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Entwined Dimers Formation from Self-Complementary Bis-
Acridiniums 

Henri-Pierre Jacquot de Rouville,*a,b Nathalie Zorn,c  Emmanuelle Leize-Wagner,c

and Valérie Heitz*b 

A dicationic tweezer incorporating two acridinium moieties linked 

by a 2,6-diphenylpyridine spacer was shown to self-assemble in an 

entwined dimer both in acetonitrile and water. The reaction was 

studied according to solvent polarity, temperature and 

concentration conditions. The entwined structure was confirmed in 

the solid state by single-crystal X-ray diffraction.  

Molecular recognition and self-assembly are essential 

phenomena1 governing the formation of complex assemblies in 

living organisms (such as the lipid bilayer of cell membranes, the 

double helical structure of DNA, G-quadruplex secondary 

structures, etc.). Such high structural organisation relies on the 

combination and cooperation of multiple weak interactions 

(hydrophobic interactions, hydrogen-bonding, van der Waals 

forces, π-π interactions) and strongly depend on the 

information hold in the molecular structure of the individual 

components (shape and functional groups). 

Self-assembling systems of identical units can be considered as 

the simplest process for the elaboration of larger and more 

useful discrete assemblies in a reliable manner.2 Over the last 

decades, hydrogen-bonded,3 metal-templated4 and 

hydrophobic5 driven one-component self-assemblies have been 

designed, synthesized and characterized in solution. However, 

few examples involving the self-association in solution of the 

same discrete subunits by - stacking interactions have been 

reported.6 Among these systems, [c2]daisy-chain can be cited 

as a class of self-associated dimers.7 They are based on 

donor-acceptor recognition subunits between a

macrocyclic moiety and a complementary acyclic station. More

recently, -dimerization of reduced methylviologen was 

exploited to self-associate oligoviologens as the result of 

radical-radical interactions.8 

An alternative approach relies on tweezer-shaped systems9 

which are non-cyclic molecular systems pre-organizing a 

minimum of two recognition units linked by a spacer acting as a 

complementary recognition unit. This strategy has been used by 

Haino et al. who described a bis-porphyrin dimer where both 

porphyrins interact with the electro-deficient pyridine 

component of the spacer of an identical molecule.10 

Systems incorporating two acridinium units have mostly been 

used as receptor for the recognition of electron rich aromatic 

guest molecules.11 In the present work, we report i) the 

synthesis of a new bis-acridinium tweezer, ii) the 

characterization of its self-association into an entwined dimer 

in solution (organic and aqueous media) and iii) its solid-state 

characterization. 

Inspired by Laursen et al.,12 a new convergent synthetic route 

was undertaken for the synthesis of the targeted tweezer 

1∙2PF6 (Scheme 1). First, metal-halogen exchange of 1,3-

dibromobenzene (1 eq.) using n-BuLi (1 eq.) in hexanes (2.5 

mol∙L–1), then followed by addition of 10-methyl-9(10H)-

acridone13 at –78°C (1 eq.) led to the corresponding hydroxy-

acridane intermediate. Acidification of a solution of the 

hydroxy-acridane intermediate with HCl (37 wt. %), followed by 

anion metathesis using KPF6, led to 2∙PF6 as a yellowish 

precipitate in 85% yield. Since the cationic product of the 

Miyaura borylation cross-coupling reaction of 2∙PF6 turned out 

to be difficult to isolate, dearomatization of the 2∙PF6 was thus 

performed using NaBH4 (90 wt. %, 10 eq.) in CH3OH. After 

column chromatography, the hydro-acridane 3 was isolated in 

72% yield. Compound 3 was then reacted with 

bis(pinacolato)diboron (1.1 eq) under Miyaura conditions using 

Pd(dppf)Cl2 (10%) as catalyst and KOAc as base (3 eq.) in DMF. 

The corresponding boronic ester 4 was obtained in 76% yield. 

The di-functionalization of 2,6-dibromopyridine with 4 (2.1 eq.) 

in a Csp2-Csp2 palladium-catalysed coupling was achieved using  
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Scheme 1 Synthesis of 1∙2PF6 from 1,3-dibromobenzene as starting material. 

Pd(PPh3)4 (20%) and K3PO4 (3 eq.) as base in DMF. After 

purification, the bis-acridane 5 was isolated in 87% yield. 

Oxidation of 5 was performed using 2,6-dichloro-5,6-dicyano-

1,4-quinone (DDQ) in DMF and the crude mixture was poured 

into an aqueous solution of KPF6. The yellow precipitate of 

1∙2PF6 was filtered off, washed with H2O and isolated in 70 % 

yield. 

The 1H NMR spectrum (CD3CN, c = 1∙10–2 mol∙L–1, 298 K) of 

1∙2PF6 showed time-averaged signals resulting from a slow 

exchange regime. Initially, this observation was attributed to 

conformational exchange processes in 1∙2PF6 but this 

hypothesis was excluded by variable concentration experiments 

(Figure 1). At a concentration of 5∙10–4 mol∙L–1 (T = 298 K), the 
1H NMR signals became narrow and the assignments of all 

protons were in accordance with the monomeric species. 

Remarkably, this spectrum exhibits similar chemical shifts than 

our previously reported Triphenyl-bis-acridinium receptor 

which was in a fast exchange regime at 5∙10–4 mol∙L–1.13 More 

especially, the chemical shifts of the acridinium protons ((H1/8) 

= 8.13, (H2/7) = 7.86, (H3/6) = 8.41 and (H4/5) = 8.64 ppm) 

are similar for both molecules (see ESI, Figures S3.43-3.44). This 

observation suggests that the acridinium protons are not 

affected by the difference in the electronic environment of the 

spacer and experienced a solvated environment close to the 

isolated monomer of 1∙2PF6. As a consequence, this 

concentration-dependant behaviour was best interpreted in 

terms of a dynamic equilibrium between oligomeric species in 

solution, more especially between the monomer 1∙2PF6 and its 

dimer (1)2∙4PF6. 

Mass spectrometry analysis (ESI-TOF) gave also some evidence 

on the presence of the dimer in the gas phase. Injection of a 

solution of 1∙2PF6 in CH3CN (c = 1∙10–3 mol∙L–1) led to peaks at 

m/z at 760.23, 1665.42, 2571.62 and 3477.81 corresponding to 

the loss of a PF6
– counter-ion for the monomer [1∙PF6]+ and the 

dimeric [12∙3PF6]+, trimeric [13∙5PF6]+ and tetrameric [14∙7PF6]+ 

Fig. 1 1H NMR (500 MHz, CD3CN, 298 K) spectra of 1∙2PF6 at 1∙10–2, 5∙10–3, 1∙10–3 and 

5∙10–4 mol∙L–1. 

aggregates respectively (see SI, Figure S3.45). Upon dilution (c = 

1∙10–4 and 1∙10–5 mol∙L–1), the signal corresponding to the 

dimer aggregate was monitored continuously while those of 

[13∙5PF6]+ and [14∙7PF6]+ disappeared. The persistence of the 

[12∙3PF6]+ signal suggests that the dimer is a specific aggregate 

whereas the trimer and tetramer are non-specific aggregates. 

Further insights into the dynamic equilibrium were given by 1H 

NMR variable temperature experiments. Upon heating at 343 K, 

the spectrum characteristic of the monomer was observed at all 

concentrations (see ESI, Figure S3.34). However, recording 

spectrum at low temperature (T = 248 K) at a concentration of 

1∙10–2 mol∙L–1 showed evidence of the formation of a new 

discrete species (Figure 2). The spectrum shows sharp signals 

upfield-shifted in comparison to the monomer (e.g. (H1/8) = 

1.01, (H2/7) = 0.50, (H3/6) = 0.19, (H4/5) = 0.19 ppm for 

the acridinium protons). Pronounced upfield shifts were also 

observed for the  and  protons of the central pyridine (() 

= 1.52 ppm and () = 0.68 ppm) thus witnessing – 

interactions between all aromatic moieties of the molecule.14 

This spectrum can be best interpreted as the result of a dimer 

of D2d symmetry formed from two 1∙2PF6 molecules. The 

presence of the dimer (1)2∙4PF6 as a unique species (CD3CN, c = 

1∙10–2 mol∙L–1, 248 K) was also supported by DOSY experiments 

(see ESI, Figures 3.38-3.40) since all NMR signals were assigned 

to a unique diffusing species. The calculated hydrodynamic 

radius (RH) was found to be 7.3 Å (corresponding to a diffusion 

coefficient (D) of 240 µm²∙s–1) which is larger than the 

hydrodynamic radius of the 1.2PF6 monomer (RH = 6.6 Å; D = 

297 µm²∙s–1 within the experimental error of ±5%). Upon 

dilution at 238 K, signals corresponding to the dimer and the 

monomer were simultaneously monitored in agreement with Le 

Chatelier’s principle. At a concentration of 5∙10–4 mol∙L–1, the 

dimer-monomer ratio was found to be 7:3 corresponding to an 

estimated binding constant (Ka) of 7∙103 L∙mol–1 at 248 K.15 
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Fig. 2 1H NMR (500 MHz, CD3CN, 248 K) spectra of 1∙2PF6 at 1∙10–2, 5∙10–3, 1∙10–3 and 

5∙10–4 mol∙L–1. At 1.10–2 mol∙L–1, the assignments correspond to the protons of the dimer 

(1)2∙4PF6. At 5.10–4 mol∙L–1, the dimer-monomer ratio is 7:3 and only the assignments of

the protons of the monomeric species is shown.

The existence of this equilibrium was also confirmed by varying 

the solvent polarity of the medium. Equimolar solutions of 

1∙2PF6 (c = 3∙10–3 mol∙L–1) were monitored at 298 K with an 

increasing percentage of DMSO-d6 in CD3CN (from 0% to 100%, 

see ESI, Figure S3.42). Upon increasing the polarity of the 

medium, the initial broad spectrum recorded in CD3CN led to a 

well-resolved spectrum in pure DMSO-d6 of the monomer. As 

expected, DMSO competes strongly with the π-interactions 

that stabilise the dimer. Therefore, the equilibrium between 

the dimer and the monomer is shifted towards to the 

monomer. 

Single crystals suitable for X-ray diffraction were obtained from 

vapour diffusion of Et2O into a CH3CN solution of 1∙2PF6.16 The 

solid state structure exhibits the dimer that consists of two 

independent 1∙2PF6 molecules that entwined one another 

(Figure 3a-c). Both molecules adopt a U-shaped conformation 

(Figure 3d-f) where the two acridinium moieties of each 1∙2PF6 

molecule are in a quasi-parallel arrangement (dC9-C9 distances 

of 7.138(7) Å & 7.209(6) Å and dN-N distances of 7.180(7) Å & 

7.064(5) Å leading to an averaged offset dihedral angle of 8.6°). 

The optimum distance between both acridinium moieties 

allows π-π stacking interactions with the 2,6-diphenylpyridine 

spacer of the second monomer of (1)2∙4PF6. The 2,6-

diphenylpyridine spacer exhibits a quasi-planar geometry (τ = 

12.22° & 8.95°) thus facilitating its inclusion in between both 

acridinium subunits. Noteworthy, the nitrogen atoms of the 

central pyridines are aligned on the straight line formed by the 

two C9 atoms of the two interacting acridinium moieties. 

Noteworthy, the averaged methyl-methyl distance between 

the two entwined monomers (dMe-Me = 12.97 Å) is in good 

agreement with twice the estimated hydrodynamic radius 

obtained from the DOSY (2RH = 14.6 Å) thus giving further 

evidence of the presence of dimeric form in solution. 

Fig. 3 Crystal structure views b-c and e-f of (1)2∙4PF6. a) Scheme of the entwined dimer 

of 1∙2PF6. b) Side view of the entwined dimer of 1∙2PF6 showing the - stacking between 

the acridinium moieties and the 2,6-diphenylpyridine spacer. c) Rear view of the 

entwined dimer. d) Scheme of a 1∙2PF6 monomer of (1)2∙4PF6. e) Side view of a 1∙2PF6 

monomer of (1)2∙4PF6 showing the U-shaped conformation. f) Top view of a 1∙2PF6 

monomer of (1)2∙4PF6. 

We envisioned that hydrophobic interactions should favour the 

dimerization process of this aromatic compound. Therefore, 

1∙2PF6 was converted to its corresponding chloride salts 1∙2Cl 

using tetrabutylammonium chloride (TBACl). The water soluble 

1∙2Cl showed a well-resolved spectrum in D2O at 298 K 

characteristic of a discrete species. The 1H NMR spectrum at 

room temperature was analogous to the spectrum obtained at 

a concentration of 1∙10–2 mol∙L–1 in CD3CN at 248 K. More 

especially, the chemical shifts of the  protons of the central 

pyridine core (H = 6.65 ppm), the Ho and Hp protons of the 

outer phenyl groups ((Ho) = 7.01 ppm and (Hp) = 6.80 ppm) 

exhibit similar upfield shifts as observed for the dimer (1)2∙4PF6 

in CD3CN.17 The presence of the dimer (1)2∙4Cl was confirmed 

by 1H-1H NOESY experiments (Figure 4). Through-space 

correlations between the pyridine protons and the methyl 

protons of the acridinium moieties suggests a close proximity of 

these two subunits as seen in the solid state structure. The 

central 2,6-diphenylpyridine spacer experienced the cone of 

anisotropy of the acridinium moieties (and reciprocally) thus 

explaining the chemical shifts observed in the 1H NMR 

spectrum. These results show the monomer-dimer equilibrium 

is totally shifted to the dimeric form which enables each of the 

hydrophobic central pyridines to be shielded from the aqueous 

environment by two large π-cationic acridinium moieties. In 

other words, hydrophobic interactions reinforce the formation 

of the supramolecular dimer. Noteworthy, the same sharp 1H 

NMR signals is observed in a concentration range from 10–2 to 

5∙10–4 mol∙L–1 in aqueous media corresponding to a Ka above 

1∙105 L∙mol–1 at 298 K. Further evidence of the dimer formation 

were given by DOSY experiments (see ESI, Figure S3.41). The 

hydrodynamic radius was found to be in the same order of 

magnitude in D2O (RH = 7.3 Å; D = 263 µm²∙s–1) than in CD3CN 

(RH =7.3 Å; D = 240 µm²∙s–1) thus supporting a dimeric self-

association in D2O. 

In conclusion, the synthesis of a molecular tweezer bearing two 

acridinium units connected to a 2,6-diphenylpyridine spacer 

was achieved in good yield according to a convergent synthetic  
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Fig. 4 1H-1H NOESY (500 MHz, D2O, 298 K, c = 5∙10–3 mol∙L–1) spectrum of (1)2∙4Cl. 

Correlations between the  and  protons of the pyridine with the methyl protons. 

strategy. The tweezer shows an entwined dimeric structure in 

the solid-state resulting from – stacking interactions between 

the acridiniums units and the 2,6-diphenylpyridine spacer. In 

solution, the existing equilibrium between the monomeric and 

the dimeric forms of the molecule was evidenced in organic 

medium, with Ka = 7∙103 L∙mol–1 at in CD3CN at 248 K. This 

equilibrium was shifted to the monomer upon increasing 

solvent polarity (DMSO-d6), temperature and dilution (CD3CN). 

In water, hydrophobic interactions lead to a complete shift of 

the equilibrium towards the dimer as demonstrated by NMR 

experiments. Work is now underway to design and synthesize 

functionalized bis-acridinium tweezers to explore their 

properties as supramolecular receptors. 
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