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Abstract

Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts.
It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a
very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting
behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial
segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire
tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that
Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective
information transfer from mature granule cells to the CA3 pyramids.

Key words: axon initial segment, burst firing, Cav3.2, dentate gyrus, hippocampus, intrinsic excitability, mature granule
cells, T-type calcium channels

Introduction Lopez-Rojas and Kreutz 2016). The dentate is one of the few
The dentate gyrus is the first relay station of the hippocampal brain regions where adult neurogenesis occurs. Newborn, imma-
trisynaptic loop and is a key structure in many hippocampus- ture granule cells coexist with mature cells and are much more
dependent learning tasks, including contextual learning, pat- excitable and plastic during their maturation process than their
tern completion and pattern separation (Kesner and Rolls 2015; mature counterparts (Wang et al. 2000; Schmidt-Hieber et al. 2004;
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Ge et al. 2007). Therefore, immature cells have been considered the
key players in dentate physiology. However, immature cells com-
prise only a small minority of the total granule cell population at
any given time point of an adult animal lifespan. Consequently,
the focus of recent research has been shifted to try to understand
the physiological role of the poorly excitable and poorly plastic but
majoritarian mature granule cell pool (Alme et al. 2010).

Mature granule cells are characterized by a low input resis-
tance and a hyperpolarized resting membrane potential (Staley
et al. 1992; Mongiat et al. 2009). These cells are also promi-
nently inhibited by GABAergic innervation (Dieni et al. 2013;
Temprana et al. 2015), and their dendrites impose a strong
attenuation of synaptic potentials (Krueppel et al. 2011).
Consequently, they only occasionally fire action potentials.
More recent work has shown that besides their low spontane-
ous firing rate, mature granule cells in vivo fire bursts of action
potentials more often than single tonic spikes (Pernia-Andrade
and Jonas 2014). However, the mechanism underlying this
bursting behavior is currently unknown. In general, bursts are
considered to be more effective in discharging postsynaptic tar-
gets than single tonic-like spikes, which is particularly relevant
for dentate-to-CA3 synapses. These synapses have a pro-
nounced short-term facilitation and may profit more from a
burst-like event than other synapses in the brain (Nicoll and
Schmitz 2005). Indeed, single spikes from granule cells are
rarely sufficient to trigger postsynaptic suprathreshold
responses, which is in contrast to bursts of action potentials
(Henze et al. 2002).

Low-threshold T-type calcium channels can open at rela-
tively hyperpolarized membrane potentials, lower than the
sodium spike threshold, thus been able to potentially influence
whether and how a neuron will subsequently fire action poten-
tials (Perez-Reyes 2003). T-type channel activation enhances
excitability in thalamic neurons (Perez-Reyes 2003), and they
are also present at the axon initial segment (AIS) of brainstem
cartwheel cells, where they exert a strong modulatory effect on
the generation of action potentials (Bender and Trussell 2009).
In the dentate gyrus, immature granule cells show T-type
channel-mediated low-threshold calcium spikes that reduce
the current needed to elicit a sodium spike (Schmidt-Hieber
et al. 2004). However, after blocking T-type channels, no
changes in the action potential threshold occur in mature gran-
ule cells, and no other changes have been reported (Schmidt-
Hieber et al. 2004; Martinello et al. 2015). Given that T-type
channels are indeed present in mature granule cells (Martinello
et al. 2015; Blaxter et al. 1989), we hypothesized that these
channels, despite not affecting the action potential threshold of
mature granule cells, mediate their bursting capability and are
therefore a key element in achieving an efficient transmission
of information from the dentate to the next synaptic relay sta-
tion, the CA3 area.

Materials and Methods

All experimental procedures were carried out in accordance
with the EU Council Directive 2010/63/EU and were approved
by the local Committee for Ethics and Animal Research
(Landesverwaltungsamt Sachsen-Anhalt, Germany).

Animals

Wistar Han rats and C57BL/6] mice, both from Charles River,
were bred in-house. For local blockade of T-type channels,
Wistar Han rats were ordered from Charles River and allowed

to recover in house for 1-2 weeks before experiments. Cav3.2
knockout mice originally described by Chen and colleagues
(Chen et al. 2003) and backcrossed to the C57BL/6] genetic back-
ground by Janvier Labs, were a kind gift from Kevin P. Campbell
and were further bred in-house. Age-matched C57BL/6] mice
were used as controls for the Cav3.2 knockout mice.

Single Cell Recordings In Vitro

Hippocampal Slices

Transverse 400 pm slices from the right hippocampus of adult
male Wistar rats (8-10 weeks old) or adult male mice (20-30
weeks old) were cut with a vibratome (Leica VT1000S) in ice-
cold ACSF solution. The ACSF contained the following (in mM):
124 NacCl, 4.9 KCl, 2 MgSOy, 2 CaCl,, 1.2 KH,POy4, 25.6 NaHCO3
and 20 glucose, equilibrated with 95% 0,/5% CO,. Slices were
incubated at 34°C for 25min and subsequently held at room
temperature. The same extracellular solution was used for
preparation, incubation and holding of the slices.

Current-Clamp Recordings

Patch pipettes were pulled from a horizontal micropipette
puller (model P-97, Sutter Instruments) and filled with an intra-
cellular solution containing the following (in mM): 130 potas-
sium gluconate, 20 HEPES, 1 CaCl,, 2 MgCl,, and 10 EGTA. The
pH was adjusted to 7.3 and the osmolarity to 290 mOsm.
Pipettes of a 7-15 MQ tip resistance were used. Once transferred
to the recording chamber, slices were incubated in the bath
solution for 15 min prior to recordings. The temperature in the
recording chamber was adjusted to 25°C or 32°C for rats,
depending on the experiment and as indicated in the text. For
mice, all recordings were performed at 32 °C. Whole-cell patch-
clamp configuration was established, and cells were held at
—70mV by injecting a small holding current. Mature granule
cells were selected based on their shape, size and distribution
in the 2 outer thirds of the granule cell layer. Their identity was
further confirmed by their input resistance, according to the
literature, below 300MQ (Ge et al. 2007; Wang et al. 2000;
Schmidt-Hieber et al. 2004). The input resistance of the recorded
cells averaged 154.3 + 3.8 MQ.

Characterization of Burst Firing Following Somatic Current Injection
The standard protocol to characterize the mature cell firing
phenotype involved stimulating the cells with 250-ms-long
depolarizing somatic current injections. We used 40 pA increas-
ing steps starting from 0 pA with respect to the holding current.
The first step eliciting firing of the cell was termed “rheobase,”
and the next +40 pA step was termed “rheobase+1” (R + 1). This
R + 1 step was used for quantification of burst firing, as it
allowed a clear discrimination between bursting and nonburst-
ing spikes and produced consistent firing. Quantification of the
burst firing was performed by measuring the interspike interval
(ISI) between the first and second AP (first ISI) and later tonic
spikes coming at the end of the discharge, in these conditions,
the fourth and fifth AP (fourth ISI).

Except for the experiments of local puffs, all T-type chan-
nels blockers were bath-applied at the following concentrations
widely used in the literature and mostly selective for T-type
channels: 100pM NiCl, (Lee et al. 1999; Bijlenga et al. 2000;
Joksovic et al. 2005; Obejero-Paz et al. 2008; Engbers et al. 2012;
Cui et al. 2014), 3 pM mibefradil (McDonough and Bean 1998;
Martin et al. 2000; Todorovic et al. 2001; Perez-Reyes 2003), 1 pM
TTA-A2 (Kraus et al. 2010; Todorovic and Jevtovic-Todorovic
2011; Francois et al. 2013; Fernandez et al. 2015) and 50 pM NNC
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55-0396 (Huang et al. 2004; Li et al. 2005). NiCl, was obtained
from Sigma-Aldrich, Mibefradil and NNC 55-0396 were pur-
chased from Tocris, and TTA-A2 was a kind gift from V. Uebele
(Merck). The non-T-type blockers SNX-482 and nifedipine were
obtained from the Peptide Institute and Abcam, respectively.

Quantification of the Afterdepolarization and Correlation With the
Firing Phenotype

Single spikes were elicited by a 5-ms-long 600 pA current injec-
tion. The amplitude of the ADP following the AP was measured
at 6ms after the peak of the AP value corresponding to the
average timing of the peak of the ADP as calculated in all cells
recorded for this experiment. The firing phenotype in response
to the 250-ms, A40-pA stimulating protocol described above
was also assessed in the same cells to calculate the correlation
between the ADP amplitude and the first ISI at step R + 1.

Medial Perforant Path Stimulation-Driven Activity

A 6-10MQ patch pipette was filled with extracellular solution
and placed in the molecular layer approximately 100 pm from
the cell body. An ISO-Flex stimulator (A.M.P.I) was used to
deliver short square pulses of decreasing intensity from 100 to
10 pA to elicit both subthreshold and suprathreshold EPSPs. The
EPSP slope and the number of spikes (which rarely exceeded 2
APs) were quantified. We estimated the threshold EPSP slope
values, the values of EPSP slope eliciting spikes with 50% proba-
bility, individually for each cell from their E-S curves relating
the EPSP slopes with the spiking probability for “1 AP and
more” or “2 APs and more.” The extracellular solution con-
tained 20 pM bicuculline.

Local Blockade of T-Type Channels

For these experiments, 100 pM Alexa594 was added to the intra-
cellular solution to allow visualization of granule cell processes.
The extracellular solution was the same as described previ-
ously, except that KH,PO, was removed to prevent NiPO, pre-
cipitation and that KCl was increased to 6.1 mM to compensate
for it. The extracellular solution contained 10 pM CNQX, 50 pM
D-AP5 and 20 uM bicuculline. A 100-130 MQ tip resistance patch
pipette was filled with extracellular solution and contained
10 mM NiCl, and 100 pM Alexa594—or only extracellular solu-
tion and 100pM Alexa594 for the control group—and was
mounted on a micropressure system from npi electronic
(Tamm, Germany). Alexa594 fluorescence was used to ensure
that no solution was leaking from the puff pipette as well as to
estimate the size of the puff, which encompassed an area of
approximately 5-25 pm diameter.

Following the establishment of the whole-cell configuration,
the position of the axon and proximal dendrites were quickly
assessed using Alexa594 fluorescence. The puff pipette was
then placed in close proximity to the axon or a proximal den-
drite, 20 pm away from the soma. Granule cells were then stim-
ulated with 250-ms-long depolarizing steps of somatic current
injections (R + 1) + 20 pA. After 4 repeats, 15-PSI pressure steps
of 100 ms increasing length, starting from 100 ms up to 800 ms
and ending at the beginning of the somatic current injection
stimulation, were applied through the micropressure system
paired with 8 repeats of the somatic current injection protocol.
The somatic injection protocol was then repeated every 15s
until a stable recovery of the burst firing. The speed of recovery
was variable, ranging from seconds to a couple minutes, but it
mostly occurred within a minute.

Two-Photon Imaging

A commercial 2-photon laser-scanning Femto2D microscope
from Femtonics (Budapest, Hungary) was used. Laser pulses at
810nm were provided by a Ti:Sapphire femtosecond laser
(Cameleon Ultra I, Coherent). For measuring Ca®* signals, green
(Fluo-5F) and red (Alexa-Fluor 594) fluorescence values were
collected during 500 Hz line scans. Fluorescence changes were
quantified as the increase in green fluorescence normalized to
the average red fluorescence (AG/R) (Yasuda et al. 2004). The
Ca®* transient peaks were estimated from exponential fits of
the fluorescence traces. Fluorescence was collected through the
objective (60 x 1.0 NA, Olympus) and the oil immersion con-
denser (1.4 NA, Olympus) with 2 pairs of photomultipliers (2 for
collecting red band fluorescence and the other 2 for green band
fluorescence). An additional photomultiplier was used to collect
the transmitted infrared light. The composition of the intracel-
lular solution for these experiments was as follows (in mM):
130 potassium gluconate, 20 HEPES, 2 MgCl,, 2 Mg-ATP, 0.3 Na-
GTP, 0.25 Fluo-5F and 0.02 Alexa594. The pH was adjusted to 7.3
and the osmolarity to 290 mOsm. The extracellular solution
was the same as in the other experiments and contained 20 pM
bicuculline. Fluorescence data recording started 15min after
obtaining the whole-cell configuration.

Granule cells were stimulated with two 5-ms-long current
injections of 600 pA intensity to elicit a doublet of APs at 50 Hz
that reliably propagated to distal dendrites and axon. In
another protocol, APs were blocked by bath application of 1M
TTX, and cells were stimulated with current injections that
were 250ms in length and had a 40 pA increasing intensity to
reproduce the standard protocol used to characterize burst
firing. Care was taken to not depolarize the cells further than
—-20mV, providing maximal T-type channel activation with
limited activation of high-voltage-activated calcium chan-
nels (Perez-Reyes 2003; Pourbadie et al. 2017). This protocol
produced membrane potential changes that could not propa-
gate reliably to distal processes and was used to assess
T-type channel-mediated fluxes in the proximal axon more
specifically.

Field Recordings In Vitro

Hippocampal Slices

Field recordings were done in transversal hippocampal slices
from 20- to 30-week-old male mice. The right hippocampus
was isolated in ice-cold ACSF solution. Hippocampal slices
(400 pm thickness) were cut with a chopper and placed in an
interface chamber at 32 °C. The ACSF solution was the same as
that in the single-cell experiments. Slices were incubated for at
least 3h before the start of the recordings, which were per-
formed in the same incubation interface chamber at 32°C
(Sajikumar et al. 2005).

Electrophysiology

The population spikes and the field-excitatory postsynaptic
potentials were measured with 2 monopolar lacquer-coated,
stainless steel electrodes positioned at the granule cell layer
and middle of the molecular layer. One stimulation electrode
placed in the middle of the molecular layer was used to stimu-
late the medial perforant path. Biphasic constant current
pulses (0.1 ms per half-wave duration) to the perforant path at
0.033 Hz evoking 25% of maximal population spike amplitude
were used for test recordings.
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LTP-Induction Protocol

The LTP-induction protocol was theta-burst stimulation (TBS)
and consisted of 4 episodes repeated at 0.1Hz; each episode
included brief presynaptic bursts, that is, 10 pulses (0.2 ms per
half-wave duration, with the same stimulation intensity as in
baseline recordings) at 100 Hz, repeated 10 times at 5 Hz.

In Vivo Recordings

Headstages and Tetrodes

Tetrodes consisted of 4 wires twisted together (Formvar-coated
Nichrom wire @18 pum/25pm, Science Products) using a mag-
netic stir for spinning and glued as one tetrode by melting
Formvar with a heating gun. Headstages were self-designed to
house 8 tetrodes and one 32-channel EIB (Electrode Interface
Board, Neuralynx). The whole implant, including 3D printed
parts, EIB, tetrodes, pins, screws and copper adhesive tape
around the headstage weighed approximately 3-4 g.

Implantation
Chronic implantation of tetrodes in mice was performed simi-
larly as in previous work (Senkov et al. 2015, 2016), with minor
changes. In brief, mice were anesthetized with 1-3% isoflurane
delivered as a mixture with O, through a vaporizer (Matrx VIP
3000, Midmark) and a mouse breathing mask. The mice were
placed in a stereotaxic frame (Narishige, Japan), on a heating
pad (DC Temperature Controller, WPI) to maintain a constant
mouse body temperature (34-36 °C) during surgery. Coordinates
for 8 tetrodes, for 4x tetrodes in the mouse dorsal hippocampal
dentate gyrus in both hemispheres, were as follows: AP:
-1.6mm, L: +0.75-1, DV: 2.0mm; and AP: —-2.5mm, L: +1.5-2,
DV: 2.0 mm; and for 4x tetrodes in the CA3 area of the hippo-
campus in both hemispheres: AP: —-1.6 mm, L: +1.5-1.75, DV:
2.0mm; and AP: -2.5mm, L: +2.5-3, DV: 2.25-2.5 mm, were set
according to the mouse brain atlas (Paxinos and Franklin 2012).
After the surgery lasting for approximately 4-5h, the mice
were placed back into their home cages and monitored until full
awakening. Carpofen (5mg/kg b.w. s.c., Rimadyl, Pfizer Pharma
GmbH) was used as a postoperative analgesic. All recordings were
performed after the mice had fully recovered, usually at 2-3
weeks. Recordings were done by using a Neuralynx 32-channel
preamplifier and a 5-m tether. Two rolling blocks helped to reduce
the weight of the implant and the cable.

Local Field Potential and Unit Activity Recordings
Intrahippocampal local field potentials (LFPs) were recorded
using a digital electrophysiological 64-channel recording sys-
tem (Neuralynx, USA) and data acquisition software Cheetah
(Neuralynx, USA). Multi-unit activity was sampled at 32 KHz with
a wide-band 0.1 Hz-10kHz range filter. Animals were exposed to
a novel context and allowed to freely explore it while neural
activity was recorded. The recording session lasted for 5min. At
the end of the recording session, mice were sacrificed, and the
position of the tetrodes was verified. Only tetrodes with a correct
position were selected for further analysis.

LFP Analysis

Treatment and processing of signals were carried out in off-line
mode using Spike2 software (Cambridge Electronic Design, UK).
To remove the 50 Hz AC noise, original wide-band recordings of
the network activity with a sampling rate of 32kHz were pro-
cessed using forward fast Fourier transform (FFT); the power of
the 50 Hz component and its harmonics was set to 0, and the

inverse FFT was applied to reconstruct the signals. Obtained
records were low-pass filtered (350 Hz), down-sampled to 1kHz
(factor 32) and used for further analysis of the theta and
gamma oscillatory activity. For analysis of the network oscilla-
tions in the theta (5.0-12.5Hz) and gamma (30.0-100.0 Hz) fre-
quency bands, LFP signals in individual electrodes were
integrated for each tetrode in each animal. The spectral power
of oscillatory components in the frequency range 0-500 Hz was
obtained using sliding FFT (2** points in 2.048 s epochs, Welch’s
method).

Units Activity Analysis

Action potentials were detected in a bandpass filtered signal
(0.5-10.0 kHz). Events within a window of 1.25ms (40 points at
32kHz) with a magnitude exceeding 6 standard deviations
above the mean were detected, and spike waveforms were
extracted and stored for further classification. Spike sorting
using principal component analysis (PCA) was followed by
visual inspection and manual adjustment of clusters if neces-
sary. Later, the mean firing rates for classified units in the DG
and CA3, as well as bursting properties for units in the DG with
a mean bursting rate >0.5 burst/min, were computed. Units
with a mean firing rate <0.05 Hz were considered inactive and
discarded from the analysis. The following burst criteria were
used: number of spikes >2, maximal intraburst ISI <15ms.
Finally, the spike shapes of obtained units were visually
inspected, and inhibitory neurons were identified based on
their higher firing rate (generally above 10Hz) and shorter
latency compared with respective values in principal cells.
Throughout the text, the data only for putative excitatory neu-
rons are presented.

Experimental Design and Statistical Analysis

Experiments reported in this study were designed to examine
the effect of pharmacological blockade or genetic ablation of
T-type channels on the firing pattern and calcium influx in
mature granule cells of adult male rodents, as well as to char-
acterize the implications of these changes on dentate gyrus
synaptic plasticity and dentate-to-CA3 communication. All
data are presented as the meanz+standard error of the mean.
For statistical analysis, the normality of the data sets was
assessed with the D’Agostino & Pearson omnibus normality
test prior to further parametric or nonparametric tests, as indi-
cated in the text. Statistical tests were performed with Prism 6
(GraphPad Software, Inc., La Jolla, CA).

Results

T-Type Calcium Channels Mediate Burst Firing of
Mature Granule Cells

We first studied the firing pattern of mature granule cells (n = 25)
after somatic current injection. Interestingly, the firing pattern eli-
cited by small current injections followed a stereotypical pattern.
The first 2 action potentials of the discharge were closer to each
other in time than were the rest of the action potentials that were
more evenly distributed: a burst of few action potentials followed
by tonic spikes later on (Fig. 1A). The frequency of the burst was
approximately 50 Hz (17.94 + 1.70 ms), much higher than the fre-
quency of the subsequent tonic spikes (fourth ISI, ISI: 41.07 +
2.50 ms, approximately 24 Hz).

We next asked whether pharmacological blockade of T-type
channels might impact the firing pattern of mature granule
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Figure 1. The stereotypical firing of mature granule cells, but not their general excitability, is modified by nickel, a T-type channel blocker. (A) A representative trace
shows the characteristic firing pattern of mature granule cells in response to a square pulse current injection to the soma, specifically, an early burst of spikes, fol-
lowed by tonic action potentials. Also shown is an illustrative trace of the discharge in the presence of 100 uM nickel in the bath. The bars on top of the traces indicate
the first and fourth ISIs. Scale bars: 10 mV/100 ms. Nickel did not modify the general excitability of the mature granule cells. Neither the number of action potentials
(B), nor the minimum current needed to elicit an action potential (i.e., rheobase) (C), nor the action potential threshold (D), were modified by nickel. (E) There was,
however, a strong impairment of the burst firing by nickel, with no modification of the later tonic spikes. (F) The effect of nickel is clearly appreciated as a shift in the
distribution of the “first ISI/fourth ISI” ratios to a value close to 1 (0.81). In the control group, the ratio was 0.43. Both ratios were significantly different (P < 0.0001,

Mann-Whitney U-test.). *P < 0.0001, Mann-Whitney U-test.

cells. To this end, we recorded from a group of cells (n = 26) per-
fused with an extracellular solution containing 100 uM nickel, a
classical T-type calcium channel blocker. In agreement with pre-
vious studies (Schmidt-Hieber et al. 2004; Martinello et al.
2015), nickel did not change the general excitability of the
mature granule cells. The number of action potentials, the
action potential threshold and the current needed to elicit
action potentials were indistinguishable among the control
and the nickel-treated groups (Fig. 1B-D). What was changed,
however, was the pattern of the discharge. All spikes in the pres-
ence of nickel were generated in a rather similar tonic-like
fashion (first ISI: 31.12 + 1.89 ms and fourth ISI: 38.00 + 1.69 ms)
(Fig. 1E). The nickel effect was also reflected in the frequency dis-
tribution of the ISI ratios (first IS/fourth ISI): most of the cells
had a ratio close to 1 (first ISI/fourth ISI ratio: 0.81 + 0.037), typical
of a tonic firing mode. This is in contrast to the cells recorded in
the control group, where the ratio was twice lower (first ISI/fourth
ISI ratio: 0.43 + 0.033), reflecting the difference in the intervals
for the bursting and nonbursting spikes (Fig. 1F).

To confirm these results and to rule out any unspecific
effects of nickel, we repeated the experiments in the presence
of 3 other T-type channel blockers: mibefradil 3pM (n = 20),
NNC 55-0396 50uM (n = 19) and TTA-A2 1uM (n = 18).
Convincingly, the effects of all the blockers were very consis-
tent: a strong influence on the bursting behavior with no
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Figure 2. T-type calcium channels mediate burst firing in mature granule cells.
Burst firing was impaired by bath application of different T-type channel block-
ers: Mibefradil, TTA-A2 and NNC-55 0396. These blockers, similarly to nickel,
profoundly affected the first ISI, with no significant modification of the tonic
spikes (fourth ISI). Insets show representative examples of electrophysiological
traces in the corresponding groups. Scale bars: 10 mV/100 ms. **,**P < 0.01, P <
0.001 Mann-Whitney U-test.

significant changes in general excitability (Fig. 2). The ISI of the
first 2 action potentials (burst in control conditions) was
increased by more than 10ms in all treated groups, making
their instantaneous frequency close to the frequency of the
tonically generated action potentials in the discharge (Fig. 2).
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Burst Firing Relies on Intrinsic T-Type Calcium
Channels and Does not Directly Relate to the Action
Potential Afterdepolarization

Since T-type calcium channels are present at synapses (Weiss
and Zamponi 2013; Ly et al. 2016), we sought to test the hypoth-
esis that the effects of the T-type channel blockers on bursting
were due to changes in intrinsic properties of mature granule
cells and not to alterations in the network (i.e., feedback
GABAergic inhibition or other). We therefore pharmacologically
isolated granule cells from their network by blocking NMDA
(50 uM D-AP5), AMPA/KA (10 yM CNQX) and GABA, (20 uM bicu-
culline) receptors. Pharmacological blockade of T-type channels
with nickel (n = 23), mibefradil (n = 28), NNC 55-0396 (n = 20), or
TTA-A2 (n = 34) under these conditions still led to a significant
increment in the first ISI with no consistent effects on the tonic
spikes (Supplementary Fig. S1). For instance, nickel increased
the ISI of the bursting spikes to 27.24 + 2.79 ms, a value signifi-
cantly higher than in control conditions (16.73 + 1.91ms), while
very close to the ISI of the tonic spikes in control (30.86 +
2.79ms) or nickel (31.03 + 1.81ms) groups. The next series of
experiments were performed in the presence of this cocktail of
synaptic blockers unless otherwise indicated.

Action potential afterdepolarization is an intrinsic phenom-
enon that has been related to the burst firing of CA1 pyramidal
cells (Metz et al. 2005). We therefore explored the possibility
that the afterdepolarization also affected the bursting of mature
granule cells. To this end, we quantified the action potential
afterdepolarization in control conditions and when T-type chan-
nels were blocked with nickel (n = 21), TTA-A2 (n = 42) or NNC
55-0396 (n = 17). We did not find any significant modification of
the afterdepolarization by any of the blockers (Supplementary
Fig. S2A), in contrast to previous experimental evidence showing
that T-type channels might contribute to the ADP in immature
granule cells (Zhang et al. 1993). We also did not find any signifi-
cant correlation between the afterdepolarization amplitude and
the strength of the burst, quantified as the ISI of the bursting
spikes, in control cells (n = 76) (Supplementary Fig. S2B). Since it
was reported that R-type channels contribute to the afterdepo-
larization and burst firing of CA1 pyramidal cells (Metz et al.
2005) and R-type currents can be recorded in granule cells
(Sochivko et al. 2002), we also tested the effect of R-type chan-
nels blockade by 500 nM SNX-482 (n = 18) on the bursting behav-
ior of mature cells. SNX-482 is a potent blocker of Kv4.3 A-type
potassium channels that also blocks R-type calcium channels
(Newcomb et al. 1998; Bourinet et al. 2001; Kimm and Bean 2014)
with a variable efficacy among cell types (Newcomb et al. 1998).
We chose a concentration of SNX-482, which was previously
shown to be effective in granule cells (Sochivko et al. 2002;
Breustedt et al. 2003). We found that R-type channel blockade
did not significantly influence the bursting behavior of
mature granule cells (Supplementary Fig. S2C). Collectively,
these data point to a distinct intrinsic mechanism of burst
firing in mature granule cells that does not involve action
potential afterdepolarization.

T-Type Channels at the AIS Control the Burst Firing of
Mature Granule Cells

Based on these results, we concluded that T-type channels are
important contributors to burst firing in mature granule cells
and that bursting is an intrinsic property of these cells. We
next tried to address the spatial distribution of the burst-
relevant T-type calcium channels in mature granule cells.

First, we measured calcium influx along axon and dendrites
of mature granule cells (Fig. 3A) in control conditions (n = 29)
and in the presence of T-type channel blockers (Mibefradil n =
20, NNC 55-0396 n = 6) after making the cells fire a doublet of
action potentials at 50 Hz, a frequency similar to the one that
we recorded for the bursting spikes in the previous experi-
ments. We observed putative T-type-mediated calcium influx
all along the dendrites, with a trend toward a larger influx with
increasing distance to the soma (Fig. 3B). In axons, a different
pattern appeared, with a much larger component in the proxi-
mal axon (Fig. 3C). The proximal axon is a region of utmost
importance for the generation of action potentials (Debanne
et al. 2011; Yamada and Kuba 2016); therefore, we further inves-
tigated this issue. In the subsequent experiment, we used steps
of current injection similar to the ones used when assessing
the effect of the T-type blockers on burst firing. Furthermore,
we blocked action potentials to obtain a smaller depolarization
that would render a more accurate estimation of the spatial
distribution of the calcium influx (Gabso et al. 1997; Sabatini
et al. 2002). Interestingly, under these conditions, T-type cal-
cium influx was limited to the 15-30 um of the proximal axon
(Fig. 3D, control group n = 6, nickel group n = 8). This region
overlaps with the region of the mature granule cell axon where
action potentials are generated (Schmidt-Hieber and Bischofberger
2010), namely, the AIS.

We next tried to distinguish whether T-type channels at
dendrites or AIS of mature granule cells were responsible for
their bursting phenotype by local puff application of nickel.
Local blockade of T-type channels on dendrites did not signifi-
cantly affect the ISI of bursting spikes, whereas local blockade
of T-type channels at the level of AIS significantly increased
the ISI of the first 2 spikes to 2- to 3-fold the control baseline
values (Fig. 3E; nickel to dendrites, n = 4; vehicle to AIS, n = 4;
and nickel to AIS, n = 7). The effect was reversible, and the
burst firing usually recovered after a couple of minutes. By
puffing nickel on the AIS, we also observed a slight change in
the action potential threshold (Fig. 3F). Nevertheless, as we
did not observe any significant modifications of the action
potential threshold or general excitability of mature granule
cells by applying the T-type blockers in the bath, nor have
others reported such changes (Schmidt-Hieber et al. 2004;
Martinello et al. 2015), these changes in the first action poten-
tial threshold might have been caused by the higher, and
therefore less specific, concentrations of nickel used in the
local puffing. Nickel may indeed block high-voltage calcium
and sodium channels at high concentrations (Yamamoto
et al. 1993).

High-Frequency Burst Firing in Mature Granule
Cells is Also Mediated by T-Type Channels at
Near-Physiological Recording Temperature

The mean intraburst frequency of the action potentials we
observed in control conditions at 25°C was approximately
S50 Hz. However, mature granule cells can fire bursts of more
than 150Hz in vivo (Pernia-Andrade and Jonas 2014). As tem-
perature modifies T-type channel properties (Iftinca et al. 2006)
and because T-type channels mediate burst firing in mature
granule cells, we hypothesized that such high-frequency burst
firing could be found at higher temperatures. Indeed, recording
at 32°C increased the mean intraburst frequency of mature
granule cells up to 140Hz (Supplementary Fig. S3). When
recording at 32°C, it also became apparent that often, more
than 2 spikes occurred within the bursts, and frequently,
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Figure 3. T-type channels at the level of the axon initial segment mediate burst firing of mature granule cells. (A) Two-photon fluorescent image of a mature granule
cell filled with Alexa594, as a volume marker, and the calcium indicator Fluo-5F. (B) The cells received short pulses of current injection to the soma to evoke a doublet
of action potentials at 50 Hz, as shown in the inset. T-type channel blockers mibefradil and NNC-55 0396 caused a significant reduction in the doublet-evoked calcium
influx all along the recorded dendrites. In the axon, however, the effect was stronger in the proximal part (C). Insets show examples of electrophysiological and cal-
cium influx traces in the corresponding groups for the proximal axon and dendrite. Scale bars: 20 mV/50 ms, 0.5 dG/R/500ms. (D) To further understand the spatial
distribution of the T-type-mediated calcium influx into the proximal axon, we blocked action potentials with TTX and used a longer current injection similar to the
one used in a previous series of experiments. A significant effect of the T-type channel blocker nickel was only verified at a distance of 15-30 pm from the soma.
Insets show examples of electrophysiological and calcium influx traces. Scale bars: 20 mV/50 ms, 0.5 dG/R/500 ms. (E) Nickel or vehicle solution was puffed at den-
drites or the axon initial segment, as indicated. For each cell, 4 repeats were taken as the baseline (CTR), and puffs of increasing duration, from 100 up to 800 ms,
were then applied at the specified locations. Applying nickel locally to dendrites did not significantly modify the bursting, quantified as the first ISI. In addition, there
was no significant effect of local application of vehicle solution to the axon initial segment of mature granule cells. However, puffing nickel at the axon initial seg-
ment produced a highly significant increase in the first ISI. The traces in the inset show the pattern of action potentials in the control condition (left) or when puffing
nickel to the AIS (right). Scale bars: 20 mV/100 ms. (F) In addition to the strong effect on the burst firing, the puff of nickel at the axon initial segment also slightly
increased the threshold of the action potential, although it only reached statistical significance for the longest puff. ***, **P < 0.05, P < 0.01, P < 0.001, Mann-Whitney
U-test.

multiple bursts appeared in the discharge, which might be an
indication of the faster recovery rate from inactivation of T-
type channels and their larger conductance at higher tempera-
tures (Iftinca et al. 2006).

Next, we proceeded to verify the T-type channel depen-
dence of this bursting phenotype. Both T-type blockers,
nickel (n = 8) and TTA-A2 (n = 8), significantly increased the
first ISI, corresponding to the more reliable bursting event in

the discharge, without significant modification of the later
tonic fourth ISI. With both blockers, the intraburst frequency
was decreased by approximately 3-fold, from 140Hz in the
control group to approximately 45Hz in the presence of
the blockers. This frequency was again very close to the fre-
quency of the later tonic spikes in control and treated condi-
tions, that is, approximately 40Hz in all cases (Supplementary
Fig. S3).
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Figure 4. Burst firing of mature granule cells is conserved in mice and is mediated by the Cav3.2 T-type channel subtype. (A) Murine mature cells fire high-frequency
bursts of action potentials that are strongly impaired in the presence of the T-type channel blocker nickel or in animals lacking the Cav3.2 channel subtype (Cav3.2
knockout). The first ISI, corresponding to the burst spikes in control conditions, is significantly increased in the nickel and the Cav3.2 knockout groups compared with
the control animals. There was also a significant decrease in the fourth ISI in these groups. Nickel did not significantly modify the first or fourth ISI in the Cav3.2
knockout mice. Insets show illustrative traces of the pattern of action potentials in the different groups. The bars on top of the traces indicate the first and fourth
ISIs. Scale bars: 10 mV/100ms. (B) The effect of nickel or Cav3.2 channels knockout is clearly appreciated in the significant shift of the distribution of the “first ISI/
fourth ISI” ratios to values closer to 1 (0.85 and 0.78 in the nickel and knockout groups, respectively). In the control group, the ratio was 0.30. General excitability was
not affected in the Cav3.2 knockout mice compared with the wild-type animals. Neither the number of action potentials (C), the minimum current needed to elicit an
action potential (D), nor the action potential threshold (E), were modified in the absence of the Cav3.2 T-type channel subtype. *,*,***,**P < 0.05, P < 0.01, P < 0.001

and P < 0.0001, Mann-Whitney U-test.

T-Type-Mediated Mature Granule Cells Burst Firing is
Present in Rats and Mice and is Mediated by Cav3.2

All previous experiments were performed in young adult rats.
The pattern of discharge in response to somatic current steps
in mice was quite similar to the one in rats. Very often, a high-
frequency burst was observed, more frequently in the first part
of the discharge, though sometimes multiple bursts were seen,
followed by a more tonic arrangement of the later spikes. As in
rats, blocking T-type channels with nickel (n = 18) significantly
modified the firing pattern of mature granule cells in mice.
Nickel increased the first ISI by approximately 3-fold. The intra-
burst frequency changed from 120Hz in the control group to
35Hz in the presence of nickel (Fig. 4A).

Next, we sought to identify the T-type channel subtype
responsible for the burst firing in mature granule cells, taking
advantage of the available knockout lines. For this purpose, we
recorded from mature granule cells of mice lacking the Cav3.2

channel (n = 21). The first ISI was increased by 2- to 3-fold in
Cav3.2 knockout animals compared with the values of the con-
trol group (Fig. 4A). Remarkably, the firing pattern in the
absence of Cav3.2 closely resembled the pattern observed in
the control mice in presence of nickel. Thus, in both of these
conditions of impaired T-type function, the frequency distribu-
tion of the ratios “first ISI/fourth ISI” was shifted to high values
close to unity, characteristic of a tonic firing mode. In contrast,
in the control group, the ratios had a distribution much closer
to 0.1-0.2, reflecting the difference in the intervals for the burst-
ing and nonbursting spikes (Fig. 4B).

Notably, apart from the impairment in burst firing, the gen-
eral excitability in Cav3.2 knockout mice was indistinguishable
from that of the control animals. The number of spikes, the
required current to elicit an action potential and the action
potential threshold were not different between these groups
(Fig. 4C-E).
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Figure 5. Ability of mature granule cells to fire doublets of action potentials in response to synaptic stimulation is greatly impaired in Cav3.2 knockout mice. (A) The
medial perforant path was stimulated, and the evoked activity was evaluated in mature granule cells from wild-type and knockout animals. A decreasing series of
stimulation intensities was applied. Representative traces of evoked potentials from wild-type mature granule cells and Cav3.2 knockout mature cells are shown.
Scale bars: 10 mV/20 ms. (B) The number of action potentials elicited was significantly decreased in knockout animals, especially at intensities higher than 50 pA. (C)
The synaptic strength, quantified as the slope of the EPSP, was not different between the groups. (D) The ability of the cells to fire per se was not changed by the
absence of Cav3.2. E, The cells from knockout mice had an impaired ability to fire more than one action potential, which was especially the case at intensities higher
than 50 pA. These results were confirmed by the comparison of the EPSP slopes required to fire per se (F) or to fire bursts of action potentials (G). *,**,”*P < 0.05, P < 0.01

and P < 0.001, Mann-Whitney U-test.

These results point to Cav3.2 as the main T-type channel
subtype mediating the burst firing in mature granule cells, a
fact that is reinforced by the lack of a further effect of nickel on
the bursting ISI of Cav3.2 knockout mice (Fig. 4A).

“Synaptically Driven Bursting” is Also Impaired in
Cav3.2 Knockout Mice

Since neurons receive their inputs through synapses, we
sought to further evaluate whether the ability to fire bursts was
also compromised in Cav3.2 knockout mice upon synaptic
stimulation. For this purpose, we stimulated the medial perfor-
ant path and looked for potential differences between mature
granule cells of Cav3.2 knockouts (n = 25) and control mice (n =
18) (Fig. SA). We observed that the number of spikes elicited
was reduced in knockout animals (Fig. 5B). Since the excitatory
input—measured as the slope of the excitatory postsynaptic
potential—was practically identical between the groups
(Fig. 5C), the results suggest that the intrinsic ability of the cell
to fire was impaired in knockout mice. Next, we aimed to

dissect whether the apparent impairment was due to a general
compromised ability of granule cells to fire or if there was a
specific deficiency in eliciting bursts (2 or more spikes).
Remarkably, while the probability of firing per se (quantified as
the probability to fire at least one action potential) was not sig-
nificantly changed in the knockout animals (Fig. 5D), we
observed that the probability of firing 2 or more action poten-
tials was reduced (Fig. SE). Accordingly, the excitatory input
needed to fire at least one spike with 50% probability was not
significantly different between both genotypes (Fig. SF),
whereas the excitatory postsynaptic potential slope required to
fire 2 or more action potentials with 50% probability was
increased by almost 2-fold in the knockout mice (Fig. 5G).

We confirmed these results by recording evoked field poten-
tials after medial perforant path stimulation (Supplementary
Fig. S4). As in single-cell recordings, the field-EPSP slope
(Supplementary Fig. S4A) as well as the ability to fire per se
(Supplementary Fig. S4B) was similar between wild-type and
knockout mice. Thus, the E-S curves relating the field-EPSP
slopes to the first spike amplitudes were essentially identical,
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Figure 6. Impaired dentate gyrus synaptic plasticity in Cav3.2 knockout mice. Recordings of evoked field potentials were made after stimulation of the medial perfor-
ant path. General excitability and synaptic transmission seemed to be unaffected in knockout animals, as shown in the similar population spike amplitudes (A), EPSP
slopes (B) and the EPSP slope relation to the generation of action potentials (C). However, the level of synaptic potentiation recorded 1h after the TBS was reduced in
the knockout group compared with control animals (P < 0.05, Mann-Whitney U-test). In (D and E), the potentiation levels of the field-EPSP and population spike after
the TBS protocol are shown. The insets show the potentiation level in the last 10 min of recordings as well as traces corresponding to baseline and 1h after the TBS.
Scale bars: 5mV/5 ms. (F) During the induction protocol, granule cells tended to fire “bursts” of action potentials, especially after the second repetition of the theta-
burst stimulation protocol, as illustrated in the representative traces (upper traces: wild-type slice), whereas the Cav3.2 knockouts were much more reluctant to it
(lower traces: Cav3.2 knockout). We quantified the ratio of the second population spike amplitude in the burst to the amplitude of the first spike. The burst ratio in
wild-type slices (1.07 + 0.18) significantly differed from the burst ratio in the knockout group (0.32 + 0.15) (P < 0.05, Mann-Whitney U-test). (G) This burst ratio was sig-
nificantly correlated with the actual amount of synaptic potentiation 1 h later (Spearman coefficient of correlation r = 0.55, P < 0.01). *P < 0.05, Mann-Whitney U-test.

confirming the intact basal excitability of mature granule cells
lacking Cav3.2 channels (Supplementary Fig. S4C). However, a
major difference was observed in the ability to fire more than
one action potential. The field-EPSP slope needed to fire bursts
of 2 or 3 action potentials was increased by more than 1.5-fold
in knockout animals compared with control values (Supplementary
Fig. S4E).

Collectively, the results point to a reduced ability of mature
granule cells lacking the Cav3.2 channel to elicit more than one
action potential in response to a given synaptic input.

Cav3.2 Knockout Mice Exhibit Reduced Synaptic
Plasticity

Next, we searched for possible physiological implications of the
impairment in the ability to fire bursts of action potentials in
Cav3.2 knockout mice. As it has been shown that postsynaptic
bursting is an important element for the induction of synaptic
plasticity in hippocampal pyramidal cells (Pike et al. 1999), we

assessed whether that could also be the case for dentate gran-
ule cells.

We performed this series of experiments in the absence of
bicuculline, with an intact network. A stimulation electrode was
placed at the level of the medial perforant path, and 2 recording
electrodes were positioned: one at the granule cell layer for pop-
ulation spike recording and another in the middle of the molec-
ular layer to record the field-EPSP. As in previous experiments,
the general excitability of dentate granule cells was not signifi-
cantly changed in basal conditions by the absence of the Cav3.2
channels (Fig. 6A-C). Moreover, the paired pulse ratio (second
potential/first potential) for an interstimulus interval of 50 ms
was indistinguishable between both genotypes (EPSP ratio: wt
0.93 + 0.02, ko 0.93 + 0.01; PSA ratio: wt 2.17.4 + 0.24, ko 2.09 +
0.24). However, the level of synaptic potentiation elicited by a
TBS protocol in knockout slices was significantly reduced
compared with the control group (Fig. 6D,E).

To facilitate the bursting of cells, we increased the duration
of the stimulus pulse at the time of the induction protocol.
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Figure 7. Abnormal oscillatory activity in the dentate gyrus and CA3 area of knockout mice. Representative traces of the local field potential recorded in the dentate
gyrus and CA3 of freely behaving wild-type (A) and Cav3.2 knockout mice (B). Mean power of theta (C) and gamma (D) oscillations in the dentate gyrus of both experi-
mental groups. Gamma oscillations had a reduced power in the knockout mice. Theta (E) and gamma (F) oscillations in the CA3 area had higher spectral power in

knockout animals. ***P < 0.0001, t-test.

Interestingly, we observed that this manipulation was quite
effective for wild-type granule cells that tended to fire a doublet
of action potentials after the first TBS repeat (secondPSA-to-
firstPSA average for the repeats 2, 3, and 4 of the TBS: 0.83 +
0.14). This doublet firing was strongly impaired in the Cav3.2
knockout group (secondPSA-to-firstPSA average for repeats 2, 3,
and 4: 0.27 + 0.10) (Fig. 6F). Furthermore, this “burst-ratio” was
significantly correlated with the amount of synaptic potentia-
tion elicited (R = 0.55, P < 0.01) (Fig. 6G).

Altogether, these results indicate that bursting at the time
of plasticity induction is strongly related to the amount of syn-
aptic potentiation elicited in mature granule cells, at least for
the TBS. The Cav3.2 knockout mice showed an impairment of
their bursting ability that translated into a reduction in the
amount of potentiation afterward.

Cav3.2 Knockout Mice Show Disturbed Hippocampal
Oscillations, Impaired Dentate Granule Cell Burst Firing
and Decreased CA3 Spiking Activity In Vivo

We were next interested to assess whether the observed
impairment in the bursting capability of mature granule cells
had further implications in hippocampal physiology, particu-
larly in the firing of the CA3 postsynaptic targets. To this end,
we implanted tetrodes into the dentate and CA3 of wild-type

and knockout animals to record LFPs and single unit activity
from these hippocampal regions in awake animals during
exploration of a new context.

We observed that both theta and gamma rhythms were sig-
nificantly disturbed in the absence of Cav3.2 channels.
Knockout mice did not show prominent changes in the power
of the theta oscillations in the dentate gyrus, but a significant
reduction in the power of gamma oscillations (Fig. 7C,D). For
CA3, significant increases in both theta and gamma oscillation
power were detected (Fig. 7E,F). A second interesting observa-
tion was the confirmation of an impairment of the burst firing
in the dentate gyrus of knockout mice in vivo. The mean firing
rate and, especially, the mean bursting rate were significantly
diminished in the knockout group (Fig. 8A,B). To better under-
stand this finding, we further quantified the frequency of
“event” rate, considering an event as the occurrence of either a
single action potential or a burst of action potentials. The rea-
soning for this quantification is that the mean firing rate might
be affected by the number of bursts. In addition, as we expected
a reduction in the number of bursts in knockout animals
according to our in vitro data, this could explain the lower firing
rate in this group. Interestingly, despite a trend to lower values
in the knockouts, the mean event rate was not significantly dif-
ferent between groups (Fig. 8C), suggesting a mild or absent
influence of Cav3.2 channels on the general excitability of

Downl oaded from https://academn c. oup. conl cercor/advance-articl e-abstract/doi/10. 1093/ cer cor/bhy084/ 4975491
on 18 April 2018



12 | Cerebral Cortex

[=7]

i<,

Mean Firing Rate (Hz)
F-9
j

0
wi ko
Cxw DG
=
2 6
2
v 4
c
g
c
S0
= wit ko
E CA3
N
56 * k%
2 o
&4 008
gl (ole]
£ 2 Y
i O%%
£ 0 L g
= wit ko
G = CA3
= o *kk
e
€ 4 o
] O: o
c
[}
ST
£ 0 v
= wit ko

g‘ DG
~— *%k
2 1.00
©
X 075 o
g o
‘g 0.50 o
5 0.25 % -
‘2 °c0 %
§ 0.00
= wt ko
DG
0.4 i
2 03 T
ol
-E; 0.2 % o®
2 0.1 0
0.0
wt ko
) CA3
= 1.00 *k
[}
X 0.75
o ©oo
£ 0.50 0P
[]
% 0.25 % o’
£ 0.00 *
%’ wt ko
CA3
0.4
(@]
-% 0.3 OO
= 0.2 B0 o
2 o Z =
0.0 2
wt ko

Figure 8. Impaired burst firing capability in the dentate gyrus of Cav3.2 knockout mice with concomitantly reduced CA3 activity suggests a compromised dentate-to-CA3
communication in the absence of the Cav3.2 channels. The mean firing rate (A) and mean bursting rate (B) were significantly reduced in the dentate gyrus of knockouts.
The similar mean event rates (C) between the groups and the reduced burst ratio (D) of the knockout mice showed an impairment in the bursting capability of putative
granule cells lacking the Cav3.2 channel, with no big changes in general excitability. Regarding the CA3 area, the mean firing rate (E), mean bursting rate (F) and mean event
rate (G) were significantly decreased in comparison to the rates in the control group. As the burst ratio in knockouts was similar to that in controls (H), the results showed
that the impairment in the firing rate of CA3 was related to the impaired dentate bursting ability. *,*,**P < 0.05, P < 0.01 and P < 0.001, Mann-Whitney U-test.

granule cells. However, the most remarkable observation was
that the proportion of bursts from the total number of events in
wild-type mice was twice that measured in the knockouts
(Fig. 8D). This reduction in the frequency of bursts in the den-
tate of knockout animals was concomitant with a highly signif-
icant drop in the mean firing rate and mean event rate in the
CA3 region (Fig. 8E-G), consistent with the importance of the
burst firing of granule cells for the effective triggering of their
postsynaptic CA3 targets.

Discussion

Burst firing in the dentate gyrus has often been associated with
pathological conditions such as epilepsy (Shao and Dudek 2011,

Dengler and Coulter 2016; Kelly and Beck 2017). However,
recent in vivo recordings have shown that mature granule cells
preferentially fire in bursts while animals are exploring a new
environment (Pernia-Andrade and Jonas 2014). Bursts of action
potentials should have a particularly crucial role for neurons
that otherwise mainly remain silent and even more so for gran-
ule cells, whose synapses with their CA3 pyramid targets
exhibit one of the strongest short-term facilitations known in
central synapses (Nicoll and Schmitz 2005).

The bursting phenotype we described here correlates well
with the kinetic properties of the T-type calcium channels,
which quickly inactivate afterdepolarization and can therefore
preferentially affect the earliest spikes in the discharge (Perez-
Reyes 2003). Indeed, reducing T-type channel activity by means
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Figure 9. Proposed model of the Cav3.2 channel as a critical switch for mature granule cells to support synaptic plasticity and be effective in transmitting information
to the CA3 pyramids. A schematic mature granule cell sending axonal projections to CA3 pyramidal neurons, representing 2 different conditions of Cav3.2 channel
activity. Top half: Cav3.2 current (Icays2) enhances the ability of mature granule cells to generate high-frequency bursts of action potentials. This process, in turn, facil-
itates synaptic plasticity in the proper granule cells and produces a sufficiently strong stimulation of the postsynaptic CA3 pyramidal neurons to initiate spikes.
Bottom half: low numbers of Cav3.2 channels or downregulation of their activity results in a reduced Icay32. As a consequence, mature granule cells are impaired in
their ability to produce action potential bursts. This translates to reduced synaptic plasticity and inefficient stimulation of postsynaptic CA3 pyramidal cells.

of pharmacological blockers impaired the burst firing of mature
granule cells. However, as previously reported (Schmidt-Hieber
et al. 2004; Martinello et al. 2015), we did not observe significant
changes in the general excitability of mature granule cells after
T-type channel blockade. Furthermore, we found that the effect
of T-type channels on bursting is mediated by axonal T-type
channels, presumably in the AIS, a structure of crucial impor-
tance in the generation of the action potential (Buffington and
Rasband 2011; Bender and Trussell 2012; Yamada and Kuba
2016). Due to the low conductance of T-type channels and their
consequently confined effects, T-type channel localization at
key targets such as the AIS might significantly contribute to
potentiate their action. Notably, the AIS of granule cells shows
structural and functional plasticity (Regehr and Tank 1991,
Evans et al. 2013; Scott et al. 2014; Martinello et al. 2015), from a
distal shifting of the whole AIS in response to prolonged neuro-
nal activity (Evans et al. 2013) to submillisecond distance-
dependent inactivation of sodium channels depending on the
kinetics of the ongoing depolarization (Scott et al. 2014).

T-type channels comprise 3 family members, Cav3.1, Cav3.2
and Cav3.3, which differ in their molecular structure, voltage-
dependence and kinetic properties (Perez-Reyes 2003). Cav3.2 is
found all along the granule cell membrane, including the AIS
(Martinello et al. 2015; Aguado et al. 2016). Moreover, animals
lacking this channel isoform have deficits in hippocampal-
dependent learning (Chen et al. 2012; Gangarossa et al. 2014).
We therefore hypothesized that Cav3.2 might be the key player
in controlling the burst firing of mature granule cells. We found
that Cav3.2 knockout animals were severely impaired in their
ability to fire bursts of action potentials in vitro in spite of an
otherwise similar excitability compared with that of controls.
This impairment in burst firing resulted in reduced synaptic
plasticity properties in knockout mice, which exhibited roughly
half of the potentiation levels of wild-type animals. Bursts of
action potentials can backpropagate to dendrites better than
single action potentials can, allowing stronger local depolariza-
tion and a larger calcium influx in dendrites and synapses,
thereby facilitating the induction of synaptic plasticity (Pike
et al. 1999; Buzsaki et al. 2002). Bursts could also produce a
larger increase in calcium in the soma, potentially influencing
transcription and translation processes. We aimed to further

assess physiological consequences of the absence of Cav3.2
in vivo and recorded LFPs and single unit activity from the den-
tate gyrus and CA3 of knockout and control awake mice.
Knockout animals had disrupted oscillatory activity in both the
dentate and CA3 area. An interesting finding was the reduction
in the power of gamma oscillations in the dentate gyrus and a
concomitant increase in CA3. Why the dentate gamma power
was decreased in Cav3.2 knockout animals is not completely
clear, but the impairment in burst firing of granule cells might
be an important contributing factor. Two main generators of
gamma oscillations in the hippocampus are the dentate gyrus
and the CA3 region (Csicsvari et al. 2003; Colgin and Moser
2010). A reduction in the power of the gamma oscillations in
the dentate has been shown to lead to a compensatory increase
in the activity of the CA3 generator (Bragin et al. 1995; Csicsvari
et al. 2003; Montgomery et al. 2008), similar to what we found.
We also recorded single unit activity and observed a significant
impairment in the bursting rate of putative granule cells of
Cav3.2 knockout mice in vivo. Most importantly, this reduction
in the bursting capability of granule cells was accompanied by
a strong reduction in the mean firing frequency of CA3 cells,
without any significant effects on bursting in this region. These
findings suggest different mechanisms that support bursting in
granule cells compared with pyramidal cells. Furthermore, they
are consistent with the importance of granule cell bursting for
the triggering of postsynaptic CA3 targets. However, these
results should be cautiously interpreted, as the Cav3.2 knock-
outs are a constitutive global Cav3.2 knockout strain lacking
the channel in all cells—including the CA3 pyramidal cells for
which an important role of T-type channels in neuronal excit-
ability has been suggested (Reid et al. 2008)—during their life-
spans. However, together with published behavioral data (Chen
et al. 2012; Gangarossa et al. 2014), our study points to the criti-
cal role of Cav3.2-mediated cell bursting for the formation and/
or retrieval of hippocampal-dependent memories.

Blockade of T-type calcium channels in the AIS significantly
modifies both the general excitability and the bursting ability of
dorsal cochlear nucleus interneurons (Bender and Trussell
2009). Here, we described mostly a specific modulatory effect of
Cav3.2 on bursting, and not on firing per se, under basal condi-
tions. However, our results do not preclude the possibility of an
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effect on general excitability in other circumstances. T-type cal-
cium channels were recently shown to be present at the AIS of
mature granule cells, where by modulating the M-type potas-
sium channels, they can modify the action potential threshold
(Martinello et al. 2015). In that study, however, only changes in
action potential threshold were evaluated, with no assessment
of the bursting ability of mature granule cells. Moreover, such
effects on the action potential threshold were only seen when
T-type channel functionality was potentiated through choliner-
gic stimulation. However, no effects on threshold or other mod-
ifications were reported after T-type channel blockade in the
basal state (Martinello et al. 2015). Thus, no function of T-type
channels in basal physiological conditions similar to in the
present work has been described for mature granule cells.
Collectively our data suggest that T-type channels in mature
granule cells indeed play a crucial role in basal conditions by
supporting the ability of these neurons to fire bursts of action
potentials, which is in turn important for synaptic plasticity
and proper dentate-to-CA3 communication. We therefore pro-
pose that Cav3.2 channels could act as a switch for mature
granule cells (Fig. 9). By controlling their ability to fire bursts of
action potentials, Cav3.2 channels might determine to which
extent mature granule cells will undergo synaptic plasticity
and how effective they will be in transmitting information to
the CA3 pyramids. In this context, neuromodulation could be a
powerful way through which mature granule cell bursting and
dentate-to-CA3 communication might be effectively fine-tuned,
as T-type channels are known to be regulated by many impor-
tant neurotransmitters and hormones (Perez-Reyes 2003).
Thus, we propose that due to the low basal excitability of
mature granule cells, their bursting capability is a crucial ele-
ment for their physiological function.
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