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We consider an affine Kac-Moody algebra g with Cartan subalgebra h. Let g[u] be a winding subalgebra of g. Given Λ (resp. λ) in the set P + (resp. Ṗ+ ) of dominant integral weights of g (resp. g[u]), we denote by L(Λ) (resp. L(λ)) the integrable highest weight g-module (resp. g[u]-module) with highest weight Λ (resp. λ). The g-module L(Λ) decomposes as a direct sums of weight spaces L(Λ) µ (µ ∈ h * ). It also decomposes as a direct sum of g[u]-modules L(λ). We are interested in the supports of these decompositions Γ(g, h) and Γ (g, g[u]). We show that they are semigroups. Let P (Λ) (resp. P g,u (Λ)) be the set of all λ ∈ h * (resp. Ṗ+ ) such that L(Λ) λ = 0 (resp. L(λ) ⊂ L(Λ)). Let δ be the basis imaginary root of g. For each λ ∈ P (Λ) + Cδ (resp. P g,u (Λ)+Cδ), we set b Λ,λ (resp. b Λ,λ,u ) the complex number b such that λ+bδ ∈ P (A) (resp. P g,u (Λ)) and λ + (b + n)δ ∈ P (Λ) (resp. P g,u (Λ)) for any n ∈ Z >0 . For the cases A

(1) 1 and A

(2) 2 , we determine explicitly the number b Λ,λ and a set A u (Λ) of λ satisfying b Λ,λ,u = b Λ,λ . This help us realize the relation between Γ(g, g[u]) and its satured setting.

Introduction

One of the most important question in representation theory is how an irreducible module of a Lie algebra g can be decomposed when we consider it as a representation of some given Lie subalgebra ġ. Assume first that g and ġ are finite dimensional and semi-simple. Then, the irreducible g-modules (resp. ġ-modules) are parametrized by the semi-group P + (resp. Ṗ+ ) of dominant integral weights. Given Λ ∈ P + , under the action of ġ, the irreducible g-module L(Λ) of highest weight Λ decomposes as

L(Λ) = λ∈ Ṗ+ L(λ) mult Λ, ġ(λ) , (1) 
where mult Λ, ġ(λ) is the multiplicity of L(λ) in L(Λ). Understanding the number mult Λ, ġ(λ) is referred as the branching problem. For example, for ġ diagonally embedded in g = ġ× ġ, the coefficients mult Λ, ġ(λ) are the multiplicities of the tensor product decomposition of two irreducible representations of ġ. If ġ = gl n (C) then Ṗ+ identifies with the set of non-increasing sequences ν = (ν 1 ≥ • • • ≥ ν n ) of n integers and the coefficients are the Littlewood-Richardson coefficients c ν λµ . If ġ is a Cartan subalgebra of g, the multiplicities mult Λ, ġ(λ) are the Kostka coefficients. The support Γ(g, ġ) = {(Λ, λ) ∈ P + × Ṗ+ : mult Λ, ġ(λ) = 0} of these multiplicities is also a fascinating object. Actually, it is a finitely generated semigroup that generates a polyhedral convex cone (see [START_REF] Brion | Restriction de représentations et projections d'orbites coadjointes (d'après Belkale[END_REF]). For ġ diagonally embedded in g = ġ × ġ this cone is the famous Horn cone. Its description has a very long and rich story (see [START_REF] Brion | La conjecture de Horn: quelques développements récents[END_REF], [START_REF] Brion | Restriction de représentations et projections d'orbites coadjointes (d'après Belkale[END_REF], [START_REF] Kumar | A survey of the additive eigenvalue problem[END_REF], [START_REF] Belkale | Eigenvalue problem and a new product in cohomology of flag varieties[END_REF], [START_REF] Ressayre | Geometric invariant theory and the generalized eigenvalue problem[END_REF]).

In this paper, we are interested in similar questions for affine Kac-Moody algebras. Assume now that g is an affine Kac-Moody algebra and consider integrable highest weight g-modules L(Λ) as module over some subalgebra ġ. In the following three cases, we have decompositions similar to (1) with finite multiplicities:

1. ġ = h is a Cartan subalgebra of g; 2. ġ diagonally embedded in g = ġ × ġ; case of tensor product decomposition.

3. ġ is a winding subalgebra of g introduced by V. G. Kac and M. Wakimoto in [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF].

Recently, several authors studied Γ(g, ġ) in the case of the tensor product decomposition of affine (or symmetrizable) Kac-Moody Lie algebras (see [START_REF] Ressayre | On the tensor semigroup of affine Kac-Moody Lie algebras[END_REF], [START_REF] Kumar | On the faces of the tensor cone of symmetrizable Kac-Moody Lie algebras[END_REF], [START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF], [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF]).

Here, we start a study of Γ(g, ġ) in the winding case. This case is important and interesting since its relation with the tensor product decomposition (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]) and a solution to Frenkel's conjecture ( see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], [START_REF] Frenkel | Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations[END_REF]). Fix a winding subalgebra ġ = g[u] of g for some given positive integer u. It is a subalgebra of g isomorphic to g but nontrivially embedded (the embedding depends on u) (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF] or subsection 4.1 for details).

Let δ be the basic imaginary root and d be the scaling element, for any set S ⊂ h * , we denote by S the subset of all λ ∈ S + Cδ such that λ(d) = 0. Let k ∈ Z ≥0 , we denote by S k the subset of S of weights of level k.

Let P (resp. Ṗ ) be the set of all integral weights of g (resp. g [u]). The subset of dominant integral weights of P is denoted by P + . For Λ ∈ P + (resp. λ ∈ Ṗ+ ), let L(Λ) (resp. L(λ)) be the irreducible highest weight g-module (resp. g[u]-module) with highest weight Λ (resp. λ).

Let Q be the root lattice of g. Fix Λ ∈ P + . Let P (Λ) be the set of all λ ∈ h * such that (Λ, λ) ∈ Γ(g, h). For each λ ∈ P (Λ) + Cδ, there exist a unique number b Λ,λ such that λ + b Λ,λ δ ∈ P (Λ) and λ + (b Λ,λ + n)δ ∈ P (Λ) for any n ∈ Z >0 . Let P A,u (Λ) be the set of all λ ∈ Ṗ+ such that (Λ, λ) ∈ Γ(g, g[u]). Since P A,u (Λ) ⊂ P (Λ) (by 0.5 page 5 of [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]), for each λ ∈ P A,u (Λ) + Cδ, there exist a unique number b Λ,λ,u such that λ + b Λ,λ,u δ ∈ P A,u (Λ) and λ + (b Λ,λ,u + n)δ ∈ P A,u (Λ) for any n ∈ Z >0 .

Our first main result is the following theorem.

Theorem 1.1. As a subset of h * × h * , the set Γ(g, g[u]) is a semigroup.

For the cases g is of type A

(1) 1 and A

(2) 2 , we can compute explicitly the number b Λ,λ in Propositions 3.3 and 3.5. Let Λ 0 be the 0-th fundamental weight and α be the second simple root. The results below help us to understand the branching rule in these two particular cases.

Theorem 1.2. For Kac-Moody algebra of type

A (1) 1 , let Λ = mΛ 0 + jα 2 ∈ P m + and λ ∈ Ṗ+ . If there exists b ∈ C such that (Λ, λ + bδ) belongs to Γ(g, g[u]) then λ = mΛ 0 + j α 2 for some j ∈ [0, um] ∩ (j + 2Z). If moreover 1. j ≤ j ≤ um -j and u is even; or 2. j ≤ j ≤ um -(m -j) and u is odd, then b Λ,λ,u = b Λ,λ . (2) 
Theorem 1.3. For Kac-Moody algebra of type A

(2)

2 , let Λ = mΛ 0 + jα 2 ∈ P m + and λ ∈ Ṗ+ . If there exists b ∈ C such that (Λ, λ + bδ) belongs to Γ(g, g[u]) then λ = mΛ 0 + j α 2 for some j ∈ [0, um 2 ] ∩ Z. If moreover 1. j ≤ j; and 2. j ∈ m(u-1) 2 -j + (2Z ≥0 ∪ Z <0 ), then b Λ,λ,u = b Λ,λ . (3) 
For Λ like in Theorems 1.2, 1.3, we denote by A u (Λ) the set λ such that the theorem applies. Let (Λ, λ) ∈ P + × Ṗ+ . To understand Γ(g, g[u]), we study the set

B(Λ, λ) = {b ∈ C | L(λ + bδ) ⊂ L(Λ)}. (4) 
For each λ ∈ P A,u (Λ) + Cδ, we define a number h

[u]
Λ,λ in (164). With λ ∈ A u (Λ), we can describe the set B(Λ, λ) as follows.

Theorem 1.4. Let g be an affine Kac-Moody algebra of type A

(1)

1 or A (2) 2 . Let Λ ∈ P m + , u > 1 and λ ∈ A u (Λ). We have 1. b Λ,λ -(Z ≥0 \ {1}) ⊂ B(Λ, λ) ⊂ b Λ,λ -Z ≥0 .

If in addition h

[u] Λ,λ = 0 then B(Λ, λ) = b Λ,λ -Z ≥0 . Set Γ(g, g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | λ ∈ Λ + Q, L(N λ) ⊂ L(N Λ) for some integer N > 1}.
(5)

Corollary 1.5. Let g be an affine Kac-Moody algebra of type A

(1)

1 or A (2) 2 . Let Λ ∈ P m + , u > 1 and λ ∈ A u (Λ) ∩ (Λ + Q). For all b ∈ C, we have 1. (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ d(Λ, λ + bδ) ∈ Γ(g, g[u]) for all d ∈ Z ≥2 .

If in addition h

[u] Λ,λ = 0 then (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ (Λ, λ + bδ) ∈ Γ(g, g[u]
). This article is organilzed as follows. In Section 2, we prepare fundamental knowledge of affine Kac-Moody algebras. In Section 3, we present results around branching on Cartan subalgebras. We prove that the set Γ(g, h) is a semigroup. We also compute the set of maximal weights max(Λ) and the numbers b Λ,λ in Propositions 3.3, 3.5 for the cases A

(1) 1 and A

(2) 2 . In Section 4, we introduce the notion of winding subalgebras. The main results of this article, Theorems 1.1, 1.2, 1.3, 1.4 and Corollary 1.5 above, will be presented in this section. 

Preliminaries

In this section, we recall basic fact about affine Kac-Moody algebras in [START_REF] Carter | Lie algebras of finite and affine type[END_REF], [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF], [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF].

Generalized Cartan matrix of affine type

Set I = {0, . . . , l}. Let A = (a ij ) i,j∈I be a generalized Cartan matrix of affine type, i.e., A is indecomposable of corank 1, a ii = 2, -a ij ∈ Z ≥0 for i = j, a ij = 0 iff a ji = 0 and there exists a column vector u with positive integer entries such that Au = 0.

Let a = t (a 0 , . . . , a l ) and c = (c 0 , . . . , c l ) be the vectors of relatively prime integers such that a i , c i > 0 and Aa = cA = 0. The Coxeter number and dual Coxeter number of A are defined by h = i∈I a i and h ∨ = i∈I c i .

Realization of a generalized Cartan matrix

Let (h, Π, Π ∨ ) be a realization of A where h is a C-vector space of dimension l + 2, Π ∨ = {h 0 , . . . , h l } is a linearly independent subset in h and Π = {α 0 , . . . , α l } is a linearly independent subset in h * (the dual space of h) such that α i (h j ) = a ji . Let K = i∈I c i h i be the canonical central element and δ = i∈I a i α i be the basic imaginary root. Let d ∈ h be the scaling element, i.e., α 0 (d) = 1, α i (d) = 0 for i > 0. Let Λ i (i ∈ I) be the i-th fundamental weights, i.e., Λ i (h j ) = δ ij , Λ i (d) = 0 for all j ∈ I. Set ρ = i∈I Λ i .

Then {α 0 , . . . , α l , Λ 0 } is a basis of h * and {h 0 , . . . , h l , d} is a basis of h.

Affine Kac-Moody algebras

Let g(A) be the affine Kac-Moody algebra corresponding to the matrix A. We call h a Cartan subalgebra of g(A) and Π, Π ∨ the set of simple roots, coroots of g(A), respectively. We have a triangular decomposition

g(A) = n -⊕ h ⊕ n + , (6) 
where n -is the negative subalgebra of g(A) and n + is the positive subalgebra of g(A).

An affine Kac-Moody algebra has type X

N with r = 1, 2, 3 (here we use the standard notation in [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF] to label the type of affine Kac-Moody algebras). In particular, the untwisted affine Kac-Moody of type A

(1)

1 is defined by the generalized Cartan matrix 2 -2 -2 2 , (7) 
and the twisted affine Kac-Moody algebra of type A

(2)

2 is defined by the generalized Cartan matrix

2 -4 -1 2 . ( 8 
)
It is known that the matrix t A is also a generalized Cartan matrix of affine type. We denote X (r ∨ ) N the type of the algebra g( t A).

Weyl group

Let Q = ZΠ be the root lattice and let Q + = Z ≥0 Π. We define an order on

h * by λ ≥ µ if λ -µ ∈ Q + . For each i ∈ I, set α ∨ i = a i c i α i . We define a sublattice M of Q by M =        l i=1 Zα i if r ∨ = 1, l i=1 Zα ∨ i if r ∨ > 1. (9) 
Let (|) be the standard invariant form on h * which is defined by

(α i |α j ) = c i a i a ij , (α i |Λ 0 ) = 1 a 0 α i (d), (Λ 0 |Λ 0 ) = 0 ∀i, j ∈ I. (10) 
For each α ∈ h * , we define t α ∈ GL(h * ) by

t α (λ) = λ + λ(K)α -λ + λ(K)α 2 α δ. (11) 
Let W be the Weyl group of g(A) the group generated by fundamental reflections {s 0 , . . . , s l } where s i ∈ GL(h * ) is defined by

s i (λ) = λ -λ(h i )α i . Then we have W ∼ = t M W (12) 
where t M = {t α | α ∈ M } and W is the subgroup of W generated by {s 1 , . . . , s l }.

Realization of affine Kac-Moody algebras

Let B = (b ij ) i,j∈{1,...,l} be a Cartan matrix of finite type. Let g(B) be the simple Lie algebra associated to B with Lie bracket [, ] 0 , the standard invariant form (|) 0 (Here we use the notion of standard invariant form for a simple Lie algebra in the book of Carter [START_REF] Carter | Lie algebras of finite and affine type[END_REF]). We extend g(B) to a new Lie algebra

ĝ(B) = C[t, t -1 ] ⊗ g(B) ⊕ CK ⊕ Cd (13)
with new Lie bracket

[t i ⊗ x + λK + µd, t j ⊗ y + λ K + µ d] = t i+j ⊗ [x, y] 0 + µjt j ⊗ y -µ it i ⊗ x + iδ i+j,0 (x|y) 0 K. ( 14 
)
for all i, j ∈ Z, x, y ∈ g(B) and λ, λ , µ, µ ∈ C.

Let h be a Cartan subalgebra of g(B) and let Φ be the root system of g(B).

For each α ∈ Φ, let g(B) α = x ∈ g(B) such that [h, x] 0 = α(h)x for all h ∈ h . (15) 
Let Π = { ᾱ1 , . . . , ᾱl } be the set of simple roots and Π∨ = { h1 , . . . , hl } be the set of coroots of g(B). It is known that the dimension of g(B) α is one for each α ∈ Φ. For each i ∈ {1, . . . , l}, let ēi be a basis vector of g(B) ᾱi and fi be a basis vector of g(B) -ᾱi . Then g(B) is a Lie algebra with generators { h1 , . . . , hl , ē1 , . . . , ēl , f1 , . . . , fl }.

For any σ ∈ S l such that b ij = b σ(i)σ(j) for all i, j ∈ {1, . . . , l}, we can consider it as an automorphism of g(B) by sending

ēi → ēσ(i) , fi → fσ(i) , hi → hσ(i) . (16) 
Let m be the order of σ and set η = e 2iπ/m . We define the automorphism τ of ĝ(B) by

τ (t i ⊗ x) = η -i t i ⊗ σ(x), τ (K) = K, τ (d) = d (17) 
for all i ∈ Z, x ∈ g(B). This map is called a twisted automorphism of ĝ(B). Now, let A be an affine Cartan matrix of type X

N . Let Ā be the finite Cartan matrix of type X N . If A is an untwisted affine Cartan matrix, i.e., type X

(1)

N , then we have g(A) ĝ( Ā). ( 18 
)
If A is a twisted affine Cartan matrix, i.e., type X

N for r = 2, 3, we have

g(A) ĝ( Ā) τ . ( 19 
)
The simple coroots h 1 , . . . , h l of g(A) has property

h i ∈ 1 ⊗ h (20)
for each i ∈ {1, . . . , l}, where h is the Cartan subalgebra of g( Ā). For the details, we refer the reader to the proofs of Theorem 18.5, Theorem 18.9 and Theorem 18.14 in [START_REF] Carter | Lie algebras of finite and affine type[END_REF].

Dominant integral weights and integrable irreducible modules

Let P = i∈I ZΛ i + Cδ (21)
be the set of integral weights. For any set S ⊂ h * , we denote by S the subset of all λ ∈ S + Cδ such that λ(d) = 0. We have

P = i∈I ZΛ i . (22) 
For each λ ∈ P , the number λ(K) is an integer and we call it the level of λ. For each k ∈ Z, we denote by P k the set of all integral weights of level k. Then we have

P k = i∈I m i Λ i i∈I m i c i = k, m i ∈ Z + Cδ. ( 23 
) Let P + = i∈I Z ≥0 Λ i + Cδ (24)
be the set of dominant integral weights. Let P + , P k + be the intersection of P , P k with P + , respectively.

For each λ ∈ P + , let L(λ) be the integrable irreducible highest weight g(A)-module with highest weight λ.

Branching on Cartan subalgebras

In this section, we recall some facts about branching on Cartan subalgebras of affine Kac-Moody algebras.

Let Λ ∈ P + be a dominant integral weight of g(A), h be a Cartan subalgebra of g(A). Regarding g(A)-module L(Λ) as an h-module, it can be decomposed into direct sum of weights spaces

L(Λ) = λ∈h * L(Λ) λ , (25) 
where

L(Λ) λ = {v ∈ L(Λ) | hv = λ(h)v ∀h ∈ h} . ( 26 
)
Let mult Λ,h (λ) be the dimension of the space L(Λ) λ . Then the decomposition ( 25) is encoded by a formal series ch Λ on h * as follows

ch Λ = λ∈h * mult Λ,h (λ)e λ , (27) 
where e λ (µ) = δ λ,µ for µ ∈ h * . We call ch Λ the character of L(Λ). The set of weights of L(Λ) is defined by

P (Λ) = {λ ∈ h * | mult Λ,h (λ) = 0} . ( 28 
)
For each λ ∈ h * , we say λ a maximal weight of L(Λ) if λ ∈ P (Λ) but λ + nδ ∈ P (Λ) for any n > 0. Let max(Λ) be the set of all maximal weights of L(Λ). We have

max(Λ) = W (max(Λ) ∩ P + ) (29) 
and

P (Λ) = W ((Λ -Q + ) ∩ P + ) = max(Λ) -Z ≥0 δ. (30) 
For each λ ∈ P (Λ) + Cδ, let b Λ,λ be the complex number such that λ

+ b Λ,λ δ ∈ max(Λ). It is an integer if λ ∈ Λ + Q because b Λ,λ δ ∈ Q. Since λ + bδ ∈ P (Λ + bδ) if and only if λ ∈ P (Λ) for all b ∈ C, we have b Λ+bδ,λ+bδ = b Λ,λ . (31) 
Let Γ(g, h) be the set of all (Λ, λ) ∈ P + × h * such that λ ∈ P (Λ).

About the character ch Λ

We now recall some facts about the character ch Λ for any affine Kac-Moody algebra.

Denote e -δ by q. For each λ ∈ h * , we define the string function

c Λ λ ∈ C((q)) of L(Λ) associated to λ by c Λ λ = n∈Z mult Λ,h (λ -nδ)q n . ( 32 
)
Then for any w ∈ W we have

c Λ λ = c Λ wλ (33) and ch Λ = λ∈max(Λ) c Λ λ e λ . (34) 
The 

About the set of weights P (Λ)

In this subsection, we show some facts about the set of weights P (Λ) for any affine Kac-Moody algebra and in particular for the cases A

(1) 1 and A

(2) 2 .

Semigroup structure

In this part, we study the set Γ(g, h) ⊂ h * × h * .

Theorem 3.1. As a subset of h * × h * , the set Γ(g, h) is a semigroup.

Proof. Let (Λ, λ) and ( Λ, λ) be elements in the set Γ(g, h). We will show that (Λ+ Λ, λ+ λ) is still in this set. Indeed, λ + λ is a weight of L(Λ) ⊗ L( Λ). Hence λ + λ is a weight of L(Λ ) for some Λ ∈ ((Λ + Λ) -Q + ) ∩ P + . By (30), we have

P (Λ ) ⊂ P (Λ + Λ). ( 36 
)
It means λ + λ ∈ P (Λ + Λ) and then Γ(g, h) is a semigroup.

Remark 3.2. We can prove that Γ(g, h) is a semigroup for any symmetrizable Kac-Moody algebra g by the same argument.

Computation for the case A

(1) 1

We are going to compute explicitly the set max(Λ), hence the number b Λ,λ for the cases A

(1) 1 . By (31), we may assume that Λ ∈ P + . The idea of computations is based on the work on S. Kumar and M. Brown in [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF].

Let A be the affine Cartan matrix of type A

(1) 1 . Fix m ∈ Z >0 . Let α be the second simple root of g(A). We have

P m + = mΛ 0 + jα 2 j ∈ [0, m] ∩ Z . ( 37 
)
We can describe explicitly the set max(Λ) and the number b Λ,λ for the case A

(1) 1 as follows. It is the combination of Lemma 5.2 and Lemma 5.3 in [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF]. We restate and re-explain in details the results.

Proposition 3.3. With the setting for A (1) 1 , let Λ = mΛ 0 + jα 2 ∈ P m + .
For each k ∈ Z, let φ(m, j, k) be a number which is uniquely determined by k, m, j as follows 1. Write k = mq + r for some q ∈ Z, r ∈ [0, m).

Set

φ(m, j, k) = -q(k + r + j) + -r if r ∈ [0, m -j], m -j -2r if r ∈ [m -j, m). (38) 
Then we have

max(Λ) = {Λ + kα + φ(m, j, k)δ | k ∈ Z}. (39) 
Or equivalently, for each λ = mΛ 0 + j α 2 with j ∈ j + 2Z, we have

b Λ,λ = φ(m, j, j -j 2 ). ( 40 
)
To prove above proposition, we need the following lemma. In fact, in Proposition 4.4 of [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF], the authors give the same statement for only untwisted affine Kac-Moody algebras. But the statement and arguments in the proof still work well for any affine Kac-Moody algebras.

Lemma 3.4. For any affine Kac-Moody algebra, let Λ ∈ P + of positive level, then

max(Λ) ∩ P + = Λ - i∈I m i α i m i ∈ Z ≥0 for all i, m i < a i for some i ∈ I ∩ P + . (41)
With the aid of Lemma 3.4, we can prove Proposition 3.3 as follows.

Proof. We have max(Λ) = W (max(Λ) ∩ P + ). By Lemma 3.4,

max(Λ) ∩ P + = Λ -m 0 (δ -α), Λ -m 1 α m i ∈ Z ≥0 , m 0 ≤ m -j 2 , m 1 ≤ j 2 . ( 42 
)
Recall that W = {t nα , t nα s 1 |, n ∈ Z}. We have

t nα (Λ -m 0 (δ -α)) = Λ + (m 0 + mn)α -((j + 2m 0 + mn)n + m 0 )δ, ( 43 
)
t nα s 1 (Λ -m 0 (δ -α)) = Λ + (-j -m 0 + mn)α -((-j -2m 0 + mn)n + m 0 )δ, ( 44 
)
t nα (Λ -m 1 α) = Λ + (-m 1 + mn)α -(j -2m 1 + mn)nδ, (45) 
t nα s 1 (Λ -m 1 α) = Λ + (-j + m 1 + mn)α -(-j + 2m 1 + mn)nδ. ( 46 
)
So an element λ in max(Λ) has form Λ + rα + nδ for some n ∈ Z, r ∈ Z. Fix such a λ. Then, for any q ∈ Z t qα (Λ + rα + nδ) = Λ + (mq + r)α + (n -(j + 2r + mq)q)δ (47) is still in max(Λ). Set k = mq + r for some q ∈ Z, then

Λ + kα + n δ ∈ max(Λ)
where n = n -q(k + r + j).

Assume now that 0 ≤ r < m, then the expression k = mq + r is the Euclidean division. By (43), ( 44), ( 45), (46) we get

n = -r if r ∈ [0, m -j], m -j -2r if r ∈ [m -j, m). ( 49 
)
Hence we obtain n = φ(m, j, k) given by (38). It means

max(Λ) = {Λ + kα + φ(m, j, k)δ | k ∈ Z}. (50) 

Computation for the case A

(2) 2

For the case A

(2) 2 , the computation is similar. Namely, let A be the affine Cartan matrix of type A

(2) 2 . Fix m ∈ Z >0 . Let α be the second simple root of g(A). We have

P m + = mΛ 0 + jα 2 j ∈ 0, m 2 ∩ Z . ( 51 
)
We can describe explicitly the set max(Λ) and the number b Λ,λ for the case A

(2) 2 as follows.

Proposition 3.5. With the setting for A

(2) 2 , let Λ = mΛ 0 + jα 2 ∈ P m + . For each k ∈ 1 2 Z, let φ(m, j, k) be a number which is uniquely determined by k, m, j as follows 1. Write k = m 2 q + r for some q ∈ Z, r ∈ [0, m 2 ).

Set

φ(m, j, k) = -q(k+r+j)+      -r if r ∈ [0, m 2 -j], m 2 -j -2r if r ∈ [ m 2 -j, m 2 ) ∩ ( m 2 + Z) m-1 2 -j -2r if r ∈ [ m-1 2 -j, m 2 ) ∩ ( m-1 2 + Z). ( 52 
)
Then we have

max(Λ) = Λ + kα + φ(m, j, k)δ k ∈ 1 2 Z . ( 53 
)
Or equivalently, for each λ = mΛ 0 + j α 2 with j ∈ Z, we have

b Λ,λ = φ(m, j, j -j 2 ). ( 54 
)
Proof. We have max(Λ) = W (max(Λ) ∩ P + ). By Lemma 3.4, max(Λ)

∩ P + contains exactly elements Λ -m 0 α 0 , Λ -m 1 α, Λ -α 0 -m 2 α (55) such that m i ∈ Z ≥0 , m 0 ≤ m 2 -j, m 1 ≤ j 2 , j + 1 2 - m 4 ≤ m 2 ≤ j + 1 2 . ( 56 
)
Recall that W = t nα 2 , t nα 2 s 1 n ∈ Z . We have

t nα 2 (Λ -m 0 α 0 )) = Λ + mn + m 0 2 α - (mn + 2j + 2m 0 )n + m 0 2 δ, (57) 
t nα 2 s 1 (Λ -m 0 α 0 ) = Λ + mn -2j -m 0 2 α - (mn -2j -2m 0 )n + m 0 2 δ, (58) 
t nα 2 (Λ -m 1 α) = Λ + mn -2m 1 2 α - (mn + 2j -4m 1 )n 2 δ, (59) 
t nα 2 s 1 (Λ -m 1 α) = Λ + mn -2j + 2m 1 2 α - (mn -2j + 4m 1 )n 2 δ, (60) 
t nα 2 (Λ -α 0 -m 2 α) = Λ + mn + 1 -2m 2 2 α - (mn + 2j + 2 -4m 2 )n + 1 2 δ, (61) 
t nα 2 s 1 (Λ -α 0 -m 2 α) = Λ + mn -1 -2j + 2m 2 2 α - (mn -2j -2 + 4m 2 )n + 1 2 δ. ( 62 
)
So an element λ in max(Λ) has form Λ + rα + nδ for some n ∈ 1 2 Z, r ∈ 1 2 Z. Fix such a λ. Then, for any q ∈ Z

t qα 2 (Λ + rα + nδ) = Λ + m 2 q + r α + n -j + 2r + m 2 q q δ (63) 
is still in max(Λ). Set k = m 2 q + r for some q ∈ Z, then

Λ + kα + n δ ∈ max(Λ)
where n = n -q(k + r + j).

Assume now that 0 ≤ r < m 2 , then the expression k = m 2 q + r is the Euclidean division. By (57), (58), (59), (60), (61), (62) we get

n =      -r if r ∈ [0, m 2 -j], m 2 -j -2r if r ∈ [ m 2 -j, m 2 ) ∩ ( m 2 + Z), m-1 2 -j -2r if r ∈ [ m-1 2 -j, m 2 ) ∩ ( m-1 2 + Z). (65) 
Hence we obtain n = φ(m, j, k) given by (52). It means

max(Λ) = Λ + kα + φ(m, k, j)δ k ∈ 1 2 Z . ( 66 
)
4 Branching on winding subalgebras

In this section, we study the branching problem on winding subalgebras.

Winding subalgebras of an affine Kac-Moody algebra

In this subsection, we recall the notation of winding subalgebras of an affine Kac-Moody algebra in [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]. The studying of winding subalgebras is important and interesting because of its relation with the tensor product decomposition (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]) and a solution to Frenkel's conjecture ( see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], [START_REF] Frenkel | Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations[END_REF]).

Let g(A) with A of type X (r)

N be an affine Kac-Moody algebra which is defined by (18), (19). Fix u ∈ Z >0 relatively prime with r. We define the Lie homomorphism ψ u : g(A) → g(A) by

t i ⊗ x → t ui ⊗ x, K → uK, d → d u (67) 
where i ∈ Z, x ∈ g( Ā). It is easy to check that ψ u is an injective Lie homomorphism. Let g(A)[u] be the image of this map. Then g(A)[u] is a subalgebra of g(A) and isomorphic to g(A). We call g(A)[u] the winding subalgebra of g(A) associated to u.

Set K = ψ u (K) = uK. Let ψu : h → h be the restriction of ψ u over the Cartan subalgebra h of g(A). For each i ∈ I, set ḣi = ψu (h i ). Then by (20), we see that ḣi = h i for all i > 0 and ḣ0 = u -1

c 0 K + h 0 . ( 68 
)
Let t ψu : h * → h * the dual map of ψu . Namely, for each λ ∈ h * we define t ψu by

t ψu (λ)(h) = λ( ψu (h)) (69) 
for all h ∈ h. For each i ∈ I, set αi = t ψu (α i ). Then by (68), (69) we have αi = α i for all i > 0 and α0 = u -1

a 0 δ + α 0 . (70) 
For each i ∈ I, set Λi = t ψu (Λ i ) and ρ = t ψu (ρ). By (68), (69) we have

Λi = Λ i + 1 u -1 c i c 0 Λ 0 (71) ρ = 
I Λi = ρ + 1 u -1 h ∨ c 0 Λ 0 . (72) 
The map t ψu induces simple reflections ṡi ∈ Aut(h * ), which are defined by

ṡi (λ) = λ -λ( ḣi ) αi . ( 73 
)
The Weyl group Ẇ of g(A)[u] is generated by simple reflections ṡi (i ∈ I) turns out to be

Ẇ ∼ = t uM W . (74) 
In particular, by (12), it is a subgroup of the Weyl group W .

Let Ṗ+ = i∈I Z ≥0 Λi + Cδ (75)
be the set of dominant integral weights of g(A) [u]. For each k ∈ Z ≥0 , let Ṗ k + be the set of dominant integral weights of g(A)[u] of level k, i.e.,

Ṗ k + = i∈I m i Λi i∈I m i c i = k, m i ∈ Z ≥0 + Cδ. (76) 
Let λ ∈ Ṗ+ , we denote the irreducible integrable g(A)[u]-module of highest weight λ by L(λ). The winding subalgebra g(A)[u] has a triangular decomposition

g(A)[u] = ṅ-⊕ h ⊕ ṅ+ , (77) 
where ṅis the negative subalgebra of g(A)[u] and ṅ+ is the positive subalgebra of g(A)[u].

The set of weights P A,u (Λ)

For each Λ ∈ P k + (k ∈ Z ≥0 ), the g(A)-module L(Λ) can be regarded as a g(A)[u]-module of level uk. Then it can be decomposed into direct sum of integrable irreducible g

(A)[u]- module of level uk L(Λ) = λ∈ Ṗ uk + L(λ) mult Λ,g[u] (λ) . ( 78 
) Set P A,u (Λ) = {λ ∈ Ṗ+ | mult Λ,g[u] (λ) = 0}. (79) 
It is easy to see that P A,u (Λ) ⊂ P (Λ) (by part 0.5 page 5 in [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]). Hence P A,u (Λ) is a subset of max(Λ) -Z ≥0 . We say λ ∈ P A,u (Λ) a g(A)[u]-maximal weight of Λ if there does not exist n ∈ Z >0 such that λ + nδ ∈ P A,u (Λ). We denote the set of all g(A)[u]-maximal weights of Λ by max A,u (Λ). For each λ ∈ P A,u (Λ) + Cδ, there exists a unique complex number b Λ,λ,u such that λ + b Λ,λ,u δ ∈ max A,u (Λ). By definition, we have

b Λ,λ -b Λ,λ,u ∈ Z ≥0 . (80) 
Let Γ(g, g[u]) be the set of all (Λ, λ) ∈ P + × Ṗ+ such that λ ∈ P A,u (Λ).

Character method

In this subsection, we prepare fundamental background on the representation theory of the Virasoro algebras which help us to study the branching problem. The idea is analogous to the idea in [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF]. In general, we need a formula which rewrite the character of a dominant integral weight Λ ∈ P + in terms of the characters of dominant integral weights λ ∈ Ṗ+ . The Virasoro characters will come into account in this formula to help us understand the branching rule. Apply this method, we obtain new results on the support Γ(g, g[u]) in the cases A

(1)

1 and A (2)
2 , which we will see later in subsection 4.5.

The Virasoro algebra

The Virasoro algebra V ir is spanned by operators {L n (n ∈ Z), Z} over C with the Lie bracket

[L m , L n ] = (m -n)L m+n + m 3 -m 12 δ m+n,0 Z and [V ir, Z] = 0. ( 81 
) Set V ir 0 = CL 0 ⊕ CZ. For each λ ∈ V ir * 0 , the weight space V λ of V is V λ = {v ∈ V | Xv = λ(X)v for all X ∈ V ir 0 }. ( 82 
)
Let V be V ir-module which admits a weight decomposition such that each weight subspace has finite dimension. Such a V ir-module is said to be unitarizable if there exists a positive define Hermitian form , such that L n v, w = v, L -n w for all n ∈ Z and Zv, w = v, Zw . It is known that any unitarizable V ir-module is completely reducible.

A V ir-module V is called a highest weight module if there exists a nonzero vector v 0 in V such that v 0 is a V ir 0 -eigenvector, L n v 0 = 0 for all n ∈ Z >0 and U( n<0 CL n )v 0 = V (here U(.) is the universal envelopping algebra). We say that such module has highest weight λ ∈ V ir * 0 if Xv 0 = λ(X)v 0 for all X ∈ V ir 0 .

If V is a unitarizable highest weight V ir-module with highest weight λ ∈ V ir * 0 , then λ(L 0 ), λ(Z) are non-negative since

0 ≤ L -n v 0 , L -n v 0 = L n L -n v 0 , v 0 = (2nλ(L 0 ) + 1 12 (n 3 -n)λ(Z)) v 0 , v 0 . ( 83 
)
Let {(L 0 ) * , Z * } be the dual basis of {L 0 , Z}. We now restate Lemma 4.1 in [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF].

Lemma 4.1. Let V be a unitarizable highest weight (irreducible) V ir-module with highest weight λ. Then

1. If λ(L 0 ) = 0 then V λ+n(L 0 ) * = 0 for all n ∈ Z ≥0 . 2. If λ(L 0 ) = 0 and λ(Z) = 0, then V λ+n(L 0 ) * = 0 for all n ∈ Z >1 and V λ+(L 0 ) * = 0. 3. If λ(L 0 ) = λ(Z) = 0, then V is one dimensional.

An identity of characters

Let Λ ∈ P k + (k ∈ Z ≥0 ), by ( 29), (33), (34) and remind that Ẇ is a subgroup of W , we have

  w∈ Ẇ (w)e w( ρ)   ch Λ = λ∈max(Λ)   w∈ Ẇ (w)e w(λ+ ρ)   c Λ λ . (84) 
We can suppose that λ + ρ in the above equality is regular with respect to Ẇ . In this case, there exists unique σ ∈ Ẇ and λ ∈ Ṗ+ such that σ(λ + ρ) = λ + ρ. Let p(λ) and {λ} be (σ) and λ in this case, respectively. In the case λ + ρ is nonregular, set p(λ) and {λ} be 0. Since

w∈ Ẇ (w)e w(λ+ ρ) = p(λ) w∈ Ẇ (w)e w({λ}+ ρ) , (85) 
it follows from the identities (35), (84) that:

Proposition 4.2. ch Λ = λ∈max(Λ) p(λ) ċ h {λ} c Λ λ (86)

Semigroup structure

We state our first result about the set Γ(g, g[u]).

Theorem 4.3. As a subset of h * × h * , the set Γ(g, g[u]) is semigroup.

Proof. Let (Λ, λ) and ( Λ, λ) be elements in the set Γ(g, g[u]). We need to show that (Λ + Λ, λ + λ) ∈ Γ(g, g[u]). The pair (Λ, λ) is an element of Γ(g, g[u]) if and only if L(λ) ⊂ L(Λ). The condition is equivalent to the existence of a nonzero vector v ∈ L(Λ) such that g(v) = 0, ∀g ∈ ṅ+ and h

(v) = λ(h)v, ∀h ∈ h. ( 87 
)
Let v be a nonzero vector in L( Λ) satisfying the same conditions but for the pair ( Λ, λ). To show the semi-group structure of Γ(g, g[u]) we just need to show the existence of a nonzero vector ṽ in L(Λ + Λ) which satisfies the conditions (87) but for the pair (Λ + Λ, λ + λ).

We make the details in the two following steps.

Step 1. Construction of the vector ṽ. By the fact that L(Λ + Λ) is a g-submodule of L(Λ)⊗L( Λ) of multiplicity one, there exists an unique g-stable complementary subspace, which we denote by S such that

L(Λ) ⊗ L( Λ) = L(Λ + Λ) ⊕ S. ( 88 
)
Let π : L(Λ) ⊗ L( Λ) → L(Λ + Λ) be the projection with kernel S. Set ṽ = π(v ⊗ v). We will show that ṽ = 0 and satisfies the conditions (87) in the next steps.

Step 2. ṽ is nonzero. Let

L(Λ) = ⊕ µ∈h * L(Λ) µ (89) 
be the weight spaces decomposition of L(Λ). We define

L(Λ) ∨ = ⊕ µ∈h * (L(Λ) µ ) * . ( 90 
)
There exists a nonzero vector ψ ∈ L(Λ) ∨ such that

g(ψ) = 0, ∀g ∈ n -and h(ψ) = -Λ(h)ψ, ∀h ∈ h. ( 91 
)
Let G be the minimal Kac-Moody group corresponding to the Kac-Moody algebra g (see [START_REF] Kumar | Kac-Moody groups, their flag varieties and representation theory[END_REF]). To the vector v ∈ L(Λ) defined above, we associate a function

f v : G → C, g → ψ(g -1 (v)). Since L(Λ) is irreducible, the function f v is nonzero (f v = 0 implies Gv ⊂ ker ψ). Let B -be the negative Borel subgroup of G. We have (1, b).f v = Λ(b) -1 f v for all b ∈ B -. (92) Indeed, (1, b 
).f v (g) = f v ((1, b) -1 .g) = f v (gb) = ψ((b -1 g -1 )(v)) = b(ψ)(g -1 (v)) = Λ(b) -1 ψ(g -1 (v)) = Λ(b) -1 f v (g).
Similarly, for L( Λ), we define ψ ∈ L( Λ) ∨ and

f v : G → C, g → ψ(g -1 (v)). Then f v is nonzero and (1, b).f v = Λ(b) -1 f v for all b ∈ B -. ( 93 
) Set f = f v f v.
Since G is irreducible as an indvariety, the function f is a well-defined nonzero function on G. And of course,

(1, b).f = (Λ + Λ)(b) -1 f for all b ∈ B -. (94) 
Moreover, we have

f (g) = (ψ ⊗ ψ)(g -1 (v ⊗ v)). (95) 
Indeed, by definition

f (g) = f v (g)f v(g) = ψ(g -1 (v)) ψ(g -1 (v)) = (ψ ⊗ ψ)(g -1 (v) ⊗ g -1 (v)) = (ψ ⊗ ψ)(g -1 (v ⊗ v)). Now, ψ ⊗ ψ is an element of L(Λ) ∨ ⊗ L( Λ) ∨ = (L(Λ) ⊗ L( Λ)) ∨ = L(Λ + Λ) ∨ ⊕ S ∨ . (96) 
By ( 94), (95) we have

ψ ⊗ ψ ∈ L(Λ + Λ) ∨ . ( 97 
) It implies that ker(ψ ⊗ ψ) ⊃ S. (98) 
Rewrite

v ⊗ v = π(v ⊗ v) + s for some s ∈ S. Then we have (ψ ⊗ ψ)(g -1 (v ⊗ v)) = (ψ ⊗ ψ)(g -1 (π(v ⊗ v) + s)) = (ψ ⊗ ψ)(g -1 (π(v ⊗ v))) + (ψ ⊗ ψ)(g -1 (s)) = (ψ ⊗ ψ)(g -1 (π(v ⊗ v))). It means f (g) = (ψ ⊗ ψ)(g -1 (π(v ⊗ v))
). Since f = 0, we have ṽ = π(v ⊗ v) = 0.

Step 3. ṽ satisfies the conditions (87). For any g ∈ ṅ+ and h ∈ h, we have:

g(π(v ⊗ v)) = π(g(v ⊗ v)) = π(g(v) ⊗ v + v ⊗ g(v)) = π(0) = 0, h(π(v ⊗ v)) = π(h(v ⊗ v)) = π(h(v) ⊗ v + v ⊗ h(v)) = π((λ + λ)(h)(v ⊗ v)) = (λ + λ)(h)π(v ⊗ v).
We conclude that the set Γ(g, g[u]) is a semigroup.

Remark 4.4. By the same argument, we can prove that the set Γ(g, ġ) is a semigroup for any symmetrizable Kac-Moody algebra g and ġ is a subalgebra of

g such that ġ = ( ġ ∩ n -) ⊕ ( ġ ∩ h) ⊕ ( ġ ∩ n + ).

About the cases A

(1) 1 and A

(2) 2

In this part, we study two particular cases A

(1) 1 and A

(1)

1 . We will define a set A u (Λ) ⊂ P A,u (Λ)+Cδ of elements λ such that b Λ,λ,u = b Λ,λ . We show relations between the support Γ(g, g[u]) and its satured setting.

4.5.1

The set A u (Λ) for the case A

(1) 1 . Let Λ 0 be the 0-th fundamental weight and α be the second simple root. Fix m ∈ Z >0 , u ∈ Z >0 .

Theorem 4.5. For Kac-Moody algebra of type A

(1) 1 , let Λ = mΛ 0 + jα 2 ∈ P m + and λ ∈ Ṗ+ . If there exists b ∈ C such that (Λ, λ + bδ) belongs to Γ(g, g[u]) then λ = mΛ 0 + j α 2 for some j ∈ [0, um] ∩ (j + 2Z). If moreover 1. j ≤ j ≤ um -j and u is even; or 2. j ≤ j ≤ um -(m -j) and u is odd,

then b Λ,λ,u = b Λ,λ . (99) 
For Λ like in Theorem 4.5, we denote by A u (Λ) the set λ such that the theorem applies. Namely

A u (Λ) = mΛ 0 + j α 2 j ∈ [j, um -j * ] ∩ (j + 2Z) (100) 
where j * = j if u is even and j * = m -j if u is odd.

Before going to proof of the theorem, we need to state some propositions.

Proposition 4.6. Let A be the affine Cartan matrix of type A

(1)

1 . Fix m ∈ Z >0 , u ∈ Z >0 . Let Λ = mΛ 0 + jα 2 ∈ P m + .
1. We parametrize λ ∈ max(Λ) such that λ + ρ is regular with respect to Ẇ by λ k = Λ + kα + φ(m, j, k)δ. Then the only possible values of k are

k = j -j 2 -n(um + 2) and k = - j + j 2 -1 + n(um + 2) ( 101 
)
where j ∈ [0, um] ∩ (j + 2Z) and n ∈ Z.

Let

N k = -φ(m, j, k) + un(j + 1 -num -2n). ( 102 
) Then i. If k = j -j 2 -n(um + 2), then p(λ k ) = 1 and {λ k } = mΛ 0 + j α 2 -N k δ. ii. If k = -j +j 2 -1 -n(um + 2), then p(λ k ) = -1 and {λ k } = mΛ 0 + j α 2 -N k δ.
iii. The function N k is considered as a function on n and it attains the minimum at n = 0 in the first case and at n = 0 or n = 1 in the second case.

Proof. We need the following data

|α| 2 = 2, ρ = 2 u Λ 0 + 1 2 α, Ẇ = {t unα , t unα s 1 | n ∈ Z}. (103) 
Since λ k + ρ is regular with respect to Ẇ , there exists unique σ ∈ Ẇ and µ = mΛ 0 

+ j α 2 + b δ ∈ Ṗ um + such that σ(λ k + ρ) = µ + ρ.
mΛ 0 + num + 2n -k - j 2 -1 α+(φ(m, j, k)-un(-2k-j-1+num+2n))δ. (107) Hence j ∈ [0, um] ∩ (j + 2Z) and k = - j + j 2 -1 + n(um + 2). ( 108 
)
In this case, we have

p(λ k ) = -1 and {λ k } = mΛ 0 + j α 2 + (φ(m, j, k) -un(j + 1 -num -2n))δ. (109)
c. (Proof of 2.iii.) Put M = um + 2. We consider the first case when k = j -j 2 + nM . Write k = qm + r for some q ∈ Z, 0 ≤ r < m, then

-N k = φ(m, j, r) -q(k + r + j) + un(j + 1 + nM ) (110) 
= φ(m, j, r) -

( j -j 2 + nM -r)( j+j 2 + nM + r) m + un(j + 1 + nM ) (111) = n 2 M u - M m + n u + uj - M m j + j 2 -j 2 4m + r 2 m + rj m + φ(m, j, r) . (112) 
We have

r 2 m + rj m + φ(m, j, r) = 1 m r(r + j -m) if 0 ≤ r ≤ m -j, 1 m (r -m)(r + j -m) if m -j ≤ r < m. (113) 
The condition 0 ≤ r ≤ m -j can be rewritten as

j -m 2 ≤ nM + j 2 -m q + 1 2 ≤ m -j 2 (114)
and m -j ≤ r < m can be rewritten as

-j 2 ≤ nM + j 2 -m(q + 1) < j 2 . ( 115 
) It implies that r 2 m + rj m + φ(m, j, r) equals              |nM + j 2 -m 2 p| 2 - (m-j) 2 4 m if ∃p ∈ 2Z + 1 such that |nM + j 2 -m 2 p| ≤ m-j 2 , |nM + j 2 -m 2 p| 2 -j 2 4 m if ∃p ∈ 2Z such that |nM + j 2 -m 2 p| ≤ j 2 . ( 116 
)
Let P j,j : Z → R be the function that maps n to (116). Let F j,j : Z → R be the function defined by

F j,j (t) = t 2 M u - M m + t u + uj - M m j + j 2 -j 2 4m + P j,j (t). (117) 
So -N k = F j,j (n).

We will show that the maximum of F j,j (n) appears when n = 0, i.e., k = j -j 2 . To do that, we consider the function F : R × [0, m] × [0, um] → R given by F (t, j, j ) = F j,j (t) (we also define P (t, j, j ) from P j,j (t)). Let ∆(t, j, j ) = F (t + 1, j, j ) -F (t, j, j ), then it is nonincreasing in t and ∆(-1, j, j ) > 0 > ∆(0, j, j ). It implies that F (0, j, j ) > F (t, j, j ) for any t ∈ Z, t = 0, i.e., F i,j (n) attains its maximum when n = 0. Indeed:

∆(t, j, j ) = 2tM u - M m + (M + j ) u - M m
+ u + P (t + 1, j, j ) -P (t, j, j ).

(118) We denote the numbers p defined on P j,j (t + 1) and P j,j (t) by p 1 , p 0 , respectively. Use definition, we have p 1 -p 0 2 ≥ u. Hence

∂ t ∆(t, j, j ) = 2M u - p 1 -p 0 2 ≤ 0, i.e., ∆ is nonincreasing in t, (119) 
∂ j ∆(t, j, j ) = u - p 1 -p 0 2 ≤ 0, i.e., ∆ is nonincreasing in j . (120) 
So ∆(0, j, j ) ≤ ∆(0, j, 0) and ∆(-1, j, um) ≤ ∆(-1, j, j ). We can easily check that ∆(0, j, 0) < 0 < ∆(-1, j, um). Hence, in the case k = j -j 2 + nM , the minimum of N k occurs when n = 0.

For the case k = -j+j 2 -1 + nM . Since k = j -j 2 + n -j +1 M M , we have

-N k = F n - j + 1 M , j, j . (121) 
Then N k attains its minimum when n = 0 or 1.

Here is the next proposition we will use in the proof of Theorems 4.5.

Proposition 4.7. With φ(m, j, k) is defined as in (38), for each j ∈ [0, m] and j ∈ [0, um] ∩ (j + 2Z), we have

-φ(m, j, j -j 2 ) = min -φ(m, j, - j + j 2 -1), u -φ(m, j, - j + j 2 + 1) (122) 
if and only if one of the next three conditions follows is satisfied:

(A1) m > 1 and j ≤ j -2.

(B1) m > 1, u is even, j ≥ um -j + 1. (C1) m > 1, u is odd, j ≥ m(u -1) + j + 2.
Proof. We use a fact that φ(m, j, -(j + k)) = φ(m, j, k).

Indeed, if Λ = mΛ 0 + jα 2 + bδ ∈ P m + and λ = Λ + kα + φ(m, j, k)δ ∈ max(Λ), then s 1 (λ) = Λ -(j + k)α + φ(m, j, k)δ ∈ max(Λ). We use the equality (123) to rewrite φ(m, j, -

j + j 2 -1) = φ(m, j, j -j 2 ). (124) 
as φ(m, j, x) = φ(m, j, x + 1), where x = -j +j 2 -1. Use (38) for φ(m, j, x) we check that it happens if and only if (A1) happens. Similarly, use (123) to rewrite

-u + φ(m, j, - j + j 2 + 1) ≤ φ(m, j, j -j 2 ) ( 125 
)
as φ(m, j, x + 1) -u ≤ φ(m, j, x), where x = -j +j 2 . Use (38) for φ(m, j, x) we can check that it happens if and only if (B1) or (C1) happens.

We are now going to the proof of Theorem 4.5.

Proof. The first step is writing explicitly ch Λ in Proposition 4.2. It can be done by substituting values of p(λ k ) and {λ k } in Proposition 4.6 to the formula (86). We can rewrite ch Λ as follows

j ∈[0,um]∩(j+2Z) ċ h mΛ 0 + j α 2      n∈Z, k= j -j 2 -n(um+2) q N k c Λ λ k - n∈Z, k=- j +j 2 -1+n(um+2) q N k c Λ λ k      . (126) 
The identity (126) implies the condition j ∈ [0, um] ∩ (j + 2Z) that we need to prove for Theorem 4.5. The coefficients of c Λ λ k in the formula (126) are always positive integers since λ k ∈ max(Λ). Proposition 4.6 says that N k attains minimums at n = 0 for those on the left of (126), and at n = 0 or n = 1 for those on the right of (126). The corresponding minimums of N k are -φ(m, j, j -j 2 ) and min -φ(m, j, -j + j 2 -1), u -φ(m, j, -j + j 2 + 1) . (127) By ( 40), ( 80), ( 126), (127), we can imply that

-φ(m, j, j -j 2 ) ≤ min -φ(m, j, - j + j 2 -1), u -φ(m, j, - j + j 2 + 1) . (128) 
Moreover, the equality in (128) happens if and only if one of the three conditions (A1), (B1), (C1) in Proposition 4.7 is satisfied. So, for any λ = mΛ 0 + j α 2 ∈ A u (Λ), we have strict inequality in (128). By (126), in this case we have λ + φ(m, j, j -j 2 )δ ∈ max A,u (Λ). That means b Λ,λ,u = φ(m, j, j -j 2 ) = b Λ,λ .

4.5.2

The set A u (Λ) for the case A

(2)

2 . Let Λ 0 be the 0-th fundamental weight and α be the second simple root. Fix m ∈ Z >0 , u ∈ Z >1 such that (u, 2) = 1. Theorem 4.8. For Kac-Moody algebra of type A

(2) 2 , let Λ = mΛ 0 + jα 2 ∈ P m + and λ ∈ Ṗ+ . If there exists b ∈ C such that (Λ, λ + bδ) belongs to Γ(g, g[u]) then λ = mΛ 0 + j α 2 for some j ∈ [0, um 2 ] ∩ Z. If moreover 1. j ≤ j; and 2. j ∈ m(u-1)

2 -j + (2Z ≥0 ∪ Z <0 ), then b Λ,λ,u = b Λ,λ . (129) 
For Λ like in Theorem 4.8, we denote by A u (Λ) the set λ such that the theorem applies. Namely

A u (Λ) = mΛ 0 + j α 2 j ∈ j, um 2 ∩ Z ∩ m(u -1) 2 -j + (2Z ≥0 ∪ Z <0 ) . (130) 
Before going to proof of the theorem, we need to state some propositions.

Proposition 4.9. Let A be the affine Cartan matrix of type

A (2) 2 . Fix m ∈ Z >0 , u ∈ Z >0 such that (u, 2) = 1. Let Λ = mΛ 0 + jα 2 ∈ P m + .
1. We parametrize λ ∈ max(Λ) such that λ + ρ is regular with respect to Ẇ by λ k = Λ + kα + φ(m, j, k)δ. Then the only possible values of k are

k = j -j 2 -n um + 3 2 and k = - j + j 2 -1 + n um + 3 2 (131)
where j ∈ [0, um 2 ] ∩ Z and n ∈ Z.

Let

N k = -φ(m, j, k) + un j + 1 -n um + 3 2 . ( 132 
) Then i. If k = j -j 2 -n um+3 2 , then p(λ k ) = 1 and {λ k } = mΛ 0 + j α 2 -N k δ. ii. If k = -j +j 2 -1 + n um+3 2 , then p(λ k ) = -1 and {λ k } = mΛ 0 + j α 2 -N k δ.
iii. The function N k is considered as a function on n and it attains the minimum at n = 0 in the first case and at n = 0 or n = 1 in the second case.

Proof. We need the following data

|α| 2 = 4, ρ = 3 u Λ 0 + 1 2 α, Ẇ = t unα 2 , t unα 2 s 1 n ∈ Z . (133) 
Since λ k + ρ is regular with respect to Ẇ , there exists unique σ ∈ Ẇ and µ = mΛ 0 + j α 2 + b δ ∈ Ṗ um + such that σ(λ k + ρ) = µ + ρ. 

c. (Proof of 2.iii.) Put M = um + 3. We consider the first case k = j -j 2 + nM 2 . Write k = m 2 q + r for some q ∈ Z, 0 ≤ r < m 2 , then -N k = φ(m, j, r) -q(k + r + j) + un j + 1 + nM 2 (140) = φ(m, j, r) -2( j -j 2 + nM 2 -r)( (

) 142 
We have 2r 2 m + 2rj m + φ(m, j, r) equals

     2 m r(r + j -m 2 ) if 0 ≤ r ≤ m 2 -j, 2 m (r -m 2 )(r + j -m 2 ) if m 2 -j ≤ r < m 2 , r ∈ m 2 + Z, 2 m (r -m 2 )(r + j -m 2 ) -1 2 if m-1 2 -j ≤ r < m 2 , r ∈ m+1 2 + Z. (143) 
The condition 0 ≤ r ≤ m 2 -j can be rewritten as

2j -m 4 ≤ nM + j 2 - m 2 q + 1 2 ≤ m -2j 4 ( 144 
)
and m 2 -j ≤ r < m 2 can be rewritten as

-j 2 ≤ nM + j 2 - m 2 (q + 1) < j 2 . ( 145 
)
By [START_REF] Victor | Modular and conformal invariance constraints in representation theory of affine algebras[END_REF], [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], we have

ch Λ = λ∈P A,u (Λ)
ċ h λ q ṁλ -u -1 m Λ tr U (Λ,λ) (q L 0 -Z/24 ) (167)

The representation of V ir on U(Λ, λ) is unitrarizable with non-zero central charge c

[u] m and lowest eigenvalue with respect to L 0 is h

[u]
Λ,λ (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]). Suppose that V is the highest weight V ir-module of highest weight λ ∈ V ir * 0 with λ (Z) = c

[u] m and λ (L 0 ) = h

[u] Λ,λ , which is contained in U(Λ, λ), then we rewrite (167) as

ch Λ = λ∈P A,u (Λ) ċ h λ q ṁλ -u -1 m Λ -c [u] m /24+h [u] Λ,λ (dim V λ + dim V λ +(L 0 ) * q + . . . ) (168) = λ∈P A,u (Λ)
ċ h λ q -b Λ,λ,u (dim V λ + dim V λ +(L 0 ) * q + . . . ) (169)

= λ∈P A,u (Λ) ċ h λ+b Λ,λ,u δ (dim V λ + dim V λ +(L 0 ) * q + . . . ) (170) 
By Theorems 4.5, 4.8, we have b Λ,λ,u = b Λ,λ for all λ ∈ A u (Λ). Hence the terms inside the big bracket of (126), (158) are the products Before going to the proof, we first restate Lemma 6.3 and Lemma 8.5 in [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF].

q -b Λ,λ (dim V λ + dim V λ +(L 0 ) * q + . . . ) (171) 

If in addition h

Lemma 4.13. Let g be an affine Kac-Moody algebra of type A (1) or A

(2) 2 . Let Λ ∈ P + and λ ∈ (Λ + Q). Fix a positive integer N . Then λ ∈ max(Λ) if and only if N λ ∈ max(N Λ). Now we are going to the proof of Corollary 4.12.
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  character ch Λ can be written in terms of Weyl group, what we call the Weyl-Kac character formula (see Corollary 19.18 in [Car05]): ch Λ = w∈W (w)e w(λ+ρ) w∈W (w)e w(ρ) .(35)

  a. (Proof of 1. and 2.i.) If σ = t unα for some n ∈ Z, then σ(λ k + ρ) -ρ equalsmΛ 0 + num + 2n + k + j 2 α + (φ(m, j, k) -un(2k + j + 1 + num + 2n))δ. (104) Hence j ∈ [0, um] ∩ (j + 2Z) and k = j -j 2 -n(um + 2).(105)In this case, we havep(λ k ) = 1 and {λ k } = mΛ 0 + j α 2 + (φ(m, j, k) -un(j + 1 -num -2n))δ. (106)b. (Proof of 1. and 2.ii.) If σ = t unα s 1 for some n ∈ Z, then σ(λ k + ρ) -ρ equals

  a. (Proof of 1. and 2.i.) If σ = t unα 2 for some n ∈ Z, then σ(λ k + ρ) -ρ equalsmΛ 0 + k + j 2 + n um + 3 2 α + φ(m, j, k) -un 2k + j + 1 + n um + this case, we have p(λ k ) = 1 and {λ k } = mΛ 0 + j α 2 + φ(m, j, k) -un j + 1 -n um + 3 2 δ.(136)b. (Proof of 1. and 2.ii.) If σ = t unα 2 s 1 for some n ∈ Z, then σ(λ k + ρ) -ρ equalsmΛ 0 + -k -j 2 -1 + n um + 3 2 α+ φ(m, j, k) -un -2k -jthis case, we have p(λ k ) = -1 and {λ k } = mΛ 0 + j α 2 + φ(m, j, k) -un j + 1 -n um + 3 2 δ.

By

  = 0 then dim V λ +n(L 0 ) * = 0 for all n ∈ Z ≥0 . It implies L(λ + (b Λ,λ -n)δ) ⊂ L(Λ) for all n ∈ Z ≥0 . If h [u] Λ,λ = 0 then dim V λ +n(L 0 ) * = 0 for all n ∈ Z ≥0 \ {1}. It implies L(λ + (b Λ,λn)δ) ⊂ L(Λ) for all n ∈ Z ≥0 \ {1}.We have proven the theorem.SetΓ(g, g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | λ ∈ Λ + Q, L(N λ) ⊂ L(N Λ) for some integer N > 1}. (172)Corollary 4.12. Let g be an affine Kac-Moody algebra of typeA Λ ∈ P m + , u > 1 and λ ∈ A u (Λ) ∩ (Λ + Q). For all b ∈ C, we have 1. (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ d(Λ, λ + bδ) ∈ Γ(g, g[u]) for all d ∈ Z ≥2 .

  = 0 then (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ (Λ, λ + bδ) ∈ Γ(g, g[u]).
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It implies that 2r 2 m + 2rj m + φ(m, j, r) equals

Let P j,j : Z → R be the function that maps n to (146). Let F j,j : Z → R be the function defined by

We will show that the maximum of F j,j (n) appears when n = 0, i.e., k = j -j 2 . To do that, we show that the upper bound function

given below attains theirs maximum along t ∈ Z when t = 0.

where P + (t, j, j ) is

and

We just consider the function F + and apply similar arguments for F -. Let ∆ + (t, j, j ) = F + (t + 1, j, j ) -F + (t, j, j ), then it is nonincreasing in t and ∆ + (-1, j, j ) > 0 > ∆ + (0, j, j ). It implies that F + (0, j, j ) > F + (t, j, j ) for any t ∈ Z, t = 0. The same results is true for F -. Hence F i,j (n) attains its maximum when n = 0. Indeed:

We denote the numbers p defining P + (t + 1, j, j ) and P + (t, j, j ) by p 1 , p 0 , respectively. Use definition, we have p 1 -p 0 2 ≥ u. Hence

So ∆ + (0, j, j ) ≤ ∆ + (0, j, 0) and ∆ + (-1, j, um 2 ) ≤ ∆ + (-1, j, j ). We can check that ∆ + (0, j, 0) < 0 < ∆ + (-1, j, um 2 ). Hence, in the case k = j -j 2 + nM 2 , the minimum of N k occurs when n = 0.

Then N k attains its minimum when n = 0 or 1.

Here is the next proposition we will use in the proof of Theorems 4.8.

Proposition 4.10. With φ(m, j, k) is defined as in (52), for each j ∈ [0, m 2 ] and j ∈ [0, um 2 ] ∩ Z, we have

if and only if one of the next two conditions is satisfied:

(A2) m > 2 and j ≤ j -1.

Proof. We again use the equality (123) to rewrite

(157) as φ(m, j, x) = φ(m, j, x -1) and φ(m, j, x) = -u 2 + φ(m, j, x + 1 2 ), where x = -j +j 2 . Use (52), we can check that it happens if and only if condition (A2) or (B2) is satisfied.

We are now going to the proof of Theorem 4.8.

Proof. The strategy is the same as in the case A

(1) 1 . The first step is writing explicitly ch Λ in Proposition 4.2. By substituting values of p(λ k ) and {λ k } in Proposition 4.9 to the formula (86), we can rewrite ch Λ as follows

The identity (158) implies the condition j ∈ [0, um 2 ]∩Z that we need to prove for Theorem 4.8. The coefficients of c Λ λ k in the formula (158) are always positive integers since λ k ∈ max(Λ). Proposition 4.9 says that the number N k attains minimums at n = 0 for those on the left hand side of (158), and at n = 0 or n = 1 for those on the right hand side of (158). The corresponding minimums of N k are -φ(m, j, j -j 2 ) and min -φ(m, j, -

By ( 54), ( 80), ( 158), (159), we can imply that

Moreover, the equality happens if and only if condition (A2) or (B2) in Proposition 4.10 is satisfied. So, for any λ = mΛ 0 + j α 2 ∈ A u (Λ), we have strict inequality in (160). By (158), in this case we have λ + φ(m, j, j -j

We may assume that Λ ∈ P + and λ

In the cases A

(1)

1 and A

(2) 2 , we know precisely the number b Λ,λ,u = b Λ,λ for all λ ∈ A u (Λ) by Propositions 3.3, 3.5 and Theorems 4.5, 4.8. The following theorem uses this fact to describe the set B(Λ, λ). First, suppose that Λ ∈ P m + and λ ∈ P A,u (Λ) + Cδ. Set

Theorem 4.11. Let g be an affine Kac-Moody algebra of type A

(1)

If in addition h

We have the decomposition of L(Λ) with respect to the direct sum of g [u] ⊕ V ir-modules (see [START_REF] Victor | Modular and conformal invariance constraints in representation theory of affine algebras[END_REF]) Remark 4.14. In the case A

(1) 1 , we have A u (Λ) ∩ (Λ + Q) = A u (Λ). In the case A

(2) 2 , we have A u (Λ) ∩ (Λ + Q) is the subset of elements in A u (Λ) with strict condition j ∈ j + 2Z compare to (130).