
HAL Id: hal-02355924
https://hal.science/hal-02355924v1

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Field theory for classical systems. Entropic effects.
Application to nonhomogeneous electrolytes.

Dung Di Caprio, Jean-Pierre Badiali, Myroslav Holovko

To cite this version:
Dung Di Caprio, Jean-Pierre Badiali, Myroslav Holovko. Field theory for classical systems. Entropic
effects. Application to nonhomogeneous electrolytes.. Journal of Physical Studies, 2009, 13 (4),
pp.4002. �10.30970/jps.13.4003�. �hal-02355924�

https://hal.science/hal-02355924v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


ЖУРНАЛ ФIЗИЧНИХ ДОСЛIДЖЕНЬ
т. 13, № 4 (2009) 4002(8 с.)

JOURNAL OF PHYSICAL STUDIES
v. 13, No. 4 (2009) 4002(8 p.)

FIELD THEORY FOR CLASSICAL SYSTEMS. ENTROPIC EFFECTS.
APPLICATION TO NON HOMOGENEOUS ELECTROLYTES

D. Di Caprio1, J. P. Badiali1, M. Holovko2

1Laboratory of Electrochemistry, Chemistry of Interfaces and Modelling for Energy (LECIME), UMR 7575 CNRS,
Chimie ParisTech, University Paris 6, B.C. 39, 4. Pl. Jussieu, 75252 Paris Cedex 05, France

2Institute for Condensed Matter Physics, 1, Svientsitskii St., UA–79011, Lviv, Ukraine
(Received October 16, 2009)

In a series of papers, we have presented a field theory to describe the liquid state. In contrast to
other field theory approaches, we do not start from Gibbs partition function in terms of particles.
The direct use of a field theory assumption leads to a simple formulation in terms of a Hamiltonian
functional. The form of this functional is partly reminiscent of other field theory approaches and of
the density functional theory. However, the formal similarity of the functional is misleading. In this
paper, we intend to clarify some aspects which may lead to confusion when interpreting this field
theory approach. We compare the role of quantum effects in the traditional approach and in field
theory.
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I. INTRODUCTION

The formalism of the field theory (FT) has been suc-
cessfully used in numerous domains of the statistical me-
chanics. For instance, this formalism has been widely
used as a simple and robust tool to discuss the behaviour
of complex systems in the domain of the so-called soft
matter physics [1–7] in the field of the critical phenom-
ena [8–11] and more specifically the topical subject of
critical phenomena in ionic systems [12, 13]. Based on a
coarse graining procedure, these approaches are essen-
tially phenomenological. In parallel, microscopically ex-
act approaches have also been derived [14–35]. In this
case a field theoretical representation of the Gibbs par-
tition function is obtained and the particle configura-
tion space representation is replaced by the one in terms
fields. Unfortunately, these approaches involve complex
mathematical transformations and as a result the fields
do not all have a straightforward physical meaning.

Alternatively [36–41], we have presented a microscop-
ically exact field theory to describe the liquid state. This
theory is exact in the following sense: there exists a map-
ping between our approach and the Mayer expansion of
the usual statistical mechanics. Here, the field is name-
ly the density of matter. In contrast to the other mi-
croscopical field theories, the construction of the theory
is straightforward. It uses a standard field theory type
construction. Such a construction is based on the exis-
tence and relevance of a mean field theory. In our case,
the starting point is thermodynamics and this scheme
leads, in our opinion, to a simple and clear formulation.
In this respect, it is closer in spirit to the more intu-
itive phenomenological approaches. However, in contrast
to these approaches, the Hamiltonian functional of this
theory can be given explicitly and it has a simple form.
There are in fact two contributions. One is local and
is reminiscent of other field theory approaches and al-
so of the density functional theory. The second, which
is non-local, is directly related to the interaction poten-

tial between two space points. This potential is identi-
cal to the intermolecular pair potential used in standard
theory [37]. In view of some similarities between our lo-
cal Hamiltonian functional with functionals found with-
in other approaches we will try to analyze more deeply
the physical content of this functional and also how it is
used in practical calculations. The paper is organized as
follows. We will first elaborate the field theory using a
simple thermodynamic construction. We start from the
ideal gas and generalize to systems with interactions. To
analyse the formalism we will focus on the role of the lat-
tice space discretization of the partition function within
an integral functional representation and discuss a renor-
malization procedure. This will put emphasis on the local
term in the Hamiltonian which represents the specificity
of this field theory approach and lead to a discussion on
its physical significance. In particular, we show its role in
the transcription of quantum mechanical properties true
of particles in terms of fields.

The interest of a new way of elaborating these quan-
tum mechanical properties within the FT will be illus-
trated using applications related to inhomogeneous elec-
trolytes at interfaces. For these systems, the role of the
local Hamiltonian is essential and describes the compe-
tition between purely entropic effects related with the
existence of distinct ions and energetic properties relat-
ed to the Coulomb potential. Within the FT formalism,
we show that some phenomena which escape standard
descriptions can easily be described and understood. We
conclude by emphasing the interest of adopting a new
formalism to shed a somewhat different light on some
problems.

II. A FIELD THEORY ASSUMPTION

The specificity of our FT approach is that we do
not elaborate the formalism starting from the standard
Gibbs partition function. Rather, from the starting point
we assume both the existence of the approach and that
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the field is namely the density of matter. From this as-
sumption, we stress that changing from particles to fields
leads to an entirely different representation. Typically, in
standard statistical mechanics we consider a well identi-
fied number of particles with a given number of degrees
of freedom, of translation for instance1. If we consider
the grand canonical ensemble, we also need to sum over
all possible number of particles. In contrast, in field the-
ory, we do not have Gibbs ensembles and the partition
function is a functional integral over all configurations
of the density fields which are functions. The degrees of
freedom of the system are those of these functions which
take different values at each lattice site. By choosing the
density of matter ρ as the elementary real valued field
variable we imply that this quantity is not fixed and
fluctuates. This leads us to fixing the chemical poten-
tial µ and adopt the grand potential. In FT, the grand
potential is written as a functional integral

−βPV = − ln Ξ = − ln
[∫

Dρ e−βH[ρ]

]
(1)

where Dρ is the measure and β is the inverse temper-
ature. To elaborate the FT, we then have to find the
functional of the field H, which we call Hamiltonian. Ul-
timately, the FT formalism must describe the standard
classical statistical mechanics for particles.

A traditional way of elaborating field theories is to as-
sume that some mean field theory represents a meaning-
ful intuitive starting point from which the theory can be
elaborated. The complete theory takes into account the
fluctuations of the field. To illustrate this, we first con-
sider the ideal gas and here the Hamiltonian functional
will be denoted Hl. In order to obtain Hl, we impose
that a mean field approximation will be sufficient to give
the exact expression of the chemical potential, which for
the ideal gas is exactly given by

ln(ρ(i)Λ3)− βµ = 0 (2)

where Λ is the thermal de Broglie wavelength, where we
define a lattice of elementary spacing a, and i is the label
of a lattice site, hence ρ(i) is the density at site i and the
measure will be simply Dρ =

∏
i[dρ(i) a

3].
A Hamiltonian which reproduces Eq. (2), in a mean

field approximation is given by

βHl[ρ] =
∑

i

ρ(i) [ln(ρ(i)/ρ̄)− 1] a3 (3)

where ρ̄ = eβµ/Λ3 is the activity. For the ideal system,
in the absence of any interaction potential, we note that
this functional is local which justifies the subscript l. For
a homogeneous gas, assuming ρ(i) = ρ̄, we obtain the
standard value of the grand potential for the ideal gas
−βPV = −ρ̄V . However, the mean field approximation

of the FT is commonly accepted to be correct and cor-
respond to the thermodynamics, only when the lattice
cell a3 is large. In this case, fluctuations within each cell
can be neglected so that the density in each lattice site
ρ(i) can reasonably be assumed to be close to the aver-
age density ρ̄. In the presence of an external field, these
expressions can be generalized as long as the external
potential varies sufficiently slowly, implying that it has
negligible variations over a lattice distance a [37].

Clearly, a theory applicable only in the large a limit
is of limited interest as it smooths out all physics at any
smaller length scales. In principle, we intend to treat sys-
tems with interactions for which the scale is much smaller
than this large limit for a. In [37], we show that taking
the opposite limit for a can be done. In order to do that,
we take advantage that all lattice sites are decoupled
in the Hamiltonian Eq. (3). We calculate the exact ex-
pression of the partition function, that is the mean field
expression plus the corrections valid for the large a limit.
The partition function external potential V ext is

ln Ξ0[ρ, V ext] =
V/a3∑

i

ρ̄a3e−V ext(i)

+
V/a3∑

i

ψ[ρ̄a3e−V ext(i)] (4)

where the function ψ is known [37]. The interesting point
is that this function has terms which exhibit distinct
powers of ρ̄a3, and in particular all different from the
first term which corresponds to the exact thermodynam-
ic result, extensive with the volume. More precisely, these
terms are logarithmic or inverse powers of ρ̄a3 and there-
fore negligeable with respect to the thermodynamic term
in the large a limit. In [37], we have proposed a renormal-
ization procedure in order to obtain the thermodynamic
result whatever the value of the arbitrary lattice spacing.
The renormalized partition function is simply the parti-
tion function in (4) to which the ψ function has been
subtracted. Only the remaining terms have the correct
power in a, in order to give the thermodynamic value
of the grand potential whatever the value of a as long
as the variations of external potential remain negligible
over this lattice length scale. Thus our Hamiltonian is
not strictly Hl that appears in other approaches based
on Sine–Gordon transformation since a renormalization
procedure must be added to (3).

From this point the generalization to the interacting
gas is straightforward. The equivalent procedure start-
ing from a simple mean field expression of the chemical
potential leads when there are interactions to the Hamil-
tonian [44]

βH[ρ] = βHl[ρ] +
1
2

∑
i 6=j

ρ(i)a3βv(i, j)ρ(j)a3 (5)

1Note that in the following we limit our discussion to systems in equilibrium and assume that we have integrated over the
kinetic degrees of freedom.
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where v is the interaction potential. Assuming a vanish-
ing lattice spacing a and applying the renormalization
procedure used in the case of the ideal system, we show
that the expansion of this field theory is equivalent to
the standard expansion in terms of Mayer graphs [37].
Therefore this Hamiltonian is not an approximate func-
tional.

It is important to realize that the renormalization pro-
cedure elaborated for the ideal system does not impinge
on the physical quantities related to the interactions.
Practically, this is due to the fact that the ideal system
Hamiltonian is local whereas the interaction contribution
couples distinct lattice sites. Therefore the renormaliza-
tion necessary to absorb divergences in the vanishing a
limit only deals with the contributions from the local
Hamiltonian Hl and does not affect the excess quantities
related to the interaction. Then, once the supplementary
terms have been discarded with the renormalization, the
remaining terms lead to the precise combinatoric coeffi-
cients required to map the FT expansion onto the stan-
dard Mayer expansion of the liquid state theory.

Also, being able to renormalize the theory for an arbi-
trary external potential shows that generating function-
al techniques can be applied and as a consequence the
renormalization remains valid when calculating any oth-
er quantity. In this renormalization process, the key point
is to free oneself from the arbitrary lattice spacing a by
taking the vanishing a limit when one describes the sys-
tem with interactions. This is to some extent similar to
what is stated by Hill [42] when he discusses the classical
limit of the quantum statistical mechanics. Namely, for
the ideal gas the classical physical behaviour is obtained
taking the vanishing Planck constant h limit and in this
case one finds there are no restriction on Λ. On the con-
trary, when there are interactions, it becomes necessary
to consider not only the vanishing h limit, but also dis-
cuss the thermal Λ with respect to the interaction range.

We can summarize this Section by saying that the par-
tition function written as a functional integral with the
Hamiltonian (5) together with a renormalization proce-
dure on the local part of the Hamiltonian leads to a the-
ory which is an exact alternative to the standard sta-
tistical mechanics. From now on, to simplify notations,
it is possible to abandon the lattice space representation
of the Hamiltonian as, after renormalization, expressions
are independent from the precise choice of a in the van-
ishing lattice space limit.

III. CLASSICAL STATISTICAL MECHANICS:
THE QUANTUM MECHANICAL PARADIGM

The aim of this Section is to gain a better understand-
ing of the role and physical meaning of the local Hamil-
tonian contribution Hl. We can start by noting that al-
though we use the denomination of classical statistical
mechanics there is no purely classical theory but just a
classical limit of the quantum description [42]. In this
limit we have to comply with two properties which have
a meaning only in the quantum world. These properties

are namely, the Heisenberg uncertainty principle and the
property of indistinguishability for standard boson type
particles. For systems in thermodynamic equilibrium the
former property after integration over the kinetic mo-
menta leads to the introduction of Λ that depends on
the Planck constant. Λ is the minimal length where one
is allowed to devise on the position of a particle when
the momentum is calculated from the Maxwell velocity
distribution law. Thus in the thermodynamic domain a
particle cannot be localized better than in a volume Λ3.
We can say that any particle occupies an effective volume
Λ3. The second property leads, in partition functions, to
the introduction of a factorial of the number of particle as
the consequence of their indistinguishability. This term
is the sign of our inability to write the partition function
without going through two successive steps. The first is
describing the theory for labelled particles then formally
delabeling them [43,44].

The ideal gas as a reference for the quantum mechanical
properties

The canonical partition function of the ideal gas
Qig(N,V, T ) is determined by the two quantum prop-
erties mentioned above. We have

Qig(N,V, T ) =
V N

N !Λ3N
, (6)

for a system of N particles at equilibrium, in a volume V
at temperature T . In this expression, we have to compare
for each particle the available volume V to the effective
volume Λ3 and to divide the result by all possible permu-
tations of the indistinguishable particles. Thus although
we started by integrating separately each particle, finally
the N particles cannot be really considered as indepen-
dent entities. In the quantum world, although there are
no interactions, particles still know of each other’s exis-
tence. In the grand canonical description the partition
function is given by

Ξig(V, µ, T ) =
∞∑

N=0

eβµNQig(N,V, T ) (7)

where β is the inverse temperature. The thermodynamic
potential associated with the grand potential is −βPV =
−ρ̄V and indeed the Hamiltonian Hl (3) is simply a tran-
scription. The previous results are the only exact results
we know and we consider that a field theory must repro-
duce such exact results whatever the lattice spacing a. In
the previous section we have seen that this can be real-
ized provided a renormalization procedure is introduced.
If the partition function is calculated by expanding the
exponential of the local functional — and, to our knowl-
edge, we have no other choice — not all terms have to be
kept, we drop those depending on a and those that are di-
verging. By such a procedure the quantum remeniscences
are exacty taken into account. This derivation shows that
functional Hl and its renormalization is precisely the ex-
act representation of the quantum mechanical properties
in the framework of the FT.
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A system with interactions

The generalization of the partition functions to inter-
acting systems is obtained by replacing Qig(N,V, T ) in
the previous relation by Q(N,V, T ) given by

Q(N,V, T ) = Qig(N,V, T )

×
∫ ∏

i=1,N

dri

V
exp

−∑
i 6=j

βv(rij)

 . (8)

In order to calculate Q(N,V, T ), our main task consists
in the calculation of the 3N dimensional integral that re-
veals all the specificities of the liquid via the sum of pair
potential acting between theN particles. Let us return to
the field theory. The pair potential introduces a coupling
between two points in space as shown in equation (5).
Our main task is then to consider the coupling between
the pair potential and the local part of the Hamiltonian.
In [37], we have shown that the local part leads to intro-
duce first a Gaussian quantity coupling two space points
and then an operator acting on this Gaussian quanti-
ty (Eq. (39) in ref [37]). The treatment of this opera-
tor, representative of quantum effects via Hl, generates
an expansion in terms of Feynman diagrams and final-
ly we obtain the complete theory. Thus in field theory
the effects of the pair potential and the reminiscence of
quantum effects have equal importance in the progress
of the theory. Note that the functional Hl appears in
the DFT approach [45] but with a totally different point
of view. To find the equilibrium properties we need a
minimization of the density functional rather than an
elaborate integral functional over all fluctuations of the
density fields as performed in the FT.

To summarize, first we impose that the field theory
reproduces exactly the quantum properties which deter-
mine the ideal gas thermodynamics. This can be done by
using the local functional given by Eq. (3) but we also
have to add to it a renormalization condition. The quan-
tum effects via a local functional Hl leads to an operator
acting on a gaussian function containing the interaction
between two points in space. This operator produces a
mixing between quantum effects and interactions which
is rather different to that existing in standard liquid state
theory or in DFT. Although it is understood that in the
end the results are identical.

IV. APPLICATIONS TO INHOMOGENEOUS
ELECTROLYTES

The field theory has been illustrated in various exam-
ples describing electrolytes at interfaces [36–41]. Here-
after, we briefly recall some key elements of discus-
sion common to the various systems. To study the lo-
cal Hamiltonian, the interest in treating electrolytes is
that for these systems we have particles with both prop-
erties i.e. each type of ions is indistinguishable within
the same species but cations and anions are clearly dis-
tinguishable. Such properties must be visible in Hl and
have physical consequence. These physical properties can

be foreseen in that for this system we have two represen-
tations or viewpoints. We can think in terms of mixtures
and choose for the fields the ionic densities or focus on
the electrostatic properties and consider the charge and
the conjugated total density field. These viewpoints are
intimately related and as a consequence there will be
couplings between purely entropic fluctuations related
to the relative number distribution of the two ions and
the Coulomb properties associated to the charge density.
In this Section, we will consider point ions in order to
focus on the competition between the Coulomb poten-
tial and the quantum mechanical effects as controlled by
the Hamiltonian Hl. To be more general, we can consider
excess quantities with respect to a neutral system with
volume excluded interactions. We will also start from the
more simple symmetric 1:1 electrolyte and generalize to
the case of systems asymmetric in valence systems. These
systems represent yet another domain to study the im-
plications of Hl as the number balance between ions is
modified due to the electroneutrality condition. The ob-
jective is to illustrate the role of the functional Hl and its
physical consequence. In particular, we will show that in
perturbation theory, this terms leads to local couplings
between the fields which are non-trivial and have a clear
consequence on the physical properties of the system.

A. Symmetric systems

The Hamiltonian Hl in the case of ionic systems is

βHl =
∫
ρ+(r) [ln(ρ+(r)/ρ̄+)− 1] dr

+
∫
ρ−(r) [ln(ρ−(r)/ρ̄−)− 1] dr

=
∫
s(r) + q(r)

2

[
ln

(
s(r) + q(r)

2ρ̄

)
− 1

]
dr

+
∫
s(r)− q(r)

2

[
ln

(
s(r)− q(r)

2ρ̄

)
− 1

]
dr (9)

where ρ̄± = eβµ±/Λ3
± and are equal for the symmet-

ric electrolyte and in this context ρ̄ = ρ̄+ + ρ̄−. The
second form is introduced because it is more practical
to study the Coulomb potential and we introduce the
charge field q(r) = ρ+(r) − ρ−(r) and the total densi-
ty field s(r) = ρ+(r) + ρ−(r). We can immediately note
that if the ionic fields for cations and anions appear in
separate terms in the first form of Eq. (9), this is no
longer the case in the second form where the two fields q
and s appear simultaneously in all terms of Hl. The full
Hamiltonian is obtained by including the interactions

βH[q, s] = βHl[q, s] + βHCoul[q] (10)

where βHCoul[q] is the standard Coulomb term. In the
following, we will calculate the integral functional in per-
turbation theory, studying the fluctuations around the
mean field approximation. We will only need to consid-
er the neutral interface as quantities like the differen-
tial capacitance will be obtained in the linear response
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regime from the neutral interface properties. For the non-
charged interface, the mean field approximation solution
is trivial. The charge profile across the system is zero
and for point ions the density is constant throughout
the interface. The expansion of the Hamiltonian around
the mean field approximation is a sum of local coupling
terms. The first terms beyond the quadratic terms are
shown as follows

βδHl[q, s] = − ρ̄
2

∫
δq2(r)δs(r) dr

+
ρ̄

12

∫
δq4(r) dr . . . (11)

where δq = q/ρ̄ and δs = (s − ρ̄)/ρ̄ are dimensionless
excess fields. The quadratic Hamiltonian is

βδHquad =
ρ̄

2

∫
[δq2(r) + δs2(r)] dr

+
βe2ρ̄

8πε

∫
δq(r)δq(r′)
|r− r′|

drdr′. (12)

where e is the elementary electric charge and ε is per-
mittivity. The quadratic terms from Hl are naturally as-
sociated to the interaction potential as it is also bilinear
and can be treated in a similar way. Thus, in expansion
theory, δHl will provide vertices and the bilinear terms
in (12) the connections between the vertices. Note that
the quadratic terms are diagonal in the q and s fields
and for point ions, they lead at the quadratic level of
approximation to the well known Debye limiting law in
the bulk [48]. After renormalization, the expansion δHl

can be greatly simplified and vertices can be substituted
by

1
(2n)!m!

δq2nδsm (13)

where only even terms in the charge are present for a
1 : 1 symmetric electrolyte. Therefore, although it is not
the case in Hl, the vertices now have the expected sym-
metry factors and all standard combinatoric rules in the
expansions can be used. The consequence is that in ex-
pansions we will now use the above vertices and that
in the bilinear terms only the interactions remain (here,
the Coulomb potential). We now give a few examples of
behaviours which can be predicted using this expansion.

Ionic depletion at a neutral interface

We first start by considering the neutral interface for
which there is no charge density profile. However, at this
interface, the quadratic charge fluctuations are not con-
stant and at the one loop level approximation, we show
that they have a depleted profile. The physical inter-
pretation is that these fluctuations are modified when
we approach the interface because of the absence of ion-
ic system in one half space and thus some fluctuations
are frustrated. In [36], we have shown that this profile
is directly associated to the existence of an ionic deple-
tion profile for the total density. Indeed, the expression
of the total density shows that it is the term δq2δs in

δHl which is responsible for transposing a property as-
sociated to the charge field, thus related to the Coulomb
potential, to an effect on the total density field. The con-
tact value of this profile is precisely the value of the pres-
sure βP , calculated at the same level of approximation.
This means that the quantities fulfil the so-called contact
theorem. Common approaches like the Gouy-Chapman
theory or the MSA approximation [49] do not satisfy
this condition. These approaches focus on the equations
directly associated to the Coulomb potential and dis-
card any correlation between the charge and the total
density. Typically, in the MSA approximation the total
density profile is that of neutral hard spheres. The con-
sistency of the contact theorem is restored because we
account for the competition between entropic effects for
indistinguishable and distinguishable species (ions of the
same/different kind) and Coulombic effects.

Anomalous capacitance behaviour

The above profile on the density is related to anoth-
er surprising phenomenon, which is the anomalous be-
haviour of the electric differential capacitance as a func-
tion of the temperature. Experimentally and in numeri-
cal simulations, scientists have found systems where the
electric capacitance decreases at low reduced tempera-
ture. The study of this phenomenon has lead to a sub-
stantial literature [38, 50–59]. This phenomenon is non-
intuitive as one expects the electric response of the sys-
tem to decrease with increasing thermal agitation as pre-
dicted by the Gouy-Chapman or MSA approaches. The
phenomenon appears at low reduced temperature when
the Coulomb interaction becomes stronger. When con-
sidering the ionic depletion profile, one can easily under-
stand that the lack of ions is correlated with a less ef-
ficient electric response. This depletion is the more pro-
nounced precisely at low reduced temperature. In [38],
we have obtained a simple analytic expression of the dif-
ferential capacitance using the charge-charge correlation
function and in expansions we note that the corrections
to the correlation involve the δq2δs and the δq4 cou-
plings in equation (11). In a second step, having captured
the main physical behaviour, it is possible from a simple
modification to account for the size of the ions [39]. We
can note that originally, this effect was found in molten
salts, which are dense systems - therefore attributed to
excluded volume effects. Here, predicted by a point ion
model, we show that this is not the case.

B. Multivalent electrolytes

Another domain to illustrate the role of Hl is to con-
sider valence asymmetric systems that is z+ : z− elec-
trolytes. The relation between the ionic density fields
and the charge field are modified according to q =
z+ρ+ − z−ρ−. This new relation modifies the expression
for Hl, equation (9)
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βHl =
∫
z−s(r) + q(r)
z+ + z−

[
ln

(
z−s(r) + q(r)
(z+ + z−)ρ̄

)
− 1

]
dr

+
∫
z+s(r)− q(r)
z+ + z−

[
ln

(
z+s(r)− q(r)
(z+ + z−)ρ̄

)
− 1

]
dr (14)

In the expansion, the coupling Hamiltonian now becomes

βδHl[q, s] = − ρ̄

2z+z−

∫
δq2(r)δs(r) dr

+
ρ̄(z2

+ + z2
− − z+z−)

12z3
+z

3
−

∫
δq4(r) dr

− ρ̄(z+ − z−)
6z2

+z
2
−

∫
δq3(r) dr . . . (15)

and the quadratic Hamiltonian

βδHquad =
ρ̄

2

∫ [
1

z+z−
δq2(r) + δs2(r)

]
dr

+
βe2ρ̄2

8πε

∫
δq(r)δq(r′)
|r− r′|

drdr′ (16)

Defining a scaling parameter zf = √
z+z− and rescal-

ing the charge field by defining δQ = δq/zf and introduc-
ing the asymmetry parameter zas = (z+ − z−)/√z+z−,
we can rewrite the expansion of the Hamiltonian

βδHl[q, s] = − ρ̄
2

∫
δQ2(r)δs(r) dr +

ρ̄

12

∫
δQ4(r) dr

+
ρ̄z2

as

12

∫
δQ4(r) dr − ρ̄zas

6z2
+z

2
−

∫
δQ3(r) dr . . . (17)

and the quadratic Hamiltonian

βδHquad =
ρ̄

2

∫ [
δQ2(r) + δs2(r)

]
dr

+
βz2

fe
2ρ̄2

8πε

∫
δQ(r)δQ(r′)
|r− r′|

drdr′ (18)

In these new expressions, we find terms which are ex-
actly the same ones as for the 1 : 1 symmetric system
written with δQ in replacement of δq. This shows that
these terms correspond to the same physics as for the
1 : 1 electrolyte once the charge is rescaled by zf . This
coefficient corresponds to the scaling of the ionic force
when changing from a 1 : 1 to a z+ : z− electrolyte. Note
that this parameter is the same for a 4 : 1 and a 2 : 2
electrolyte. This suggests that there is another param-
eter which plays an important role. Indeed, the terms
where there is zas are really the terms characteristic of
the asymmetry. We hereafter study the consequence of
these terms.

Anomalous capacitance for multivalent electrolytes

The study of the differential capacitance curves for
asymmetric electrolytes as shown in [40]. The Scaling
of the electric charge or equivalently of the dimension-
less temperature with the ionic strength parameter zf is
shown to rescale the essentials of the differences between
the curves which are seen to tend towards the 1:1 sym-
metric electrolyte result. However, as mentioned above

4 : 1 and 2 : 2 electrolytes which share the same pa-
rameter zf still exhibit a slightly different physics. The
remaining difference is associated to the parameter zas

which is truly characteristic of the valence asymmetry
[40, 41]. The dependence with this parameter indicates
an increase of the differential capacitance peak, clearly
found in numerical simulations. To our knowledge, this
behaviour has not been explained by another approach.
It is the new terms in δHl (Eq. 17), which depend on zas,
absent in symmetric electrolytes, which are responsible
for this behaviour.

The potential of zero charge (PZC) for size and valence
asymmetric systems

Another effect of the valence asymmetry is the exis-
tence of a polarization for the neutral interface. Such
an effect has been shown by Torrie et al. [60] and more
recently discussed by Henderson et al. [61] who have con-
sidered both asymmetry in size and/or in valence. The
authors, searching for simple analytic approaches, were
able to account for the size effect. However, none of the
standard liquid state theories account for the valence ef-
fect [61, 62] except for the MPB approach used in [60]
and more recently in a version of the DFT [63]. These
approaches are mathematically demanding. Conversely,
we find that FT predicts the polarization due to mul-
tivalency with simple analytic expressions which can be
applied directly to any valences. The charge profile thus
calculated is consistent with the exact condition given
by the charge contact theorem [64] and comparison with
the numerical simulation results [41] shows an unexpect-
ed convergence if we note that a simple point ion model
has been used.

V. CONCLUSION

In this paper, we have shown how to construct a sim-
ple field theory approach of the standard statistical me-
chanics. Noting that there is no real classical statisti-
cal mechanics, we discuss the specificity of the FT. The
characteristics consists in a new way of including quan-
tum mechanical properties like the indistinguishability
of particles into a local Hamiltonian in the theory. This
specific way of introducing such properties leads, in this
framework, to treating them in the same way as the in-
teraction potential. As an illustration, some properties
of electrolytes can be understood in a new way. The in-
distinguishability of ions of the same kind as opposed to
cations and anions is shown to have entropic effects which
compete with the energetic effects of the Coulomb po-
tential. For symmetric and asymmetric electrolytes, we
have detailed the transformations of the local Hamiltoni-
an when going from the ionic density fields description to
the charge and total density fields. This transformation
is required to go from the original form expressing the in-
distinguishability to a form more convenient to study the
Coulomb systems. Our point is to illustrate that, in FT,
working on fields there is a simple algebra which intro-
duces efficiently the appropriate physical parameters and
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allows for simple calculations and interpretations. Final-
ly, it is interesting to note that in the context of particles
with defined locations the property of indistinguishabili-
ty introduces a non local coupling over the whole system.
On the contrary for fields which are essentially non local
variables, the same property takes a local form, which
appears practical for calculations.
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У серiї робiт ми виклали теорiю поля для опису рiдкого стану. На противагу до iнших пiдходiв теорiї
поля, ми не виходимо з представлення Ґiббса для статистичної суми частинок. Пряме використання припу-
щень теорiї поля приводить до простого формулювання в термiнах функцiонала Гамiльтона. Форма цього
функцiонала частково нагадує iншi пiдходи теорiї поля та теорiї функцiонала густини. Проте формальна
подiбнiсть функцiонала є помилковою. У цiй статтi ми намагаємося вияснити деякi аспекти, якi можуть ви-
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