table 2, and Figures 3 and 4. We can firstly point
out that the LTS representation outperforms both the AT base-
line and c-vector representations, no matter the corpus studied
(development in Figure 4-(a) or test in Figure 4-(b)) with an ac-
curacy of 89.7% (+2.7 points) and 85.3% (+4.6 points) for de-
velopment and test sets respectively. Another interesting point
is the stability and robustness of the LTS model curves, compar-
atively to the c-vector representation. Indeed, the gap between
the lowest and highest values is equal to 3.3 points for the c-
vector and 2.1 points for the LTS representation on the test set.

Table 2: Theme classification accuracy (%) using best configu-
ration from development set applied to test set.

Document Dev. Test
representation size acc. % acc. %

AT-Model (baseline) 202 86.3 80.4
AT-Model + c-vector 100 84.6 82.3

AT-Model + LTS 140 89.7 85.0

5. Conclusion
ASR systems performance strongly depends to the recording
environment, spoken language understanding tasks being im-
pacted by transcription quality. This paper proposes an ele-
gant way to deal with ASR errors by mapping a dialogue into
a robust features subspace called Latent Topic-based Subspace
(LTS). Experiments conducted on a classification task of con-
versations showed the effectiveness of the proposed LTS model
in comparison to the use of the classic c-vector and AT model
representations. This high-level representation allows us to sig-
nificantly improve the performance of the theme identification
task compared to the previous best results obtained, with a gain
of more than 3 and 2 points respectively using the AT model and
the c-vector based representations. The LTS model is combined
with a PCA compression process, due to the small size of the
corpus (740 dialogues in the training corpus). In a future work,
it will be interesting to evaluate this promising representation
with larger datasets than the set of dialogues from the DECODA
project. Thus, other compression methods such as auto-encoder
or Probabilistic PCA could give better results during different
speech analytics tasks.
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