
HAL Id: hal-02355987
https://hal.science/hal-02355987v1

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Online and batch algorithms for VNFs placement and
chaining

Oussama Soualah, Marouen Mechtri, Chaima Ghribi, Djamal Zeghlache

To cite this version:
Oussama Soualah, Marouen Mechtri, Chaima Ghribi, Djamal Zeghlache. Online and batch
algorithms for VNFs placement and chaining. Computer Networks, 2019, 158, pp.98-113.
�10.1016/j.comnet.2019.01.041�. �hal-02355987�

https://hal.science/hal-02355987v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Online and Batch Algorithms for VNFs Placement and Chaining

Oussama Soualaha, Marouen Mechtrib, Chaima Ghribia, Djamal Zeghlachea

aMines-Telecom, Telecom SudParis, CNRS UMR 5157, Evry, France
{oussama.soualah, chaima.ghribi, djamal.zeghlache}@telecom-sudparis.eu

bOrange Labs, Chatillon, France
marouane.mechteri@orange.com

Abstract

This paper proposes an Integer Linear Program (ILP) to address the Virtualized Network Function Forwarding Graph
(VNF-FG) placement and chaining problem when VNFs are shared across tenants to optimize resource usage and
increase provider revenue. Since ILP based approaches do not scale well with problem size, the proposed algorithm
(R-ILP for reduced exploration) selects a limited number of candidate hosts from the infrastructure to control com-
plexity. Since the online R-ILP treats the requests sequentially, a batch strategy that operates on a set of requests is
also proposed to improve performance. The online algorithm processes the VNF-FG requests on a sequential basis
as they arrive while the batch mode treats several requests jointly over a batch window. This work focuses on en-
ergy consumption optimization as a general objective. The proposed solutions are shown to outperform competitor
algorithms from the state of the art that rely also on VNFs sharing. Results from extensive simulations, based on real-
istic and large scale topologies, report the performance in terms of rejection of service requests, energy consumption,
scalability and achieved revenues. The performance benefits of operating our R-ILP in batch mode are highlighted.

Keywords: NFV, VNF-FG Placement and Chaining, Integer Linear Program, Batch, Energy efficiency, VNF sharing

1. Introduction

For Network Functions Virtualization (NFV) and
Software-Defined Networking (SDN) to capture the
market, network services vendors and providers must
overcome a number of challenges in service model-5

ing and orchestration, in optimization of their shared
and virtualized resources and to take advantage of open
source technologies. Network and service providers
need also to develop the ability to provide their cloud
and network services on demand at minimum infras-10

tructure cost while maximizing their revenues. These
revenues can be achieved if the providers maximize vir-
tualized functions and physical resources usage and au-
tomate the provisioning and management of the services
to multiple tenants. By optimizing the placement and15

chaining of virtualized network functions, the providers
can truly cash on the benefits of NFV and SDN.

The work presented here is an extension of our previ-
ous work [1], with the following main added values: i) a
pragmatic batch algorithm, ii) a comparison with related20

work strategies, iii) an in depth performance evaluation
as well as iv) a new selection method to keep promi-
nent candidates. It focuses on supporting the cloud and
network services providers in this required overall opti-
mization. To address their needs, the sharing of Virtual-25

ized Network Functions (VNFs) across multiple tenants
and the optimized placement and chaining of these func-
tions are taken into account in our contribution. VNFs
may be (time) shared to avoid spawning more VNFs to
reduce hosting cost and power consumption. Placing30

a sequence of VNFs providing network services (e.g.,
load balancers, firewalls, IPS/IDS, etc.) while steering
traffic flows across the VNFs according to a VNF-FG
specification is an NP-Hard problem [2].

Our contribution consists in making available an Inte-35

ger Linear Program (ILP) to improve the placement and
chaining of NFV services to meet the aforementioned
objectives and the need for algorithms that are suffi-
ciently generic to be tuned according to the preferences
and business interests of the providers. In modeling the40

placement of VNF requests, this need is integrated in
our ILP with criteria and constraints that can be con-
figured as desired. Another important facet of overall
cost optimization is the energy consumption induced by
the algorithms that should also be minimized. The pro-45

posed ILP includes energy efficiency in the optimiza-
tion objective. Other objectives based on the provider
needs, such as minimization of requests rejection and
maximization of the earned revenue, can be straightfor-
wardly added to the algorithm.50

Preprint submitted to Computer Networks December 29, 2018

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1389128618302548
Manuscript_8039c9f716e1c7e8efcb7e9db80de09a

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1389128618302548
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1389128618302548

As mentioned, the objective of this paper is to provide
a generic ILP that addresses the online VNF-FG place-
ment and chaining problem using the sharing capability
enabled by the NFV paradigm and that can be tuned to
meet the requirements and preferences of the stakehold-55

ers. A batch mode is also proposed to treat jointly a
group of requests over a time window to improve over-
all performance and optimization compared with the se-
quentially operated online ILP. In both modes we select
a subset from the most prominent candidate hosts to im-60

prove scalability with marginal impact on optimality.
The performance of the proposed algorithms is com-

pared with current state of the art algorithms known
to perform best among the algorithms available in the
literature that address both placement and chaining of65

shared VNFs. The first algorithm we compare perfor-
mance with is the ILP based algorithm of [3] that con-
siders the objective of minimizing energy consumption
for VNF placement and chaining. The proposed robust
solution in [3] considers a joint resources and flow rout-70

ing assignment problem for VNFs placement with the
objective of minimizing power consumption of servers
and switches and the routing graph. The second is
SFC-Monte Carlo Tree Search (MCTS for short), a tree
search based algorithm that also shares VNFs across75

users or tenants to improve resource usage and mini-
mize cost [4]. We limit the comparison to these two
algorithms since they are, to the best of our knowledge,
the closest to our work. MCTS with and without shar-
ing of VNFs[4] has also be shown to perform among the80

best VNF placement and chaining algorithms [4] [5] in
the current state of the art as described in the related
work section of this document. Results of extensive
simulations show that our proposed R-ILP outperforms
MCTS in all reported metrics and performance indica-85

tors. The ILP also scales as shown in the complexity
mathematical expression, reported in section 4.2, since
only a limited number of candidate hosts are explored
for placement and chaining and this is shown not to de-
grade performance of the ILP, an added advantage com-90

pared to MCTS and the state of the art. These results
also confirm that it is possible to use an ILP based al-
gorithm, with the appropriate depth of exploration of
the solutions, in our case by retaining only a limited
number of candidate hosts for placement and chaining,95

to avoid resorting to heuristics for large problem sizes
while finding good placement solutions. Besides, our
batch approach, that makes use of our algorithm R-
ILP, outperforms the other on line strategies. This re-
sult highlights the efficiency of the batch treatment and100

emphasizes the need to investigate more this mode that
serves more clients on more provider resources thus im-
proving scalability with problem size.

Section 2 of this paper presents related work ad-

dressing VNF-FG placement and chaining. The sys-105

tem model and the formal description of the problem
statement are described in Section 3. Section 4 presents
the proposed ILP model, the online and the batch al-
gorithms. Section 5 reports the performance evaluation
results that confirm and highlight the expected improve-110

ments. Section 6 summarizes the main findings.

2. Related work
The VNF placement and chaining problem has received
considerable attention in recent years. In fact, it was
overviewed for instance in [6]. Prior works typically115

cast the problem into a traditional virtual network em-
bedding (VNE) problem. However, the placement and
routing of VNFs is a problem fundamentally different
from the VNE problem [7], [8], [9]. In VNE, requests
are modeled by simple undirected graphs, whereas VNF120

chains are more complex components that contain both
the VNFs to place and the traffic flows to steer between
the end points. In addition to that and contrary to the
VNE problem, the VNF placement and routing demand
is not a multipoint-to-multipoint network connection re-125

quest, but a point-to-point source-destination flow rout-
ing demand.

The proposed solutions for the VNF placement and
chaining can be classified in heuristic and exact ap-
proaches. Exact methods are efficient in finding optimal130

solutions only for small problem sizes and are not usu-
ally suitable for data centers with thousands of physical
machines. To improve the scalability problem of exact
methods, heuristics are used to handle larger infrastruc-
tures. The heuristics typically reduce execution times135

and complexity at the expense of optimality. We review
the related work by organizing the state of the art into
these two main classes.

2.1. Heuristic approaches
The work in [10] proposes a heuristic algorithm to place140

VNFs with a minimum overall network cost objective.
Authors in [11] provide a “network functions virtualiza-
tion ” orchestration model and design a greedy heuris-
tic to achieve the placement. A heuristic proposed in
[12] uses Simulated Annealing (SA) to find solutions in145

shorter times but simplifies the overall problem by con-
sidering only one type of VNF and rather small chains.
In the above mentioned solutions, the problem of VNF
placement and chaining is solved in two steps. The
VNFs are placed first and then the traffic is steered150

through the chains via the shortest possible paths but
this leads to suboptimal solutions.

In [13], authors present an energy aware Game The-
ory approach to resource allocation for VNFs in NFV
environments but evaluate their solution on a small in-155

frastructure involving just 3 and 5 servers. Related
work presented in [2] proposes a polynomial complex-

2

ity heuristic for VNF placement and chaining using a
complex transformation of the problem by adding new
virtual switches but this increases complexity. The pro-160

posed heuristic models the problem as a Multi-Stage
directed graph with associated costs. The VNF are
placed using the Viterbi algorithm [14] applied to the
Multi-Stage graph. The proposed Multi-Stage algo-
rithm has the drawback of favoring the mapping of165

nodes (VNFs) of each request on the same physical
server. The bandwidth constraints between intercon-
nected VNFs are hence implicitly neglected each time
VNFs are embedded in the same physical machine.

In [15], authors proposed an eigendecomposition170

based approach for joint VNFs placement and traffic
steering in forwarding graphs. A greedy algorithm
based heuristic is also presented to solve the problem
iteratively. The Greedy solution is based on bipartite
graph construction and matching techniques and solves175

the problem in two steps (mapping VNFs then steering
traffic between them).

In [16], authors address the problem of VNF Place-
ment and traffic steering in Cloud datacenters and de-
sign a dynamic programming (DP) algorithm for VNF180

chain placement that runs in polynomial time. Authors
highlight the efficiency of a dynamic programming ap-
proach to solve the VNF embedding problem.

In [5] authors proposed a decision tree based algo-
rithm to address the problem of VNFs placement and185

chaining. This work makes use of the Monte-Carlo Tree
Search algorithm to control the problem complexity.
Simulation results show that this new algorithm outper-
forms the state of the art approaches especially in rejec-
tion rate of placement requests. The main disadvantage190

of this approach is that it does not handle graph based
requests and only deals with chains. Authors of [17] ex-
tended this work by providing a reliable algorithm that
ensures resilience to physical link failures. This was one
of the first papers , as well as [18], addressing reliabil-195

ity and survivability for VNFs placement and chaining
problem.

Authors in [19] propose an online algorithm for
availability-aware SFC mapping for wide area service
chaining, which can minimize the resources allocated to200

service chain requests while meeting clients’ availabil-
ity requirement. Authors in [20] propose a matrix-based
method and a multi-stage algorithm for the placement of
service chains. These solutions support only the online
mode.205

In [4], authors propose a VNF sharing based al-
gorithm that combines the advantages of the Monte-
Carlo Tree Search algorithm and the good performance
achieved by the strategy presented in [5]. Sharing of
the VNFs is taken into account in this new algorithm to210

use more efficiently the physical resources. This algo-

rithm is shown to outperform most other state of the art
algorithms in energy consumption and rejection rate of
placement requests.

The major limitation of this kind of heuristic based215

algorithms is the absence of guarantee of an optimal so-
lution.

2.2. Exact approaches

Authors of [3] propose a Mixed Integer Linear Program
(MILP) for VNFs placement and use the Cplex solver to220

find solutions that minimize energy consumption. The
Author of [21] provide a proof that MILP problems are
NP-Hard. The MILP solution of [3] is for these reasons
evaluated for only a small topology including just 12
physical machines and 16 service chains. In [12],[22],225

[23], [24], [2] and [8] VNF placement and chaining are
also formulated and solved as a MILP. A MILP was
also proposed in [25] to formulate service placement
and flow routing, and also to minimize the resource
utilization. Authors in [7] formulate optimal placing230

chained VNFs in an operator’s network with multiple
sites. They describe the mapping as a Mixed Integer
Quadratically Constrained Program (MIQCP) to place
and chain the network functions while considering the
limited network resources and the requirements of the235

functions. In [26], authors study the energy-aware ser-
vice function placement problem for SFC in data cen-
ters and formulate it as a binary integer programming
(BIP). In [27], the authors investigate VNF placement
problem for the optimal SFC design across geograph-240

ically distributed clouds. They consider inter-cloud la-
tencies and VNF response times, and set up the problem
as an Integer Linear Programming (ILP) optimization.
The main limitation of ILP, BIP and MILP approaches
is the exponentially growing complexity with problem245

size. This is exactly the scalability problem that we aim
to avoid through a selection process that limits the set of
retained candidates to host the requests in order to scale
with size. Table 1 summarizes the most relevant work
dealing with the VNF placement and chaining problem.250

This table compares algorithms in terms of complexity,
strengths and weaknesses and lists algorithms that sup-
port VNF sharing and use batch techniques to improve
performance and resource utilization.

In summary, most of the existing works in the litera-255

ture proposes heuristic algorithms ([13], [10], [11], [12],
[2], [14]) to deal with large infrastructure instances and
problem sizes. They however do not solve optimally the
VNF placement and chaining problem. Other works fo-
cus on optimal solutions and use MILP [3], [12],[22],260

[23], [24], [2], [8] [25], MIQCP [7] or BIP [26] algo-
rithms to solve the problem. These algorithms are effi-
cient in finding exact solutions for small problem sizes
and are not suitable for data centers with thousands of

3

physical machines.265

Our proposal is based on an ILP model with a se-
lection process that reduces the number of candidates
in order to scale much better with increasing problem
size. In addition to that, our proposed algorithms con-
sider sharing of VNF resources between different VNF-270

FGs/chains and consider handling the requests in batch
mode to enhance performance. Our model is also suffi-
ciently generic to support the optimization of different
criteria. Referring to Table 1, and especially the VNF
sharing column, the MCTS algorithm supports VNF275

sharing to improve resource usage, reduce provider cost
and increase revenue as well as energy efficiency ob-
jective. Consequently, we compare our proposed algo-
rithm with MCTS. MCTS has already been shown to
perform among the best proposed algorithms to address280

the placement and chaining of VNFs and this makes in
our view the selected comparison legitimate and mean-
ingful. We present next our modeling framework fol-
lowed by the performance of our proposed solutions.

3. Problem formulation and mathematical model285

This section presents the modeling framework for the
VNF placement and chaining problem and the math-
ematical model and criteria used for deriving the ILP
based algorithms.

3.1. Network Model290

The substrate or physical network, called by the NFV-
I by ETSI [28], is modeled as an undirected weighted
graph, denoted by G = (V (G) , E (G)) where E (G)
is the set of its physical links and V (G) is the set of the
physical nodes.295

Each physical node, w ∈ V (G), is characterized by
its i) available resource denoted by C (w) (represent-
ing the node remaining capacity in compute, memory or
storage resources), and ii) type T (w): switch, server or
Physical Network Function (PNF) [29], where PNFs are300

the traditional physical middleboxes offering network
functions. A PNF is a dedicated hardware that imple-
ments a network function.

Without loss of generality we consider primarily
computing resources for C (w). Adding resource types305

(e.g., memory, storage) is straightforward in our pro-
posed mathematical model. A physical link e ∈ E (G)
is characterized by its available bandwidth C (e).

The VNF-FG graphs requested by the clients
are represented mathematically by a graph D =310

(V (D) , E (D)) where V (D) is the set of VNF-FG vir-
tual nodes and E (D) is the set of virtual links. Each
virtual node, v ∈ V (D), is characterized by its i) re-
quired processing capacity C (v) and ii) its type T (v):
switch (i.e., ingress or egress) or VNF. Each virtual link315

d ∈ E (D) is described by its required bandwidthC (d).
Note that we can also consider instead the end to end la-

tency if this is the criterion to be taken into account. For
this work, with no loss of generality, we consider the
bandwidth as the client requirement. Our model is in320

fact generic and can be adjusted based on the client cri-
teria and requirements. Figure 1 depicts an example of
two VNF-FG requests (or two VNF chains in this case)
comprising switches and VNFs to embed and deploy in
the NFV-I. Typical examples of a VNF are: a firewall, a325

DPI, an SSL, a load balancer, a NAT, etc.
The NFV-I depicted in Figure 1 contains two PNFs,

some interconnected servers and two switches (Switch1
and Switch2) serving the ingress and/or egress flows in
the VNF-FG topologies. Each VNF requires a number330

of CPU units to operate properly and perform at some
desired QoS.

In Figure 1, we assume for example that the firewall
requires 15 CPU units, the NAT 10 CPU units and the
DPI 8 CPU units for adequate VNF operation and per-335

formance.
Once any of these VNF instances are spawned, if

shared, they can serve requests across multiple tenants
up to their capacity limits. For a firewall instance, 15
CPU units are needed from the hosting physical node.340

Once deployed, the firewall instance, for example, can
serve firewall function requests whose cumulative re-
quirements do not exceed the 15 CPU units limit.

Figure 1: An example of SFC and NFV-I topologies

4

Table 1: Optimization algorithms

Algorithm Main idea Complexity Strength Weakness VNF
shar-
ing

Batch

MILP [3]
Mathematical
model
One shot

High
(NP-Hard)

Optimal
solution Scalability No No

Greedy
[15]

Iterative
Local search
Backtracking
Two Stages

O(|V (G)|5 ·
log(|V (G)|))

Locally exhaustive
Fast in some
cases

Poor scalability
Local optima No No

Multi-
Stage
[2]

Multi-stage and
Viterbi algorithm

High (not evalu-
ated)

Efficiency of
Viterbi
algorithm

Time to build
multi-stage graph
Small scenarios

Yes No

MCTS
[4]

Projection to
Decision Tree
Search

O(I · |Cand|
·|V (D)|
·|V (G)|2)
I, |Cand|:
parameters

Low complexity

Multiple
settings to
calibrate the
effcient process

Yes No

DP [16]

Dynamic
programming
Decomposition
into subproblems
One shot

O(|V (G)|3)

Reasonable
complexity
Scalability
could be
managed

Memory hungry No No

Eigen
[15]

Similarity or
pattern match
Analytic
Centrality
One shot

O(|V (G)|3) Mesh graphs

Loosely
connected graphs
Decomposition
time

No No

3.2. Energy consumption Model
The power consumption of a physical machine w ∈
V (G) at time t is estimated as in [30]:

Pt(w) = P i(w) + (PM (w)− P i(w)) · Ut(w) (1)

where P i(w) is the idle state power consumption of ma-345

chine w and PM (w) is the maximum power consump-
tion of a fully used physical machine. Ut(w) (between
0 and 1) is the proportion of used CPU capacity.

The main objective is to minimize the total consumed
power Pt(G) (or equivalently to maximize the total
saved power Pt

S):

Pt(G) =
∑

w∈V (G)

Pt(w) (2)

3.3. Embedding and Chaining problem
To describe the addressed embedding and chaining op-350

timization problem, we first summarize the related valid
conditions and imposed constraints on nodes and links.

Each virtual node v ∈ V (D) may be embedded in
a substrate node, w ∈ V (G), that has enough physical

resources. Formally, C (w) ≥ C (v). Note that virtual355

switches (i.e., ingress or egress) are mapped only onto
physical switches and also that a VNF may be embed-
ded in a PNF or a physical server based on the ETSI
recommendations [28].

We illustrate these facts in Figure 2 that depicts the360

embedding of a forwarding graph (VNF-FG1) high-
lighted by the dashed lines, starting from ingress
switch1, crossing the firewall and the NAT, and end-
ing at egress switch2. Since we are primarily aiming at
a model that can optimize the embedding and chaining365

of services and forwarding functions taking into account
both the interests of the tenants and providers, we seek a
model (an ILP model) that can handle constrained VNFs
(when they belong to the tenants) and VNFs that can
be shared across tenants (when the VNFs belong to the370

providers and are not constrained by the tenants).
When the VNFs are made available by the providers,

they can be time shared to avoid the deployment of ad-
ditional VNFs in order to reduce cost of hosting and
induced physical energy consumption.375

Figure 3 illustrates this sharing by describing two

5

client requests served by the same provider NAT func-
tion. After the mapping of the first request (VNF-FG1),
it is possible for the second request (VNF-FG2) to share
the NAT, that acts finally as a common VNF for the two380

clients. Note that for this example, the residual CPU ca-
pabilities of Server3 remain unchanged after the map-
ping of VNF-FG2 despite the embedding of the NAT
for the second request. This is achieved by sharing the
NAT by the two requests VNF-FG1 and VNF-FG2 that385

enables providers to optimize the use of their physical
resources and reduce their global power consumption
by switching off the maximum number of physical ma-
chines (PNFs and servers).

Figure 2: After the mapping of the VNF-FG1 in the NFV-I

Figure 3: After the embedding of the two VNF-FGs

4. Online and batch algorithms390

We propose a generic and comprehensive ILP to address
the VNF-FG placement and chaining problem. The so-
lution takes into account multiple criteria and whether
VNFs are shared or not among several tenants. The
model can be tuned to favor load balancing, consolida-395

tion, cost minimization, acceptance rates maximization
or energy consumption minimization according to the

goals and preferences of the stakeholders and their busi-
ness objectives. The proposed ILP solution can operate
online and respond to VNF-FG placement and chaining400

requests sequentially or in batch mode (with a batch of
appropriate size) to treat a group of requests jointly. The
goal of our investigation is to derive guidelines on ad-
equate batch parameters to improve performance (com-
pared to online and sequential operation) and to come405

closer to optimal solutions. To accomplish the place-
ment and chaining of the VNFs as tenant requests ar-
rive (or are treated in batch mode), both the requests
themselves and the available resources (candidates for
hosting) must be represented. The physical infrastruc-410

ture G has in practice a finite and limited amount of
resources in nodes and links, and is consequently un-
able to host simultaneously a large number of VNF-FG
requests. The objective for any optimization algorithm
is typically to minimize the number of rejected requests415

while using the minimum amount of resources, respect-
ing user requirements to ensure satisfaction and maxi-
mizing revenue for providers. The way requests are pro-
cessed and handled by the optimization algorithm con-
sequently matters and affects performance and overall420

optimization. Our objective is to explore via the pro-
posed ILP based algorithms how such improvements
can be achieved by online as well as batch mode place-
ment and chaining. Both approaches will exhibit some
strength provided they are judiciously configured and425

calibrated. Our goal is also to identify conditions more
favorable to each approach.

4.1. ILP model for the online VNF-FG placement and
chaining problem with VNFs sharing support

As mentioned earlier, the NFV-I status needs to be up-430

dated to reflect the placement of previous VNF-FGs by
removing already allocated physical resources. This in-
cludes the updating of remaining resources in physical
hosts as well as shared (reused) VNFs that keep serv-
ing additional requests as long as they have remaining435

processing capabilities (e.g. room for time sharing of
provider provisioned VNFs).

Figure 4 depicts this evolution as the placement of
VNFs takes place as a graph extension after the map-
ping of a previous VNF-FG (VNF-FG1 for the example440

presented in Figures 1 and 2) and before handling the
next VNF-FG request (VNF-FG2 of Figures 1 and 3).
This graph extension, just after placement of VNF-FG1,
is used for the placement of the next VNF-FG request
(VNF-FG2), as illustrated in Figure 4. vspace-0.5cm445

The sharing of VNFs is taken into account by extending
the infrastructure graph as depicted in Figure 4 where
two fictitious nodes are added to the NFV-I following
the placement of VNF-FG1. These fictitious nodes are
added to the hosts, initially selected by the embedding450

6

Table 2: Main notations

Notation Description
V (w) Set of virtual nodes that can be embedded

in the physical node w
W (v) Set of potential physical nodes for host-

ing the virtual node v
F Set of all the fictitious nodes
C(f) Remaining capacities to be shared and

consumed by other VNFs
F (w) Set of fictitious nodes directly connected

to the physical node w
V (f) Set of virtual nodes that can be served by

the fictitious node f
xvw A binary variable indicates whether the

virtual node v is embedded in the phys-
ical node w

yvf A binary variable indicates whether a fic-
titious node f is embedded in the VNF v

P Set of all physical paths in graph G
udp A binary variable equal to 1 if the virtual

link d is embedded on the physical path p
δep A boolean parameter indicating if the

physical link e belongs to the path p

Figure 4: The extended NFV-I topology

algorithm of the VNF-FG1, as new neighbors. These
nodes represent the remaining resources in the shared
FW and NAT functions (original embedded in server 1
and server 3 during placement of VNF-FG1). Once the
graph is extended, it reflects all remaining resources,455

and candidate nodes, available for potential hosting of
new VNF-FG requests, VNF-FG2 in this example. The
outcome of the ensuing placement is depicted in Figure
3 where the forwarding VNFs are placed in server 2 for
the DPI and in server 3 for the NAT. The example de-460

picts the NAT as a time shared VNF across tenants. Up-
dating and extending the infrastructure graph (or NFV-I)
allows us to take into account candidate physical nodes
and links as well as candidate shared VNFs for hosting
new placement and chaining requests. Our proposed465

ILP model for placing and chaining VNF-FG requests
uses this graph extension as input in addition to the in-
coming VNF-FG requests. The notation adopted for the
ILP is provided just before the ILP mathematical ex-
pressions (objective function, constraints and valid con-470

ditions) are presented:

• W (v) ⊆ V (G) denotes the set of potential phys-
ical nodes (i.e., switches or servers and/or PNFs)
for hosting the virtual node v ∈ V (D) (i.e.,
ingress/egress or VNF) taking into account its475

requirements (i.e., processing power C (v), type
T (v)). Note that a virtual node, v ∈ V (D), can
be mapped to the substrate node, w ∈ V (G), if: i)
the available residual resources (i.e., C (w)) are at
least equal to those required (i.e., C (v)), ii) node480

v type is respected.

• F is the set of all the fictitious nodes. Note that
there are as many fictitious nodes per physical node
as there are instances of shared VNFs in each host-
ing node.485

• Each fictitious node f ∈ F has a remaining capac-
ities C(f) that can be potentially shared and con-
sumed by other VNFs.

• F (w) ⊆ F is the set of fictitious nodes that are
directly connected to the physical node w. In other490

words, F (w) is related to VNFs that are already
deployed in the physical node w (see Figure 4 for
more details). Each f ∈ F (w) has a fictitious link
connecting it to the w with infinite capacity. In
fact, the VNF is executed like an internal process495

into w.

• F (v) ⊆ F is the set of fictitious candidate nodes
that can serve/host the virtual node v. This is an
analogous set to the physical candidates setW (v).

• V (w) ⊆ V (D) denotes the set of virtual nodes500

that can be embedded in the physical node w.

7

• By analogy, we define V (f) ⊂ F that denotes the
set of virtual nodes that can be served by the ficti-
tious node f .
• xvw is a binary variable that describes whether the505

virtual node v is embedded in the physical machine
w or not. Mathematically, this variable equals to 1
if the virtual node v ∈ V (D) is assigned to the
physical node w ∈W (v), 0 otherwise.
• yvf is a binary variable defined to enable the shar-510

ing of VNFs across (amongst) multiple tenants. As
shown in Figure 4, we extend the initial physical
topology by fictitious nodes that describe the re-
maining capacity of the already deployed VNFs to
be used by other tenants. Beside the fictitious node,515

we also define the fictitious link that connects this
new node to the physical node w where the related
VNF is running. Hence, yvf is describing whether
the virtual node v ∈ V (D) is assigned to the fic-
titious node f ∈ F (v) or not. Variable yvf is de-520

fined for a fictitious node f only if its correspond-
ing VNF has the same type as v.
• P denotes the set of all physical paths in graph
G. For each path p ∈ P , s(p) and t(p) denote its
end nodes. As we consider only elementary (loop-525

less) paths, a path can be represented by the set of
physical links (i.e., edges) it crosses.
• udp is a binary variable equal to 1 if the virtual

link d ∈ E (D) is embedded on the physical path
p ∈P .530

• For each virtual link d ∈ E (D), its end nodes are
denoted by a(d) and b(d).
• δep is a boolean parameter (not a variable) indicat-

ing if the physical link e ∈ E (G) belongs to the
path p ∈P: δep = 1⇔ e ∈ p.535

In addition to the model notation, the possibility of
sharing VNFs across tenants and the constraints taken
into account by the ILP model are now provided to
extend the mathematical description of the placement
and chaining problem. These descriptions are combined
with the optimization objectives to complete the model.
Each virtual node (VNF, ingress nodes, egress nodes)
must be assigned to exactly one physical node (server,
PNF, switch) or a fictitious node. Obviously, F (w) is
empty for the case of any physical switch w.

∑
w∈W (v)

xvw +
∑

f∈F (w)

yvf

 = 1, ∀v ∈ V (D) .

(3)
In this constraint, note that the fictitious nodes are con-
sidered as potential candidates just like physical nodes
are. The capacity constraint for each physical node

w ∈ V (G) should be respected and not violated. In
other terms, the total allocated virtual resources for a
physical node should not exceed its remaining budget:∑

v∈V (w)

xvw · C (v) ≤ C (w) , ∀w ∈ V (G) . (4)

By analogy, the remaining resources for each fictitious
node f ∈ F should not be violated while dealing with a
new embedding. It is formally expressed as follow.∑

v∈V (f)

yvf · C (v) ≤ C (f) , ∀f ∈ F. (5)

Our ILP model supports optional co-localisation con-
straint when a provider imposes that two VNFs, v1, v2 ∈
V (D) (i.e., issued from the same request), to be hosted
in the same physical candidate for hardware, security
or optimization reasons. The client (or tenant) is likely
to express this kind of requirement to ensure a given
quality of service or impose a geographic localization
constraint. This constraint can be activated or disabled
depending on stakeholders’ requirements and interests.
This constraint is formally expressed as:

xv1w−xv2w = 0, v1, v2 ∈ V (D) ,∀w ∈ V (G) . (6)

By analogy, a provider or tenant separation constraint
can be imposed and added to the ILP model so that two
(or even more) VNFs, v1, v2 ∈ V (D) (from the same
request), are not embedded in the same physical node
w. This constraint can be expressed using the product:
xv1w · xv2w = 0, that can be linearized by writing the
constraint as an equivalent inequality:

xv1w+xv2w ≤ 1, v1, v2 ∈ V (D) ,∀w ∈ V (G) . (7)

The provider and/or the tenant will require whenever ap-
propriate for them that any two virtual nodes belonging
to the same request D cannot be assigned to the same
physical node. The constraint that a physical node w
may not host two different virtual nodes from the same
request D is expressed as:∑

v∈V (w)

xvw ≤ 1, ∀w ∈ V (G) . (8)

Constraints 6, 7 and 8 are optional and may be activated
or deactivated based on the provider to tenant agree-
ments. The constraint of embedding each virtual link,
d ∈ E (D) in one single substrate path p ∈ P , is ex-
pressed using the following equality:∑

p∈P

udp = 1, ∀d ∈ E (D) . (9)

8

If p ∈ P is the path selected to host the virtual link
d ∈ E(D) (i.e., udp = 1), then the path end nodes,
s(p) and t(p), must be the substrate nodes where the two
virtual extremities (i.e., virtual nodes) a (d) and b (d) of
the virtual link d are assigned to. Using the introduced
binary variables x, y and u this constraint is:

udp ≤
(
xa(d)s(p) +

∑
f∈F (s(p)) ya(d)f

)
+
(
xa(d)t(p) +

∑
f∈F (t(p)) ya(d)f

)
,

∀d ∈ E(D), ∀p ∈P

udp ≤
(
xb(d)s(p) +

∑
f∈F (s(p)) yb(d)f

)
+
(
xb(d)t(p) +

∑
f∈F (t(p)) yb(d)f

)
,

∀d ∈ E(D), ∀p ∈P.

(10)

The first inequality implies that if udp is equal to one
(i.e., the virtual link d is embedded in the physical path
p) a(d) has to be embedded in one of the two extrem-
ities of p (i.e., s(p) or t(p)) or in one of their attached
fictitious nodes. The second inequality indicates that if540

the variable udp is equal to one, b(d) should be mapped
in either s(p) or t(p) or in one of the fictitious nodes
connecting to them. If the right side of the inequality is
equal to 0, the udp variable must have a value of 0. In
summary, if the two extremities of the virtual link d are545

not embedded within the endpoints of the physical path
p, it is impossible that d is mapped in p.

The constraint 10 should be enough for the integrity
of our proposed ILP model if the constraint 8 is ac-
tivated (i.e., two virtual nodes belonging to the same
request D can not be embedded in the same physical
node). However if the constraint 8 is deactivated, our
proposed ILP needs an additional sanity constraint to
maintain integrity. The issue generated by the deactiva-
tion of the constraint 8 can be described by considering
two virtual nodes v1 and v2 connected by the virtual
link d, a given physical path p and assuming that the
two virtual nodes v1 and v2 were colocated/embedded
in s(p) for instance. So the two right sides in the con-
straint 10 are equal to 1. Hence, for this case the udp
variable may have the value of 1, which means that the
two extremities (i.e., v1 and v2) of the virtual link d are
in the two extremities of the physical path p. But, we al-
ready assumed that the two virtual nodes v1 and v2 are
colocated in s(p). We consequently need another sanity
constraint to avoid this problem. This constraint should
prevent that if v1 and v2 (i.e., which are connected by
the virtual link d) are mapped in the same extremity of a
given path p, the udp variable is set to 1. Consequently,
if xa(d)s(p) and xb(d)s(p) are equal to 1, udp should be
set to 0 and in addition if xa(d)t(p) and xb(d)t(p) are set
to 1, udp can not have 1 as a value. We can ensure this
sanity condition by making sure the sum of these three

variables does not exceed the value of 2. This constraint
may be expressed after taking into consideration the fic-
titious nodes:

udp +
(
xa(d)s(p) +

∑
f∈F (s(p)) ya(d)f

)
+
(
xb(d)s(p) +

∑
f∈F (s(p)) yb(d)f

)
≤ 2,

∀d ∈ E(D), ∀p ∈P

udp +
(
xa(d)t(p) +

∑
f∈F (t(p)) ya(d)f

)
+
(
xb(d)t(p) +

∑
f∈F (t(p)) yb(d)f

)
≤ 2,

∀d ∈ E(D), ∀p ∈P.

(11)

Equation 11 has to be considered only if the equation
8 is deactivated. The total consumed bandwidth (i.e.,
traffic load on the network) in each physical link e ∈
E (G) should not exceed the physical link capability.
This constraint is expressed as follows:

∑
d∈E(D) C (d) ·

(∑
p∈P δep · udp

)
≤ C (e) ,

∀e ∈ E (G)
(12)

For a given VNF-FG request, our objective is to find an
optimized mapping that minimizes, for instance, the to-
tal NFV-I power consumption. If the central criterion is
energy saving, we hence minimize the cost of the map-
ping request based on the power consumption. Note that
the value Pt(w) is calculated regardless the current re-
quest in order to avoid any non-linearity problem.

minimize
∑

v∈V (D)

∑
w∈W (v)(

xvw +
∑

f∈F (w) yvf

)
· Pt(w)

(13)

We should highlight that our ILP model works fine with
any objective function required by the provider whether
it is related to minimizing the total consumed bandwidth550

or load balancing the datacenter or consolidating the
machines or any other rational objective. Not forgetting
that the optional constraints 6, 7 and 8 can be associated
with the main ILP objective function on a need basis, we
can summarize the ILP central objective, the constraints555

and obligations in the following set of equations:

9

minimize
∑

v∈V (D)

∑
w∈W (v)

(
xvw +

∑
f∈F (w) yvf

)
·Pt(w)

subject to:
∑

v∈V (w) xvw · C (v) ≤ C (w) ,∀w ∈ V (G)

∑
v∈V (f) yvf · C (v) ≤ C (f) , ∀f ∈ F∑
w∈W (v)

(
xvw +

∑
f∈F (w) yvf

)
= 1,

∀v ∈ V (D)∑
p∈P udp = 1, ∀d ∈ E (D)

udp ≤
(
xa(d)s(p) +

∑
f∈F (s(p)) ya(d)f

)
+
(
xa(d)t(p) +

∑
f∈F (t(p)) ya(d)f

)
,

∀d ∈ E(D), ∀p ∈P

udp ≤
(
xb(d)s(p) +

∑
f∈F (s(p)) yb(d)f

)
+
(
xb(d)t(p) +

∑
f∈F (t(p)) yb(d)f

)
,

∀d ∈ E(D), ∀p ∈P

udp +
(
xa(d)s(p) +

∑
f∈F (s(p)) ya(d)f

)
+
(
xb(d)s(p) +

∑
f∈F (s(p)) yb(d)f

)
≤ 2,

∀d ∈ E(D), ∀p ∈P

udp +
(
xa(d)t(p) +

∑
f∈F (t(p)) ya(d)f

)
+
(
xb(d)t(p) +

∑
f∈F (t(p)) yb(d)f

)
≤ 2,

∀d ∈ E(D), ∀p ∈P∑
d∈E(D) C (d) ·

(∑
p∈P δep · udp

)
≤ C(e),∀e ∈ E(G)
xvw, yvf , udp : binary variables

4.2. ILP complexity and candidates selection560

The placement and chaining solution can be found us-
ing an ILP solver (e.g., Cplex [31]) for small NFV-I
instances. Since the problem is NP-hard and does not
scale with problem size, we resort to heuristic based
solutions or modified ILP algorithms to find solutions565

faster. If the size if NFV-I is large, a judicious selec-
tion of hosting candidates can be used to reduce dras-
tically computational complexity and resolution time.
Reference [32] has shown that complexity of this kind
of problem is O(n3.5) if the variables n are continu-570

ous. Where n = O(|E(G)| · |V (G)|) for the addressed
placement and chaining problem. The case of contin-
uous variables corresponds to a non feasible solution
where one VNF can be split and mapped onto many
candidates. This can be considered as a lower bound575

for the complexity of the NP-Hard VNFs placement and
chaining problem. For worst cases of fully connected
networks, we have: |E(G)| = |V (G)| ·(|V (G)| − 1) /2
and n = O(|V (G)|3) and accordingly face a complex-
ity of O(|V (G)|10.5) for the linear program, with con-580

tinuous variables, that is governed by the NFV-I size

Algorithm 1: R-ILP algorithm
1 Inputs: G (NFV-I), D (VNF-FG)
2 Output: Mapping of the incoming request
3 Cands← CandidatesSelection(G, D, k1)
4 for (d ∈ E(D)) do
5 for c1 ∈W (a(d)) do
6 for c2 ∈W (b(d)) do
7 p← computePaths(c1, c2, k2)
8 P ← P ∪ p

9 CplexSolver(Cands, P)

(i.e., the number of physical nodes).
The first step to reduce problem complexity is to se-

lect only feasible candidate physical nodes from the
physical infrastructure based on their characteristics,585

available resources and provided hosting services. Prior
to any optimization, we apply a deeper selection strat-
egy that chooses a reduced number of prominent candi-
dates, those that meet the virtual node v computing and
networking requirements. This set of candidates is de-590

noted by Cand(v) ⊂W (v)∪F . We define also Cands
as the union of all Cand(v) for each v ∈ V (D). For-
mally, we have, Cands ←

⋃
v∈V (D) Cand(v). This

additional pruning step discards all physical nodes that
do not meet these requirements. We also define a maxi-595

mum number, k1 = |Cand(v)| ∀v ∈ V (D), of eligible
candidates to retain so as to reduce further the size of
the set of the most prominent candidates. Tuning k1 re-
quires exploration and analysis of the impact of i) NFV-
I size, ii) efficiency of the machine that runs the ILP600

solver and iii) the acceptable provider delay before pro-
viding a solution to the tenants’ requests. This analysis
is presented in Section 5.

Our R-ILP strategy is summarized in Algorithm 1 and
is initialized in Step 3. Steps 4 to 6 search for the k1605

most prominent candidates among the physical and/or
fictitious nodes represented in the model. For each vir-
tual link d, we compute k2 shortest paths, between the
link extremities (i.e., a(d) and b(d)), for each couple of
physical and/or fictitious candidates. We make use of610

the Dijkstra algorithm with a new metric that promotes
the paths with maximum remaining bandwidth. Steps
7 to 11 are dedicated to these paths computations. In
step 12, we define the decision variables (i.e., {xvw},
{yvf} and {udp}) based on the computed candidates615

(i.e., nodes and links) and solve the linear program us-
ing Cplex solver.

Algorithm 2 describes this candidates selection pro-
cedure. In step 6, all the potential candidates having suf-
ficient computing and networking resources to host the620

VNF v ∈ V (D) are extracted from the set of all physi-
cal nodes V (G) and the set of fictitious nodes F . These

10

potential candidates are saved in a temporary set P (v).
During step 7, we make use bipartite graph matching
[33]. In the terminology of bipartite graphs, a match-625

ing is a set of pairwise disjoint edges that link 2 sets
of nodes. The advantage of using this method is that it
finds the best candidate to host a given VNF based on
our customized energy consumption metric. This bipar-
tite graph matching to perform our selection provides us630

with the best matching between each VNF, egress and
ingress. We use the bipartite graph matching algorithm
on the two sets of nodes depicted in Figure 5. The first
set contains all VNFs, the ingress and the egress nodes
(V (D)). The second set includes all physical and ficti-635

tious nodes (V (G)∪F). We weighted the links between
these two sets by a cost function that computes the con-
sumed energy if a given virtual a node v is embedded
within a physical node w. To define this cost function
(i.e. coste in algorithm 3), we make use of the formula640

Pt(w) taking into account the required resources C(v)
of the virtual node v. The weight of a link connecting
a fictitious node to a virtual node is set to 0, because
there is no any energy to be consumed when a fictitious
node is serving a VNF. Once these two sets are created645

and the links are weighted based on our cost function,
we run the algorithm 3 that computes the best match-
ing between the two sets. It actually finds the suitable
and best candidate that may host each one of the virtual
nodes based on the links weights. The bipartite graph650

matching algorithm ends by setting only the best can-
didate and not a subset of candidates as performed our
algorithm R-ILP. Accordingly, we re-run the same bi-
partite graph matching algorithm after setting to infinity
as the new weight value on each link selected in the pre-655

vious iteration(s)/loop(s) in order to avoid reselecting
the same candidate (step 9 of algorithm 2). This pro-
cess is repeated k1 times to get at maximum k1 candi-
dates for each virtual node. In terms of complexity, the
maximum bipartite matching algorithm is achievable in660

O(|V (G)| · |V (G)|). We repeat these steps for a number
of candidates k1. This leads to a complexity that will not
exceed O(|V (G)| · |V (G)| · k1) time complexity.

During step 7, we select from the set P (v) the can-
didates based on two criteria: i) the amount of resid-665

ual computing resources in the nodes and ii) a pattern
matching criterion. Since we aim at reducing energy
consumption, we favor and push for physical nodes with
minimum residual resources to achieve consolidation,
avoid soliciting more servers and hence power off or put670

in idle mode more servers. Accordingly, we select a first
subset from P (v) to reduce overall power consumption.
Then, we proceed to a “network topology oriented” pat-
tern matching check between the virtual node v and the
physical candidates. We use the concept of node topol-675

ogy that describes the node with its links to neighboring

Figure 5: Bipartite graph
nodes (stronger notion than just node degree). We com-
pare node v topology to the topology of each selected
candidate. The pattern matching between two topolo-
gies is based on minimum difference in number of con-680

nected links to a given node. There is full matching
if this difference is 0. The bigger this difference the
worse the pattern matching. In summary, the candidates
with the best matches with v (or with highest similarity
or smallest difference in topology) are included in set685

Cand(v) with respect to k1.

Algorithm 2: CandidatesSelection
1 Inputs: G, D, k1
2 Output: Cands
3 Cands← ∅
4 F ← computeAllFictitiousNodes(D,V (G))
5 Set2← V (G) ∪ F
6 EG ← buildBipartiteGraph(V (D), Set2)
7 for i ≤ k1 do
8 Cands← Cands ∪Max-Matching-

Bipartite-Graph(V (D) ∪ Set2, EG)
9 updateLinksCost(EG)

10 return Cands

The retained candidates by selectCandidates function
are the fictitious nodes if there are any. If k1 threshold
is not reached after setting the fictitious nodes, some of
the physical nodes are added. We promote the selec-690

tion of physical nodes having the minimum of remain-
ing resources to avoid switching on new servers and/or
switches in order to minimize the entire energy con-
sumption, which is our objective in this work. By select-
ing a reduced set of feasible and prominent candidates,695

according to Algorithm 2, the complexity lower bound
of the Linear Program (LP), with continuous variables,
will be lowered to a complexity level in line with the

11

Algorithm 3: Max-Matching-Bipartite-Graph
algorithm

1 Inputs: bipartite graph G = (set1 ∪ set2, EG))
2 Output: M’ = Mapping of set1 on set2
3 M = {e}, such that e ∈ EG is the edge with the minimum

weight. e is directed from set1 to set2;
4 Redirect all edges e ∈M from set2 to set1 with a weight
−coste;

5 Redirect all edges e′ not belonging to M , from set1; to
set2, with a weight +coste;

6 Let set1M = {u ∈ set1 \M}; and
set2M = {u ∈ set2 \M};

7 Find an existing shortest path P from set1M to set2M ;
8 Put M ′ = M∆P (M∆P = (M ∪ P) \ (M ∩ P)), and

repeat from step 4;
9 M ′ is the optimal matching.

algorithm desired capabilities and scalability. In fact,
the number of variables n depends on the size of the700

{xvw} and {ydp} variables: n = |{xvw}| + |{ydp}|.
With the reduction, the size of x variables is |{xvw}| =
k1 · |V (D)|. Since we consider k1 candidates for each
of the two extremities of a virtual link d, we define
k21 · k2 variables (i.e., for each virtual link d), where705

k2 is the number of path candidates between two phys-
ical nodes. Accordingly, |{ydp}| = k21 · k2 · |E(D)|
and n = k1 · |V (D)| + k21 · k2 · |E(D)|. In the
case of the smallest client request, D is a chain so
|E(D)| = |V (D)| − 1. Hence, we conclude that710

n = O(k21 · k2 · |V (D)|) and the complexity of our LP
is O(k71 · k3.52 · |V (D)|3.5). In the worst case of a fully
meshed networkD, |E(D)| = |V (D)| ·(|V (D)|−1)/2
and thus n = O(k21 · k2 · |V (D)|2). Consequently, our
LP complexity in the worst case (for a fully meshed re-715

quest) is O(k71 · k3.52 · |V (D)|7). The complexity of the
LP is consequently independent of the size of the NFV-
I and is only impacted by the candidates selection and
paths computation steps. The size of the NFV-I will
ultimately not entirely govern the LP resolution (or ex-720

ecution time).
Based on this candidates limitation, the Cplex execu-

tion time (i.e., linear program solving) is shown to be
independent of the NFV-I size while the complexity of
other steps depends directly on the number of nodes in725

the infrastructure (or NFV-I). Most of the R-ILP algo-
rithm execution time penalty lies in the first stages of the
overall process and not in the Cplex resolution phase of
the algorithm. This analytical result is confirmed by the
simulation and performance evaluation results reported730

in Section 5. From this proposed new ILP based on-
line algorithm, called R-ILP (since it uses a reduced set
of candidate hosting nodes), that leverages the VNFs
sharing concept, we define a batch strategy that oper-
ates on and analyzes simultaneously a group of VNF-735

FG requests to optimize their placement and improve
performance further compared with the online R-ILP

algorithm that treats sequentially the requests by pro-
cessing them on first come first serve basis.

4.3. Batch placement and chaining algorithm740

The current state of the art focuses mainly on online
VNF-FG requests embedding. Our objective is also to
explore batch embedding and propose seminal work and
analysis for this alternative approach to the VNF-FG
placement and chaining problem. With the batch mode745

more client requests are likely to be accepted and served
compared to the online mode. The number of accesses
to the NFV-I in the batch mode is smaller. Mapping a
batch of n requests requires only one access to the NFV-
I while n accesses will be needed for the online mode.750

Operating in batch mode can potentially provide ben-
efits, by handling multiple requests over a viable time
interval, in terms of quality of the optimization with a
likelihood of coming closer to optimal solutions. When
operating online, the solutions can be instantaneously755

optimal but are typically suboptimal over longer time
durations since there is no look ahead nor combined
look at past, present and future requests. The online
solutions have the advantage of not incurring additional
delays in providing embedding solutions on a sequen-760

tial basis, processing one request at a time. Operating
in batch mode enables, for instance, the processing of
multiple requests as a group or an equivalent composite
request. The batch mode will lead to solutions closer to
optimal for the group of requests assuming the size of765

the batch and the interval over which the group is com-
posed are adequately selected. Providers can reduce the
cost of placing and chaining the multiple requests and
hence improve their revenues as long as service level
agreements with the tenants are met. The batch mode770

should lead to better utilization of the provider phys-
ical infrastructure and the provider provisioned VNFs
(that they can even share across tenants). The providers
would logically have more freedom to improve or in-
crease their revenues and at the same time minimize re-775

jection rate of tenant requests. This should be beneficial
to all stakeholders but we need to verify the conditions
for such improvement compared to the online mode. In
addition, the improvement must be significant to justify
the implementation of the batch mode. The goal of our780

analysis and study is to set the stage for deeper investi-
gations into the batch mode and facilitate the develop-
ment of formal performance assessment models in the
future.

At this stage, we conduct an initial study based on785

the batch embedding mode described in Figure 6 where
there is a time window, denoted by Wb, during which
the incoming requests are stored in a dedicated list de-
noted by A(Wb). Arrivals and departures occur during
such windows as depicted in the second batch window790

12

Figure 6: Processing of VNF-FGs in a batch mode

example in Figure 6. At the end of each batch window
Wb there is a required processing period during which
the provider executes a management policy to decide
for instance i) the embedding order of the already ar-
rived VNF-FG requests (the stored requests in A(Wb))795

and ii) the requests to be accepted in case there are in-
sufficient physical resources to host all the requests in
the batch. This should always be done to achieve high-
est provider revenue and maximizing the satisfaction of
tenants by keeping rejection rates to a strict minimum,800

i.e. to the smallest possible value depending on avail-
able resources during the batch.

Our proposed batch oriented algorithm applies the R-
ILP to the batch and takes into account the scalability
of our online R-ILP algorithm by limiting the batch size
(retaining only the best candidate hosts) to obtain good
solutions in reasonable times. The algorithm handles
the queued VNF-FG requests for batch processing in
a heuristic way. Instead of trying to place optimally
the entire batch A(Wb) (i.e., the stored incoming VNF-
FGs during the batch windowWb), and end up rejecting
all queued VNF-FG requests when there are no optimal
placement solutions for the entire batch, the algorithm
processes the VNF-FG requests by analyzing the whole
batch to determine the order in which the requests must
be treated to meet a selected objective such as maxi-
mizing provider revenue, minimizing energy consump-
tion, maximizing resource utilization, etc. In our per-
formance assessment of the proposed batch based algo-
rithm, we sort the VNF-FG requests in the batch queue
A(Wb) according to the revenue generated (foreseen)
by their successful placement. The acceptance revenue
R(D), of a given request D, is formally expressed as
defined in [34][35]:

R(D) =
∑

v∈V (D)

(C (v) · Uc) +
∑

d∈E(D)

(C (d) · Ub)

(14)
where Uc is the realized gain from allocating one unit
of CPU resources and Ub is the earned revenue from
the allocation of one bandwidth unit. Requests generat-805

ing the largest revenues are placed (served) first in order
to maximize overall achieved revenue and at the same
time avoiding the rejection of all the requests at once
when they are treated jointly in one shot. This place-
ment strategy limits rejection rate while simultaneously810

Algorithm 4: Batch algorithm
1 Inputs: NFV-I, Batch window Wb

2 Output: Mapping of the incoming requests
during Wb

3 A(Wb)← ∅
4 while (Wb not expired) do
5 if (arrival of new request Di) then
6 A(Wb)← A(Wb) ∪ {Di}

7 S(Wb)← sort(A(Wb))
8 M ← ∅
9 while (S(Wb) not empty) do

10 D ← extractTop(S(Wb))
11 m← R-ILP(NFV-I, D)
12 if (m 6= null) then
13 M ←M ∪ {m}

14 retrun M

aiming at maximizing the provider revenue. As long
as the rejection rate is kept low, below 5% for exam-
ple, user satisfaction and quality of experience should
remain acceptable.

The batch algorithm, Algorithm 4, operates as fol-815

lows: upon arrival each incoming request Di is stored
in the batch list A(Wb). At the expiration of the batch
window Wb, the queued VNF-FG requests are sorted
based on their (expected) revenue and stored in a new
list S(Wb). The ordered VNF-FG requests in S(Wb) are820

processed sequentially by the online R-ILP algorithm.
Successfully placed VNF-FG requests are stored in a
list M along with their placement solution. Requests
that can not be placed are rejected. The placement pro-
cess continues until all requests have been processed ir-825

respective of the placement outcome in order to place
as many requests as possible and thus reduce rejection
rate. This is the simplest batch mode algorithm, called
Batch R-ILP (BR-ILP) in our case. A more elaborate
approach, or extension of this simple mode, is to store830

client requests D that could not be placed in a given
batch window and resubmit them in the next batch win-
dow. The non satisfied request is re-considered only
once before it is definitely rejected (using a P-persistent
mode with P=1). This persistent version of the batch al-835

gorithm is called Resubmit BR-ILP (RBR-ILP). RBR-
ILP aims at minimizing rejection of requests further by
giving “not yet” served client requests a higher chance
of being accepted in ensuing batches.

5. Performance Evaluation840

The evaluation focuses on assessing the performance
improvements achievable when sharing VNFs (provider
provisioned VNFs) across multiple tenants. The evalu-
ation also analyzes and explores the benefits that batch
processing of VNF-FG requests can provide. The per-845

13

formance of our proposed algorithms (online and batch
heuristic which are publicly available [36]) are also
compared with the MCTS state of the art algorithm re-
ported in [4] that already highlights the relevance of
sharing virtualized functions. The impact of the num-850

ber of selected candidates for hosting the VNFs on the
ILP algorithm execution time and successful placement
is also addressed. The analysis is conducted to also
provide insight on the most relevant candidate set sizes
to keep execution time low while realizing most of the855

potential performance improvement. Finally, the algo-
rithms are compared in terms of consumed energy and
accepted requests to assess the energy consumed on av-
erage per hosted request while integrating the accep-
tance (or rejection) rate in the assessment.860

5.1. Simulation Environment
The performance evaluation is realized using a system
simulation accepting both the NFV-I topologies (with
their available resources for hosting) and the VNF-FG
requests (with their resource requirements) as inputs to865

the optimization algorithms that search for a placement
solution provided as an output of the java-based simu-
lation. Both the NFV-I and VNF topologies (or graphs)
are generated using the GT-ITM tool [37] with NFV-I
topology sizes in the range [100, 500] nodes. The con-870

nectivity between nodes is set to 0.3. The initial physi-
cal capacities (i.e., CPU and bandwidth) are set to 150
CPU units and 100 bandwidth units respectively. For
our batch algorithm (denoted ”Batch”), the batch win-
dowWb size is 100 time units and each resource request875

has an exponential lifetime with a mean of 500 time
units. The VNF-FG request size varies from 10 to 50
nodes depending on the scenario used for performance
evaluation. In each simulation 1000 requests are gener-
ated with Poisson arrivals for the requests with a mean880

arrival rate λ of 5 requests per 100 time units. The ar-
rival rate λ varies for scenarios that assess performance
for variable system load. The service times are expo-
nentially distributed with a mean of 500 time units. The
required capacities (in CPU and bandwidth) are fixed885

to 10 CPU units and 10 bandwidth units respectively.
The results obtained from multiple simulations are av-
eraged and presented with 95% confidence interval on
the reported results. Results illustrating the behavior
of the algorithms as a function of simulation time have890

no reported confidence interval as they correspond to
only one run. The simulations were conducted using a
standard PC with an i-7 Intel Core i7 with 2.70 GHz, 8
Cores and 16 GBytes of RAM.

5.2. Performance metrics895

The performance metrics we consider to perform simu-
lations and to compare fairly our proposal with the other
algorithms and assess performance are:

1) Rejection percentage: is the percentage of VNF-FG
requests that have not been accepted due to unavailabil-900

ity of physical resources.
2) Acceptance revenue: is the service provider re-

alized (generated) revenue (benefits) at time t when ac-
cepting client requests (in our case successful placement
of VNF-FG requests). The acceptance revenue is for-
mally expressed as:

R(t) =
∑

D∈ARt

R (D) (15)

whereARt is the set of the accepted requests andR(D)
is the D request gain as defined in equation 14. Note
that R is the total revenue taking into consideration all
the incoming requests.905

3) Execution time: is the time needed to find an em-
bedding solution for one VNF-FG request. This metric
reflects the ability of the algorithms to scale with prob-
lem size and this is especially important for the ILP al-
gorithm assessment.910

4) Resource usage: This is the number of active
servers (i.e., the number of nodes that are used to host
the requests) divided by the total number of infrastruc-
ture nodes or physical servers. For machines that do not
host any request, they consume only their idle power915

as expressed in equation 1 and this represents the min-
imum amount of local power consumed in each node.
Saving energy would require shutting off machines to
reduce consumption but the amount of energy needed
to power back the machines needs to be taken into ac-920

count for the evaluation to be complete. For the sake of
simplicity and without any impact on the derived perfor-
mance evaluation results, we assume that the machines
enter only idle and power saving mode and also assume
that the overall energy required in these states is far less925

than the required energy and power consumed by active
nodes and that the consumed power is directly propor-
tional to the compute and processing load on the servers.

5) Power consumption: is computed using equation
2. The global consumed power at time t , Pt(G), is the930

aggregation of the energy consumed by all the machines
(i.e., servers, PNFs and switches) at this time t.

5.3. Comparison of our proposal to the exact resolution
We evaluate the gap between the optimal solution pro-
vided by the unmodified and “Exact” solving our ILP
model by exploring the entire search space (i.e., all the
potential candidates) with i) our R-ILP algorithm oper-
ating on a selected and reduced candidates subset and
ii) a competitor algorithm from the related work [3] de-
noted Competitor. To do so, we consider the quality
of the mapping of each request as the evaluation and
comparison criterion. Since we aim in this work at min-
imizing energy consumption, we define the quality of

14

the mapping based on the value of the total consumed
energy Pt(G) (c.f., equation 2) that describes the al-
gorithm ability to reduce the overall energy consump-
tion. Since the exact algorithm and the related work [3]
(i.e., Competitor), do not scale with size, we can only
perform the comparison for small NFV-I size. We re-
port the results based on the realistic GEANT topology
from SNDlib [38] including of 22 nodes and using 1000
VNF-FG requests composed of 5 VNFs. We also set
the number of retained, selected, candidates to 5 to re-
veal the capabilities, possible strength, of the proposed
algorithm that applies the original ILP objective func-
tion on this rather very small reduced set. The Exact
(optimal) strategy considers all the potential candidates
for each VNF. The gap, measured in percentage of dif-
ferent solutions compared with the Exact algorithm, is
formally expressed as follow:

Gap(%) =
Pt(G)

algo − Pt(G)
Exact

Pt(G)Exact
× 100 (16)

algo refers to one of the considered algorithms: i) R-
ILP or ii) Competitor or iii) MCTS. In Figure 7, the gap935

does not exceed 10% for our proposed R-ILP (operating
on a selected reduced set of candidates, 5 in this evalua-
tion) and 12% for the Competitor strategy, respectively,
compared to the Exact algorithm.

Note that R-ILP achieves the same performance as940

the exact algorithm in the time interval [0, 220 time
units] , the gap is equal to 1%, this section of the results
is not reported on Figure 7 (black curve) whose ordinate
is in logarithmic scale (logscale). MCTS is usually out-
performed by the other strategies (the ILP based algo-945

rithms) with nevertheless a reasonable gap with respect
to the exact algorithm. The maximum gap of 18% be-
tween MCTS and the Exact algorithm occurs only for
very few cases. R-ILP typically outperforms the Com-
petitor algorithm with R-ILP curve (black) most fre-950

quently below the Competitor gap curve (orange). The
R-ILP achieves this good performance (with very small
gaps, sometimes even no gap, with the exact ILP) since
VNFs are shared and a judicious selection of candidate
hosts is operated prior to applying the ILP. This result955

confirms that using a judicious candidates selection pro-
cess, the optimal solution can be found sufficiently often
and the percentage of time R-ILP results are suboptimal
kept below a certain percentage (below 10%). These
encouraging results call for a deeper investigation on960

the efficiency of our proposed algorithm that applies the
original ILP on only a reduced set of candidates.
5.4. Impact of the number of candidates
To avoid the well known scalability problems of integer
linear programs because of state explosion with increas-965

ing problem size (number of requests, sizes of requests

0 100 200 300 400 500 600 700

0

1

2

3

4

Time

G
ap

of
th

e
C

on
su

m
ed

E
ne

rg
y

%
(l

og
sc

al
e)

R-ILP
Competitor
MCTS

Figure 7: The gap between Exact and other strategies in percentage
and infrastructure sizes), our strategy consists in limit-
ing the number of candidates for hosting VNFs to the
smallest possible sizes, those that can find placement
solutions in acceptable and practical execution times970

for the stakeholders. The selected number of candi-
dates should neither be too small nor too high to ensure
good quality of the solutions while keeping execution
times low. The evaluation aims at finding the appropri-
ate number of candidates to select and use for the VNF-975

FG placement and chaining, especially those that can
provide good hosting solutions in reasonable execution
times.

To find these most adequate candidate set sizes, we
vary the number of selected candidates among all fea-980

sible physical nodes for hosting the VNFs and measure
the revenue achieved by the provider, the rejection rate
of the VNF-FG requests and the execution time needed
to find the placement solutions that affects directly qual-
ity of service and experience.985

The results which are reported in Table 3 reveal the
tradeoff between the size of the candidates subset and
the quality of the mapping solution. The number of
candidate paths (i.e., related to variable udp in our ILP
model) is fixed to 3 for these reported results that corre-990

spond to a high load scenario with λ (i.e., mean arrival
rate of requests) set to 25 per 100 time units. If the
number of selected and used candidate is too low, e.g.
for 5 candidates in Table 3, the percentage of requests
that are rejected is high (43.2%) and unacceptable. In-995

creasing the number of candidates will of course im-
prove this metric and the quality of the solutions at the
expense of execution times. The results of Table 3 con-
firm that there is a tradeoff between limiting the number
of candidates and the execution times and this occurs1000

when no additional benefits can be achieved by increas-
ing the number of candidates. Beyond 10 candidates
the performance improvements in rejection rate become

15

marginal. The simulation results show a rejection rate
of 27.9% for 10 candidates that improves slightly to1005

26.6% for 20 candidates followed by a negligible im-
provement from 20 to 30 candidates (with almost the
same rejection rate 26.6% versus 26.4%). The same
can be observed for the provider revenue that improves
marginally beyond a certain size of the candidate set.1010

The execution time results confirm this fact more force-
fully since the execution times for 20 and 30 candidates
are considerably higher than the execution times for 10
candidates (2316.97 ms for 20 and 4154.20 for 30 can-
didates versus only 814.79 ms for 10 candidates). These1015

results confirm that limiting the number of candidates
for hosting does not degrade quality of the solutions, in-
creases marginally rejection rate but can considerably
reduce execution times and hence address the scalabil-
ity problem of exact or integer linear programming so-1020

lutions. This also indicates that it is not always justified
to resort systematically to non ILP based heuristics to
address VNF-FG placement and chaining.

5.5. Execution time and revenue evaluation
Figure 8 depicts the rejection ratio for a low load sce-1025

nario when λ = 5. We notice that the R-ILP based al-
gorithms (online and batch) outperform the MCTS strat-
egy by accepting more requests. The MCTS algorithm
can not serve 19.3% of the incoming requests however
the online R-ILP rejects only 3.4%. This performance1030

highlights the efficiency of our R-ILP algorithm. The
rejection rate is reported as a function of simulation
time with the curves highlighting a transient state before
reaching a steady state condition for all the algorithms
corresponding to the nominal load where and when the1035

results are actually collected to produce all other perfor-
mance assessments.

0 0.2 0.4 0.6 0.8 1

·104

100

101

Time

R
ej

ec
tio

n
ra

tio
(%

) R-ILP
BR-ILP

RBR-ILP
MCTS

Figure 8: Rejection percentage for λ = 5

Figure 9 reports the rejection rate performance for in-

creasing system load for our algorithms and MCTS. We
recall that each request has an exponential lifetime with1040

a mean of 500 time units. At lower load, for arrival rate
λ = 5, the online and batch algorithms reject around
3% out of the 1000 simulated placement requests while
the MCTS algorithms rejects already 19.3%. For higher
loads, especially for λ = 10, the situation worsens to1045

45.9% for MCTS and a bit less for our algorithms to
29.0% for batch and 36.4% for the online. The batch
version rejects 7% less than the online one since the
batch algorithms process a group of requests jointly, fa-
vor the placement of requests that generate the highest1050

revenue in the batch and place as many requests as pos-
sible from each batch.

5 10 15 20
0

10

20

30

40

50

60

70

Lambda (λ)

R
ej

ec
tio

n
ra

tio
(%

)

R-ILP
BR-ILP
RBR-ILP
MCTS

Figure 9: Rejection percentage w.r.t the mean of arrival rate λ

This superior performance of the batch algorithms is
highlighted further by the results on the achieved rev-
enue depicted in Figure 10. The MCTS is shown to pro-1055

vide much lower revenues while the online improves by
a factor of 2.5 the revenue gains. The batch algorithms
provide an additional gain of 10% for simple BR-ILP
and 14% for RBR-ILP respectively beyond what the on-
line can accomplish. The improvement factor compared1060

to MCTS increases to 2.8.
The execution time of our R-ILP algorithm is as-

sessed by varying the size of the NFV-I while fixing
the number of candidates to 10 (based on the results
reported in Table 3) and the size of the VNF-FGs to1065

10 (VNF-FG sizes typical do not exceed 10 VNFs per
graph). Figure 11 reports the overall needed execution
time as a function of NFV-I size when including all the
R-ILP strategy steps and Figure 12 that measures only
the Cplex execution time part of this overall time. This1070

allows us to reveal that the execution of the R-ILP al-
gorithm without all the other steps (generation of re-
quests, preparation of the VNF-FG requests acting as

16

Table 3: Impact of the candidates number

5 candidates 10 candidates 20 candidates 30 candidates
Percentage of rejection 43.2% 27.9% 26.6% 26.4%

Revenue 329508 437768 444724 448688
Execution time (ms) 172.29 814.79 2316.97 4154.20

5 10 15 20

2

2.5

3

3.5

4

4.5

·105

Lambda (λ)

A
cc

ep
ta

nc
e

re
ve

nu
e

R-ILP
BR-ILP
RBR-ILP
MCTS

Figure 10: Acceptance revenue w.r.t mean of arrival rate λ
inputs to the algorithm and updating of the NFV-I re-
sources availability) is very low and is a marginal frac-1075

tion of the overall execution time. Figure 11 reports a
very low overall algorithm execution time for a NFV-
I with 100 nodes that increases to 18.99 seconds for
1000 NFV-I nodes. These higher values remain nev-
ertheless acceptable for an ILP program. Figure 11 also1080

highlights the gap in execution time between our R-
ILP algorithm (with a candidates size fixed to 10) and
the MCTS heuristic that outperforms slightly the R-ILP.
This gap remains low (about 7 seconds for 1000 NFV-
I nodes) when analyzed jointly with the other perfor-1085

mance metrics such as the achieved revenue by both
algorithms (cf. Figure 10, where the R-ILP outper-
forms MCTS).The R-ILP execution time for 1000 NFV-
I nodes of 18.99 seconds remains however competitive
and a reasonable price to pay with the superior perfor-1090

mance in all other metrics and in proximity to the ILP
(see Fig. 7). The R-ILP outperfoms the MCTS heuris-
tic also in rejection rate as depicted already in Figures
8 and 9 and in comsumed energy as reported later on
in Fig. 18. Consequently, the R-ILP achieves and en-1095

sures the best tradeoff between earned revenue and ex-
ecution time. Figure 13 depicts the overall and Cplex
execution times in logarithmic scale against the NFV-
I sizes to emphasize the previous findings. Namely to
confirm more clearly that the Cplex execution time for1100

the on line ILP and batch modes increases marginally

200 400 600 800 1,000
0

5

10

15

20

NFV-I size

E
xe

cu
tio

n
tim

e
(s

)

R-ILP
MCTS

Figure 11: Total execution time w.r.t NFV-I size
with NFV-I sizes since it is dominated by the small (con-
trolled) number of selected candidate hosts in the opti-
mization. The overall execution time on the contrary
has exponential increase because of the exponentially1105

growing complexity of most of the steps in Algorithm
1. The gap between these times is at least one order of
magnitude for small NFV-I sizes (102 versus 103) for
NFV-I with 100 nodes. The gap grows to two orders of
magnitude for 1000 nodes (102 versus 104). These sim-1110

ulation results confirm the complexity analysis reported
in Section 4. Figure 14 evaluates the performance of

200 400 600 800 1,000
40

50

60

70

80

90

100

NFV-I size

C
pl

ex
ex

ec
ut

io
n

tim
e

(m
s)

R-ILP

Figure 12: Cplex execution time w.r.t NFV-I size

17

200 400 600 800 1,000
101

102

103

104

NFV-I size

E
xe

cu
tio

n
tim

e
(m

s)
-L

og
sc

al
e

Cplex
Total (R-ILP)

Figure 13: Cplex Vs total execution time w.r.t NFV-I size

10 15 20 25 30 35 40 45 50
10−1

100

VNF-FG size

E
xe

cu
tio

n
tim

e
(s

)-
L

og
sc

al
e

Cplex
Total(R-ILP)

Figure 14: Total Vs Cplex execution time w.r.t VNF-FGs size

the R-ILP as a function of increasing VNF-FG request
sizes (in a logscale way) for the overall R-ILP execution
time and the execution time of Cplex step only. We fix1115

the NFV-I size to 100 nodes to calibrate the evaluation
in comparison to the sizes of the VNF-FG requests that
span sizes from 10 to 50 nodes so the assessment can
reveal the effect of VNF-FG request sizes on the R-ILP
speed. Figure 14 shows the evolution of the overall R-1120

ILP algorithm execution time for increasing VNF-FG
sizes and reports an overall execution time that remains
very low (below 1.8 seconds) even for VNF-FG sizes
of 50 nodes. The slope of the evolution curve is not
that steep (0.03) and the overall performance is accept-1125

able for such requests sizes. Figure 14 focuses, also,
on the required time to accomplish the Cplex process-
ing step (step 12 of Algorithm 1). The progression of
this execution time is also roughly linear with increas-
ing VNF-FG size. We remark that the progression of the1130

execution time is roughly linear (between 0.1 and 0.7
second) even if a bit steeper for larger VNF-FG sizes.
This is expected since the Cplex solver is faced with a
harder problem (including more variables) to solve for
larger requests and a comparatively rather small NFV-I.1135

By fixing the number of candidates the Cplex will be
essentially faced with the same number of variables and
the execution time will remain mostly constant as ob-
served previously in Figure 12 with a variation in ex-
ecution time not exceeding 4.08 ms for the evaluated1140

range (from 72.67 ms to 76.75 ms for the 100 to 1000
range in NFV-I size). However, when the size of the
VNF-FGs increases, the Cplex step is faced with an in-
creasing number of xvw (yvf also) variables and conse-
quently increasing udp variables and constraints. This1145

explains the steeper evolution for the Cplex step of R-
ILP algorithm.
5.6. Energy consumption
The energy consumption induced by the algorithms is
also evaluated through simulation using a mean ar-1150

rival rate of the VNF-FG request set to λ = 5 since
the algorithms accept a maximum number of requests
for this system load. This enables evaluation of en-
ergy consumption when a maximum number of requests
are hosted (placed). The consumed energy is assessed1155

by collecting the number of physical nodes that are
switched on by each algorithm to serve the requests
and the amount of power that is consumed for these re-
quests. These two key performance indicators reflect
directly the energy efficiency of the algorithms and en-1160

able their comparison.

0.2 0.4 0.6 0.8 1
·104

0

20

40

60

80

100

Time

N
um

be
rp

er
re

qu
es

t

R-ILP
MCTS

Figure 15: Number of switched ON servers

Figure 15 reports the total number of physical ma-
chines that are switched ON to serve the clients’ re-
quests and indicates that MCTS switches fewer physical
nodes than the R-ILP algorithm.This observation can be1165

misleading if the number of accepted requests is not an-

18

alyzed jointly with this energy metric. MCTS accepts
only 807 requests out of the expressed 1000 requests in
the simulation while the R-ILP accepts 968 requests. If
the analysis is conducted jointly, for instance by nor-1170

malizing the number of switched servers by the number
of accepted requests, we obtain a more reliable metric
or indicator as reported in Figure 16 that reveals that in
fact the MCTS algorithm uses on average more physical
machines to host each request. The R-ILP uses fewer1175

physical machines to host the requests while serving af-
ter all more users.

0.2 0.4 0.6 0.8 1
·104

0

1

2

3

4

5

Time

N
or

m
al

iz
ed

nu
m

be
r

R-ILP
MCTS

Figure 16: Normalized number of switched ON servers

Since the number of switched ON machines can not
precisely evaluate the consumed energy in the entire
NFV-I or data center, we extend the analysis by as-1180

sessing the power consumed by physical machines for
each algorithm and this same consumed power normal-
ized by the number of accepted requests. The energy
consumed by the NFV-I for each algorithm, due to the
amount of used resources and the number of solicited1185

hosts, is depicted in Figure 17 that quantitatively ana-
lyzes the evolution of the total consumed energy Pt(G)
in the data center at each instant t based on equation 2.
We fix P i(w) = 0 and PM (w) = 50 ∀w ∈ V (G) in
the equation 2 for this evaluation. Even if the R-ILP al-1190

gorithm accepts and serves more clients compared with
the MCTS strategy, it consumes less energy thanks to
its objective function, that computes the VNF-FG place-
ment and chaining that leads to minimum global energy
Pt(G) consumption. To highlight the superior perfor-1195

mance of the R-ILP across the entire infrastructure, Fig-
ure 18 depicts the consumed energy normalized by the
number of accepted requests. This corresponds to the
ratio of the ”total consumed energy Pt(G) at time t in
the NFV-I” to ”the number of currently hosted VNF-1200

FG requests”. This key performance indicator (ratio or
normalized consumed power) reports the energy con-

sumed on average for each accepted request. The R-
ILP is clearly seen to outperform the MCTS with gaps
in consumed energy reaching up to 15 watts for the sim-1205

ulated scenarios (40 watts for the R-ILP versus 55 watts
for MCTS).

0.2 0.4 0.6 0.8 1

·104

0

500

1,000

1,500

2,000

2,500

3,000

Time

W
at

ts

R-ILP
MCTS

Figure 17: Energy consumption

0.2 0.4 0.6 0.8 1

·104

0

10

20

30

40

50

60

Time

W
at

ts
pe

rr
eq

ue
st

R-ILP
MCTS

Figure 18: Normalized energy consumption

6. Conclusion
This paper proposes two embedding algorithms for the
VNF-FG placement and chaining problem in an online1210

and a batch mode. The online strategy exploits an inte-
ger linear program derived from a mathematical model
of the VNF-FG placement problem taking into account
the sharing of VNFs across tenants (or requests). The
proposed ILP exploits the sharing capability offered1215

by the NFV paradigm to optimize further physical re-
source usage and power consumption. The introduced
batch mode algorithm, to enhance further overall per-
formance, uses our R-ILP algorithm to process a group
of requests, queued in a batch window, by serving in1220

19

priority requests that generate higher revenues for the
providers while aiming at maximizing the number of
served (i.e., placed, chained, hosted) requests.

The batch mode gives the opportunity to the service
providers to select from a set of requests the most rele-1225

vant ones to be served in priority based on their objec-
tives. These two proposals were evaluated using exten-
sive simulations and a relevant and fair comparison with
a VNF sharing based algorithm called MCTS Competi-
tor. The obtained results confirm the ability of our pro-1230

posed ILP based algorithms to scale with problem size
since they select a limited number of candidate hosts
to reduce and control complexity. The proposed algo-
rithms are shown to outperform in energy efficiency, re-
jection rate and achieved revenues the current state of1235

the art through a comparison with a reference algorithm
(MCTS).

The batch mode proposed in this work deserves ad-
ditional attention by exploring to what extent it can use
the ILP to treat groups of requests jointly without jeop-1240

ardizing acceptance rate and quality of experience. Our
future work will pursue the investigation and modeling
to find the best possible trade offs.

References
[1] O. Soualah, M. Mechtri, C. Ghribi, D. Zeghlache, A green vnfs1245

placement and chaining algorithm, in: 2018 IEEE/IFIP Network
Operations and Management Symposium, NOMS, Taipei, Tai-
wan, April 23-27, 2018.

[2] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, On orches-
trating virtual network functions, in: Proceedings of the 20151250

11th International Conference on Network and Service Man-
agement (CNSM), CNSM ’15, IEEE Computer Society, Wash-
ington, DC, USA, 2015, pp. 50–56. doi:10.1109/CNSM.
2015.7367338.

[3] A. Marotta, A. Kassler, A power efficient and robust virtual net-1255

work functions placement problem, in: 28th International Tele-
traffic Congress, ITC 2016, Würzburg, Germany, September
12-16, 2016, 2016, pp. 331–339. doi:10.1109/ITC-28.
2016.151.

[4] O. Soualah, M. Mechtri, C. Ghribi, D. Zeghlache, Energy effi-1260

cient algorithm for VNF placement and chaining, in: Proceed-
ings of the 17th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, CCGRID 2017, Madrid, Spain,
pp. 579–588.

[5] O. Soualah, M. Mechtri, C. Ghribi, D. Zeghlache, An efficient1265

algorithm for virtual network function placement and chaining,
in: 14th IEEE Annual Consumer Communications & Network-
ing Conference, CCNC 2017, Las Vegas, NV, USA, January 8-
11, 2017, pp. 647–652.

[6] J. Gil-Herrera, J. F. Botero, Resource allocation in NFV: A com-1270

prehensive survey, IEEE Trans. Network and Service Manage-
ment 13 (3) (2016) 518–532. doi:10.1109/TNSM.2016.
2598420.

[7] S. Mehraghdam, M. Keller, H. Karl, Specifying and placing
chains of virtual network functions, in: Cloud Networking1275

(CloudNet), 2014 IEEE 3rd International Conference on, 2014,
pp. 7–13. doi:10.1109/CloudNet.2014.6968961.

[8] H. Moens, F. De Turck, VNF-P: A model for efficient place-
ment of virtualized network functions, in: Network and Service
Management (CNSM), 2014, pp. 418–423. doi:10.1109/1280

CNSM.2014.7014205.

[9] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic,
A. Hecker, S. Beker, D. Soldani, A novel approach to virtual
networks embedding for SDN management and orchestration,
in: 2014 IEEE Network Operations and Management Sympo-1285

sium, NOMS 2014, Krakow, Poland, May 5-9, 2014, 2014, pp.
1–7. doi:10.1109/NOMS.2014.6838244.

[10] R. Cohen, L. Lewin-Eytan, J. S. Naor, D. Raz, Near optimal
placement of virtual network functions, in: 2015 IEEE Con-
ference on Computer Communications (INFOCOM), 2015, pp.1290

1346–1354.
[11] B. Addis, D. Belabed, M. Bouet, S. Secci, Virtual network

functions placement and routing optimization, in: 2015 IEEE
4th International Conference on Cloud Networking (CloudNet),
2015, pp. 171–177. doi:10.1109/CloudNet.2015.1295

7335301.
[12] X. Li, C. Qian, The virtual network function placement prob-

lem, in: 2015 IEEE Conference on Computer Communica-
tions Workshops, INFOCOM Workshops, Hong Kong, China,
April 26 - May 1, 2015, 2015, pp. 69–70. doi:10.1109/1300

INFCOMW.2015.7179347.
[13] R. Bruschi, A. Carrega, F. Davoli, A game for energy-

aware allocation of virtualized network functions, J. Electri-
cal and COMPUTER Engineering 2016 (2016) 4067186:1–
4067186:10. doi:10.1155/2016/4067186.1305

[14] G. D. Forney, The viterbi algorithm, Proceedings of the IEEE
61 (3) (1973) 268–278.

[15] M. Mechtri, C. Ghribi, D. Zeghlache, Vnf placement and chain-
ing in distributed cloud, in: the 9th IEEE International Confer-
ence on Cloud Computing, June 27 - July 2, 2016, San Fran-1310

cisco, USA.
[16] C. Ghribi, M. Mechtri, D. Zeghlache, A dynamic programming

algorithm for joint vnf placement and chaining, in: CoNEXT
2016, CAN, December 12 - 15, 2016, Irvine, USA, ACM, 2016.

[17] O. Soualah, M. Mechtri, C. Ghribi, D. Zeghlache, A link fail-1315

ure recovery algorithm for virtual network function chaining, in:
2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), Lisbon, Portugal, May 8-12, 2017, pp. 213–
221.

[18] M. T. Beck, J. F. Botero, K. Samelin, Resilient allocation of1320

service function chains, in: 2016 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-
SDN), Palo Alto, CA, USA, November 7-10, 2016, 2016, pp.
128–133. doi:10.1109/NFV-SDN.2016.7919487.

[19] J. Fan, C. Guan, Y. Zhao, C. Qiao, Availability-aware map-1325

ping of service function chains, in: IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, 2017, pp. 1–
9. doi:10.1109/INFOCOM.2017.8057153.

[20] S. Khebbache, M. Hadji, D. Zeghlache, Virtualized network
functions chaining and routing algorithms, Computer Networks1330

114 (2017) 95 – 110. doi:https://doi.org/10.1016/
j.comnet.2017.01.008.

[21] A. Schrijver, Theory of linear and integer programming, John
Wiley & Sons, Inc.

[22] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,1335

A. Anand, T. Benson, A. Akella, V. Sekar, Stratos: A network-
aware orchestration layer for middleboxes in the cloud, CoRR
abs/1305.0209.

[23] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pick-
avet, P. Demeester, Network service chaining with optimized1340

network function embedding supporting service decomposi-
tions, Computer Networks 93, Part 3 (2015) 492 – 505, cloud
Networking and Communications {II}. doi:http://dx.
doi.org/10.1016/j.comnet.2015.09.035.

[24] M. Luizelli, L. Bays, L. Buriol, M. Barcellos, L. Gaspary, Piec-1345

ing together the nfv provisioning puzzle: Efficient placement
and chaining of virtual network functions, in: Integrated Net-
work Management (IM), 2015 IFIP/IEEE International Sym-
posium on, 2015, pp. 98–106. doi:10.1109/INM.2015.

20

7140281.1350

[25] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. K. Ra-
makrishnan, T. Wood, Virtual function placement and traffic
steering in flexible and dynamic software defined networks, in:
2015 IEEE International Workshop on Local and Metropoli-
tan Area Networks, LANMAN 2015, Beijing, China, April 22-1355

24, 2015, 2015, pp. 1–6. doi:10.1109/LANMAN.2015.
7114738.

[26] K. Yang, H. Zhang, P. Hong, Energy-aware service func-
tion placement for service function chaining in data centers,
in: 2016 IEEE Global Communications Conference (GLOBE-1360

COM), 2016, pp. 1–6. doi:10.1109/GLOCOM.2016.
7841805.

[27] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, H. A.
Chan, Optimal virtual network function placement in multi-
cloud service function chaining architecture, Comput. Commun.1365

102 (C) (2017) 1–16. doi:10.1016/j.comcom.2017.
02.011.

[28] ETSI GS NFV 001: Network Functions Virtualisation (NFV);
Use Cases.

[29] ETSI GS NFV 003: Network Functions Virtualisation (NFV);1370

Terminology for Main Concepts in NFV (2014).
[30] M. Pedram, I. Hwang, Power and performance modeling in a

virtualized server system, in: 39th International Conference on
Parallel Processing, ICPP Workshops 2010, San Diego, Califor-
nia, USA, 13-16 September 2010, 2010, pp. 520–526. doi:1375

10.1109/ICPPW.2010.76.
[31] IBM ILOG CPLEX Optimization Studio. [link].

URL https://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/

[32] M. J. Todd, The many facets of linear programming, Math. Pro-1380

gram. 91 (3) (2002) 417–436.
[33] B. Korte, J. Vygen, Combinatorial Optimization: Theory and

Algorithms, 4th Edition, Springer Publishing Company, Incor-
porated, 2007.

[34] Y. Zhu, M. Ammar, Algorithms for assigning substrate net-1385

work resources to virtual network components, IEEE INFO-
COM (2006) 1–12.

[35] M. Yu, Y. Yi, J. Rexford, M. Chiang, Rethinking virtual network
embedding: substrate support for path splitting and migration,
SIGCOMM Comput. Commun. Rev. 38 (2008) 17–29.1390

[36] Online and batch algorithms for vnfs placement and chaining.
URL https://github.com/MarouenMechtri/
algorithms

[37] E. Zegura, K. Calvert, S. Bhattacharjee, How to model an inter-
network, Proceedings of IEEE INFOCOM (1996) 594–602.1395

[38] S. Orlowski, M. Pióro, A. Tomaszewski, R. Wessäly, SNDlib
1.0–Survivable Network Design Library, in: Proceedings of
the 3rd International Network Optimization Conference (INOC
2007), Spa, Belgium, 2007, http://sndlib.zib.de, extended
version accepted in Networks, 2009.1400

URL http://www.zib.de/orlowski/Paper/
OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.
pdf.gz

21

