Degradation-level assessment and online prognostics for sliding chair failure on point machines - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Degradation-level assessment and online prognostics for sliding chair failure on point machines

Résumé

This paper presents a degradation-level assessment and failure prognostics methodology for degrading systems. The proposed methodology consists of offline and online phases. In the offline phase, different time-domain health indicators (HIs) are extracted and the best indicator of degradation is selected by filter-based methods. Then, a degradation model is defined and its parameters are estimated using the selected HI. In the online phase, the k-means clustering is utilized to detect a change(s) in the system’s health state and to trigger failure prognostics for remaining useful life (RUL) prediction. The degradation model parameters are updated as new data are available, and the RUL is predicted iteratively. The proposed methodology is implemented on point machine sliding chair degradation using in-field condition monitoring (CM) data. The results show that the methodology can be effectively used in machine degradation-level assessment and in online RUL predictions.
Fichier principal
Vignette du fichier
Atamuradov_22005.pdf (814.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02356303 , version 1 (08-11-2019)

Identifiants

  • HAL Id : hal-02356303 , version 1
  • OATAO : 22005

Citer

Vepa Atamuradov, Kamal Medjaher, Fatih Camci, Pierre Dersin, Noureddine Zerhouni. Degradation-level assessment and online prognostics for sliding chair failure on point machines. IFAC SAFEPROCESS 2018, Aug 2018, Warsaw, Poland. pp.208-213. ⟨hal-02356303⟩
32 Consultations
92 Téléchargements

Partager

More