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ABSTRACT 

This paper proposes a new adaptive prognostics approach 

consisting of hybrid feature selection and remaining-useful-

life (RUL) estimation steps for railway point machines. In 

step-1, different time-domain based features are extracted 

and the best ones are selected by the hybrid feature selection 

method. Then, a degradation model is fitted to each of the 

selected features and the parameters are estimated. In step-2, 

the RUL of the component is predicted by using the proposed 

adaptive prognostics approach. The adaptive prognostics is 

based on the weighted likelihood combination of the 

estimated model parameters. The model parameters each of 

which estimated by curve fitting are used in the calculation 

of the likelihood probability weights. Then, an adaptive 

degradation model is built by using the weighted combination 

of the model parameter estimates and the component RUL is 

estimated. The proposed approach is validated on in-field 

point machine sliding-chair degradation and the results are 

discussed. 

1. INTRODUCTION

An improvement of reliability, availability and passenger 

safety has been one of the main concerns for many years in 

the railway industry. Thus, it is important to develop 

predictive maintenance strategies to monitor railway 

infrastructures such as bogies (Ashasi-Sorkhabi et al. 2017; 

Atamuradov, Medjaher, Dersin, et al. 2017), gearbox 

(Ashasi-Sorkhabi et al. 2017), breaking systems (Lee 2017), 

overhead contact lines (Brahimi et al. 2017), tilting actuators 

(Martin et al. 2017) and point machines (Böhm 2017). 

Railway turnout system, which consists of sliding-chair 

plates, point machine, stock rails and locking systems are 

used to control the train turnouts at a distance (Eker et al. 

2011). In literature, the point machine failure diagnostics 

(Atamuradov, Medjaher, Lamoureux, et al. 2017; García 

Márquez, Roberts, and Tobias 2010) and prognostics (Letot 

et al. 2015) have been studied extensively. However, there 

still remain many problems that need to be studied to increase 

the accuracy while minimizing the uncertainty in RUL 

prediction. One of the key steps in the development of robust 

and accurate fault prognostics is the selection of good 

prognostics features. 

In literature, feature evaluation and selection techniques are 

classified as a) inherent: which uses ranking metrics to filter 

out least interesting feature (e.g. trendability, monotonicity 

(J. B. Coble 2010) and seperability (Camci et al. 2013), etc.), 

b) consistent: which filters out the least correlated feature

from the given feature population, and c) hybrid: which is the

combination of inherent  and/or consistent techniques (Lei et

al. 2018). The authors in (Javed et al. 2015) proposed an

inherent feature selection technique to increase the

prognostics accuracy. In (Liao 2014) an inherent feature

evaluation metric was integrated with genetic algorithm (GA)

to discover good prognostics features for RUL prediction.

The authors in (J. Coble and Hines 2009) developed a hybrid

feature selection technique for prognostics based on the

linearly weighted combination of the inherent and consistent

techniques. In this proposed technique, the weights were
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optimized by utilizing the GA. However, despite the good 

optimization performance, feature selection techniques based 

on heuristic algorithms, e.g. GA, might be computationally 

expensive, particularly if there is a big amount of feature 

samples. Hence, the development of computationally 

efficient feature selection techniques is necessary to improve 

the failure prognostics accuracy. Then, the selected 

prognostics features can be used to train the prognostics tools 

for RUL prediction.   

The failure prognostics can be defined as the process of 

predicting the remaining time (RUL) at which a component 

will no longer perform a particular function. The authors in 

(Omer F Eker and Camci 2013; Omer Faruk Eker et al. 2011), 

developed a state duration based prognostics approach for 

point machine monitoring. The developed approach gave 

better RUL prediction results when compared with different 

prognostics tools. A data-driven failure prognostics model 

was proposed by (Letot et al. 2015) for point machine 

monitoring based on the power signals to predict the RUL. A 

similar data-driven prognostics approach based on a 

Bayesian parameter update was also proposed in (Ashasi-

Sorkhabi et al. 2017), for train gearbox monitoring using 

vibration signals. A failure of train braking system was 

studied in (Lee 2017). The authors developed an air leakage 

detection and prediction approach based on a density-based 

clustering and logistic function. Since prognostics 

approaches deal with the prediction of the future component 

health states, the uncertainties in system parameters, nominal 

system model, degradation model, RUL prediction, and 

failure threshold should be well quantified in component 

health assessment (Atamuradov, Medjaher, Dersin, et al. 

2017; Sankararaman and Goebel 2015). 

To fill the aforementioned gaps in the literature, this paper 

proposes a new adaptive prognostics approach based on 

hybrid feature selection for railway point machine sliding-

chair degradation. The proposed approach is composed of 

two steps. 

In step-1, a hybrid feature selection method is developed. It 

is based on the affinity matrix and inherent feature 

evaluation. The affinity matrix is built to calculate the 

features’ relative importance weights (RIWs). The inherent 

feature evaluation deals with the calculation of monotonicity, 

correlation and robustness metrics of each feature. Then, a 

hybrid fitness function is constructed by combining the 

weighted (with RIWs) inherent feature metrics and the 

features are ranked accordingly. The features with the highest 

hybrid ranking value are selected and used in prognostics. 

In step-2, a degradation model is defined to each of the 

selected features and the model parameters are estimated. 

Then, a likelihood probability of each parameter is calculated 

by using the estimated model parameters of each feature. 

Afterward, an adaptive degradation model is constructed by 

using the weighted combination of the estimated model 

parameters with the likelihood probabilities. The adaptive 

degradation model parameters are estimated and updated at 

each prediction time, iteratively, to estimate the RUL.  

The paper contains four sections. After the introduction, 

Section 2, describes the main steps of the proposed 

prognostics approach. Section 3 presents the experimental rig 

setup, data collection and the results of the proposed 

approach. Section 4 concludes the paper.  

2. PROPOSED APPROACH

In this section, the hybrid feature selection and the adaptive 

prognostics steps will be explained in detail. The overall 

scheme of the proposed approach is depicted in Figure 1.  

Figure 1. Step1: a) Raw measurements (!" is the #$% sample),

b) extracted feature population (&',") and c) selected features(&),", where  *+ < -), Step2: Adaptive prognostics.
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2.1. Hybrid feature selection 

First, time-domain based features such as skewness, root 

mean square (rms), kurtosis, mean, standard deviation 

(stdev), variance (var), crest factor (crfactor) and peak-to-

peak (p2p) are extracted from the raw measurements. The 

features in different scales are normalized before selection by 

using equations (1) and (2).   01 = (23/456*(2377(489*(237/456*(2377 ; :>?@?*!1,$ = A3,B489(A37* (1)

01 = (23/456*(2377(489*(237/456*(2377 ; :>?@?*!1,$ = 456*(A37A3,B (2) 

&1,$  is the C th feature data point at time index D*(D =E, � , F7,*F  is the feature length and 01 is the Cth normalized

feature.  

The hybrid feature selection is carried out in two-steps. In 

step-1, the affinity matrix (4) is built using the Euclidean 

distance (3).  

GCHDI&J, &KL = MN(&J,1 O &K,17P"
1Q. (3) 

where # is the length of the given features R and S.

T&&CUCDV'×' *= W X C&*R = SGCHD(&J, &K7 C&*R Y S! ! (4)!

where GCHD(&J, &K7  is the Euclidean distance between the

features &J  and &K from the feature population with a size of- . The relative importance weight :1  of the C$%*(ZC =E�-7  feature is then derived by using the exponential

membership function (5).

:1 = ?[R \OE × ] GCHD(&1,.7'1Q. - ^ (5) 

In step-2, inherent metrics such as monotonicity (-_U1 ),
correlation (`_@@1) and robustness (a_b1) are calculated by

using equations (7), (8) and (9). The features monotonicity 

metric is used to extract increasing or decreasing trend 

information.  

-_U1(&17 = cde ffg3hi*"/. O e ffg3ji"/. dk (6) 

where -_U1 is the monotonicity value for the C$% feature (&1)
with length of # . The absolute value of the difference

between number of positive (e GG&C l X7 and negative (e GG&C <X7  derivatives gives the monotonicity value. The features 

correlation measures the linearity statistics between the 

failure propagation and time.   

`_@@1(&1, F17 = mnop(A3,q37rg3rs3 t (7) 

where u_v is the covariance of  C$% feature (&1) with the time

vector  F, and w  is the standard deviation. The robustness

metric stands for the features’ resistance to the measurement 

noise and it is calculated by decomposing the feature into 

trend (Hx__D>?Gy&1) and residual (@?H&1)  components by

using equations (8) and (9). @?H&1 = &1 O Hx__D>?Gy&1 *! (8) 

a_b1(&17 = *c] z9{*(/|}~�g3g3 |7�� " k (9) 

where Hx__D>?Gy&1 is the smoothed feature, # is the length

of C$% feature (&1). Then, the hybrid ranking function is built

by using equation (10), which is the combination of the 

inherent metrics weighted by the corresponding relative 

importance weights. >a@�U�CU�1 =] �:1 ×-_U1 , :1 × `_@@1 , :1 × a�b1�'1Q. (10) 

Finally, the >a@�U�CU� vector is sorted in descending order

starting from the highest relevant feature to the lowest 

relevant feature. Once the feature ranking step is completed, 

the top best (&)7 features are selected and used in prognostics.

2.2. Adaptive prognostics approach 

In this study, a polynomial function with a degree of 3 is used 

to model the sliding chair degradation due to its good 

degradation representability. This model is given in equation 

(11). The steps of the adaptive prognostics approach are 

illustrated in Figure 2.  &(D7�� = � × D� � � × DP � � × D � *� (11) 

where &(D7�� is the model output at time D and �, �, �, � are

the model parameters to be estimated. The model parameters 

of each of the selected features are estimated by using a curve 

fitting toolbox of MATLAB. Then, the estimated parameters 

are used to build an adaptive degradation model for RUL 

prediction. 

A similar work based on the Dempster-Shafer evidence 

theory to build a prior model for battery degradation was 

proposed in (He et al. 2011). The belief measure was assigned 

to each of the estimated parameters of the corresponding 

feature, by comparing the parameter confidence intervals. 

The basic idea was to assign a more belief weight to the 

parameter interval that includes the other parameter intervals 

to be used in parameter combination. However, the 

disadvantage of this evidence theory-based approach is that 

if there are no any such interval subsets, then it combines the 

parameters with the equal weights resulting in a simple 

weighted arithmetic mean combination.    

The difference between our approach and the work in (He et 

al. 2011) is that the calculation of parameter likelihood 

weights are not limited to the confidence interval length.  



Figure 2. The adaptive prognostics approach steps. 

Instead, in our work, the estimated parameters get varying 

likelihood weights, as follows: 

· If there is no parameter confidence interval that includes

the other parameter intervals, then each parameter gets a

varying likelihood weights proportional to their values.

· If one of the parameter intervals includes the other

parameter interval(s) or has wider interval length, then a

more likelihood weight is assigned to this parameter(s).

Note that, our approach does not compare the parameter 

intervals, but only the likelihood of the estimated parameters. 

If one of the estimated parameters is bigger than the others, 

then, theoretically, it should have the wider length of the 

confidence interval (i.e. the estimated parameter is the mean 

of the confidence interval estimates).   

Let’s assume that there are &)  selected features and the?�),� = ��),� , �),� , �),� , �),� , � = E, � � ,��  are the estimated

initial parameters from each features’ degradation model. 

Then, the likelihood probability weight for the ?�),�Q. (i.e.

the 1st estimated parameter of model +  ) is calculated by

using equation (12).  

�),�Q. = ?�),.] ?�),.)1Q. = �),.] �),.)1Q. ; *N �+,E = E)
1Q. * (12)

The same equation (12) is used to build the likelihood 

probability weights for the other �),., �),., �),. parameters.

After the calculation of �),� values, the adaptive degradation

model parameters R. , RP, R�, R�  can be estimated by the

weighted arithmetic mean function, which is given in (13). 

R� =N �),� × �),�; *� = E,� ,�)
1Q. (13) 

The adaptive degradation parameters are updated at each 5-

time stamp, then the adaptive RUL is estimated. The RUL 

prediction accuracy (�Tuu) is calculated by using equation 

(14) (Tobon-Mejia, Medjaher, and Zerhouni 2012).�Tuu = .�] O���*�a� ¡(b7 O a� ¢(b7� a� ¡(b7£�¤Q. (14) 

where ¥ is the number of data points used in RUL prediction.

For the best prediction performance, the �Tuu  produces 1,

and 0 for the worst.   

3. APPLICATION AND RESULTS

This section explains the experimental rig setup and data 

collection procedures for point machine and presents the 

proposed approach results.  

3.1. System description and data collection 

In this study, we investigated the dry sliding-chair failure 

mode of the point machine, which is generated by an 

accelerated aging procedure (i.e. a manual contamination 

process such as soiling or scratching out the grease) of the 

sliding-chair plates. Figure 3 a) shows the in-field 

experimental test-rig setup, Figure 3 b) the turnout system 

and Figure 3 c) installed sensors for data acquisition. 

Sliding-chair plates are the metal assets of the turnout system 

that assist the point machine drive rods in moving the rail 

blades easily. The dry sliding-chair degradation data were 

generated on the real turnout system with 12 sliding-chair 

plates, in total. At first, all 12 plates were individually 

lubricated and the point machine was run 10 times in each 

movement to get the first healthy (fault-free) measurements. 

Afterward, the accelerated aging procedure took place by 

contaminating the three farthest (10th, 11th, and 12th) plates 

from the point machine to get an initial faulty state.  



Figure 3. a) Experimental setup, b) railway turnout system and c) installed sensors. 

The second faulty state was generated by contaminating the 

9th plate after the first process. After each step of the 

contamination process, the point machine was run 10 times 

from normal-to-reverse (forth) and reverse-to-normal (back) 

positions to collect the measurements. The contamination on 

sliding-chair plates results in variation of performance 

measurement signals (e.g. force, current, voltage, etc.) due to 

the increasing friction force against the turnout driving rod 

force applied to move the blades. The accelerated aging 

procedure was repeated until a final and complete sliding-

chair failure state was reached.  Note that no trains went 

through the turnout system during the data acquisition 

operation. It was temporarily reserved for experimentation 

purposes only. The force and current sensor measurements 

are the most commonly used data in the literature for point 

machine diagnostics and prognostics (García Márquez and 

Schmid 2007). In this study, the force measurements are used 

to validate the proposed approach.  

3.2. Results and Discussions 

Figure 4 shows the extracted features and normalized features 

from the raw measurements (equations (1) and (2)).  

The hybrid feature selection step-1 results are given in Table 

1 and step-2 results are given in Table 2. Table 2 presents the 

ranked features (F1{skw}, F2{krt}, F3{rmse}, F4{avg}, 

F5{stdev}, F6{Var}, F7{crst} and F8{p2p}) in descending 

order. Then, the first three features F5, F3 and F8 were 

selected as the best prognostics features and used in model 

training for the RUL prediction.  

Table 3 shows the results of the model goodness-of-fit 

statistics (R2) and the estimated parameters for each of the 

features by using the curve fitting toolbox of MATLAB. The 

R-statistics indicates that the polynomial model is suitable to

represent the degradation of the sliding-chair plate.

Table 1. Affinity matrix and calculated relative importance 

weights (step-1). 

F1 F2 F3 F4 F5 F6 F7 F8 

F1 0 3.10 2.44 2.52 2.59 2.01 4.63 2.66 

F2 3.10 0 1.11 0.97 1.02 1.81 2.79 0.97 

F3 2.44 1.11 0 0.38 0.26 0.71 3.16 0.60 

F4 2.52 0.97 0.38 0 0.37 0.96 2.83 0.40 

F5 2.59 1.02 0.26 0.37 0 0.88 3.05 0.41 

F6 2.01 1.81 0.71 0.96 0.88 0 3.56 1.13 

F7 4.63 2.79 3.16 2.83 3.05 3.56 0 2.75 

F8 2.66 0.97 0.60 0.40 0.41 1.13 2.75 0 

w 0.08 0.22 0.33 0.34 0.34 0.24 0.05 0.32 

Table 2. Hybrid feature ranking results (step-2). 

Monotonicity Correlation Robustness hRanking 

F5 0.48 0.85 0.75 0.71 

F3 0.50 0.76 0.71 0.67 

F8 0.46 0.82 0.71 0.65 

F4 0.34 0.64 0.78 0.61 

F6 0.48 0.85 0.69 0.50 

F2 0.22 0.60 0.74 0.35 

F1 0.02 0.45 0.66 0.09 

F7 0.26 0.34 0.76 0.07 

a) in-field Experimental setup b) Railway turnout system
c)
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Figure 4. a) Raw measurements, b) extracted features and c) 

normalized features. 

Table 3. Estimated parameters including the 95% 

confidence interval bounds with R-statistics. 

R2 Parameter 
Low 

bound 
Mean 

Upper 

bound 

F5 0.98 

�. 9.882e-07 1.541e-06 2.093e-06 �. -0.000135 -5.012e-05 3.475e-05�. -0.00466 -0.00096 0.00273 �. -0.0157 0.0276 0.071 

F3 0.97 

�P 1.119e-06 1.734e-06 2.348e-06 �P -0.000168 -7.363e-05 2.077e-05�P -0.00494 -0.000833 0.00328 �P -0.0136 0.0347 0.0828 

F8 0.97 

�� 4.814e-07 9.391e-07 1.397e-06 �� -4.991e-05 2.039e-05 9.07e-05 �� -0.0059 -0.00286 0.00019 �� 0.0370 0.07295 0.1089 

Before triggering the prognostics tool, a faulty state from the 

degradation data should be detected first. In this paper, the 

faulty state was obtained by projecting the F5-F3-F8 feature 

combination in the representation space (Soualhi, Medjaher, 

and Zerhouni 2015) as depicted in Figure 5.  

Figure 5. State detection by representation space projection. 

The representation space of the feature combination allows 

identifying the health state transitions of the sliding-chair 

degradation. Since the training features F5, F3 and F8 have 

correlated degradation pattern, it was assumed that they have 

the same cycle number where an incipient fault occurs. After 

the detection of the incipient fault, which is at cycle 69, the 

feature degradation models (x., xP, x�) are trained and the

initial parameters are estimated as shown in Table 4.  

Table 4. Initial parameter estimates after fault detection. � � � �0¦(x.7 -4.258e-07 8.055e-05 -0.0024 0.0243 0§(xP7 2.688e-07 -6.901e-06 -0.00024 0.0174 0¨(x�7 -1.38e-06 0.0001895 -0.0055 0.0763 
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By using the equation (12) the likelihood probability weights 

of the training model parameters were calculated and the 

results are given in Table 5. 

From the initial parameter estimates (Table 5), the combined 

parameters can be estimated by using equation (13). The 

combined parameters R., RP, R�, R�  for the adaptive

degradation model (�-) are given in Table 6. Figure 6 shows

that the combined parameters and their confidence intervals 

(C.I.)  are adapted to the change of the initial model parameter 

estimates and their C.Is. The parameter updating is iteratively 

repeated as new data points are available until the end-of-life 

(EoF) threshold value (see Figure 2).  

Table 5. Calculated likelihood probability weights. x. �.,�Q. xP �P,�Q. x� ��,�Q.�. 0.1355 �P 0.2177 �� 0.6468 �. 0.5102 �P 0.1890 �� 0.3008 �. 0.1316 �P 0.5170 �� 0.3515 �. 0.3400 �P 0.3281 �� 0.3319 

Table 6. Combined adaptive degradation model parameters. R. RP R� R��- -1.4038e-06 1.6133e-04 -0.0044 0.0569 

Figure 7 shows the RUL prediction results for the models x.(Ra�©E7, xP(Ra�©ª7, x�(Ra�©¦7  and �-(�a�©7 ,

whereas Table 7 presents the RUL prediction accuracies (�TuuxE, �Tuu«P, �Tuu«� , �Tuu¬'7. As can be seen from

the given Table 7 , the proposed adaptive prognostics 

approach improved the RUL prediction accuracy, which 

proves the applicability in railway point machine monitoring. 

Figure 6. Estimated parameter confidence intervals (C.I.). 

Table 7. RUL prediction accuracy. �Tuu«. �Tuu«P �Tuu«� �Tuu¬'�Tuu 0.84 0.83 0.91 0.92 

Figure 7. RUL prediction results for a) m1, b) m2, c) m3 and d) adaptive degradation model. 



4. CONCLUSION

In this paper, a new adaptive prognostics approach based on 

a hybrid feature selection method was proposed for point 

machine sliding chair monitoring. A polynomial model was 

defined for each of the selected features and the model 

parameters were estimated. Then, the adaptive degradation 

model was built based on the likelihood probability weights 

calculated by using the initial model parameter estimates of 

the selected prognostics features. The model parameters were 

updated, iteratively, and the RULs were estimated. The 

results showed that the proposed prognostics approach 

improved the RUL prediction accuracy for the sliding-chair 

degradation.    

As a future work, we plan to extend the proposed approach 

and to develop an adaptive system-level prognostics 

approach based on the extracted features from different 

components for condition monitoring and predictive 

maintenance. 
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