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 21 

Abstract 22 

Evaluations of the functioning of benthic marine food webs could be improved by 23 

quantifying organic matter fluxes from the meiofauna to higher trophic levels. In this study, 24 

we measured the simultaneous ingestion of meiofauna and macrofauna by common dwellers 25 

of a tropical intertidal mudflat on the coast of Amazonia. The meiofauna and macrofauna 26 

(tanaid) communities of a tropical intertidal mudflat of French Guiana were separately 27 

enriched with 
15

N and 
13

C, respectively. The enriched preys were then used as tracers during 28 

feeding experiments with common predators of different sizes and feeding mechanisms: a 29 

Portunidae crab (Callinectes bocourti), a Penaeidae shrimp (Farfantepenaeus subtilis) and a 30 

Gobiidae fish (Gobionellus oceanicus). In feeding experiments with all predators except 31 

crabs, feeding rates increased with the availability of meiofauna and macrofauna food 32 

sources. The ability of consumers to ingest their food selectively was evaluated by calculating 33 

the differences in the ratio of macrofauna to meiofauna between the i) ingested material and 34 

ii) that available in the environment. Larger predators showed a higher degree of preferential 35 

macrofauna ingestion than smaller predators, consistent with the optimal foraging theory. For 36 

large predators, the meiofauna would be important only during early life or in the absence of 37 

large food items. 38 

39 



 40 

Introduction 41 

Marine sediments constitute one of the largest environments in the world, in terms of 42 

the area covered. They form the habitat of the meiofauna, a discrete group of small (passing 43 

through a 0.5 mm-mesh sieve), highly diverse and abundant organisms (Giere 2009). 44 

Meiofauna biomass varies considerably between habitats. It is generally smaller than that of 45 

other benthic components, but the meiofauna could plays a key role in this ecosystem, due to 46 

its high levels of production and activity (Schwinghamer et al. 1986, Moens et al. 2013). The 47 

meiofauna move through the sediment and construct burrows, thereby conveying oxygen and 48 

nutrients vertically and increasing organic matter mineralization and nutrient cycling (Aller & 49 

Aller 1992, Coull 1999, Bonaglia et al. 2014). The meiofauna also supplies ecosystem 50 

services, such as nutrient cycling and waste processing, and it plays an important role in food 51 

webs (Schratzberger & Ingels 2018). The meiofauna is highly diverse, with a large array of 52 

feeding strategies, resulting in the consumption of a broad spectrum of food sources, 53 

including microphytobenthos (Middelburg et al. 2000, Moens et al. 2002) and, to a lesser 54 

extent, bacteria (van Oevelen et al. 2006, Pascal et al. 2009). The meiofauna may, therefore, 55 

represents a major link between small food items and higher trophic levels (Coull 1999). The 56 

meiofauna is a high-quality food source, as the animals in this population can biosynthesize 57 

and accumulate highly unsaturated fatty acids (Fleeger 2007, Leduc et al. 2009, De Troch et 58 

al. 2012, Braeckman et al. 2015) that most metazoans are unable to produce. Numerous 59 

studies have demonstrated the importance of the meiofauna in the diet of epibenthic predators 60 

(Coull 1990), such as fishes (Fitzhugh & Fleeger 1985, Henry & Jenkins 1995), shrimps (Bell 61 

& Coull 1978, Nilsson et al. 1993) and crabs (Scherer & Reise 1981). Many predators present 62 

developmental shifts in food preference, with the young preferentially ingesting meiofauna 63 

and adults preferentially ingesting larger food items (Coull 1990, 1999, Nilsson et al. 1993). 64 



The criteria governing the selection of meiofauna versus macrofauna by predators, as a 65 

function of the respective availabilities of these two food sources, remain unclear 66 

The simplest approach to determining trophic linkages between a consumer and its prey 67 

is the direct observation of feeding behavior (Majdi et al. 2018). However, such observations 68 

are particularly difficult in the fine sediment of the benthic environment, due to the high 69 

turbidity of the overlying water, enhanced by from the suspension of sediment due to the 70 

movements of foraging consumers (Kneib 1985). As an alternative approach, a visual analysis 71 

can be performed on the gut contents of consumers, but such studies are subject to biases due 72 

to differences in digestion rates between food items (Alheit & Scheibel 1982, Scholz et al. 73 

1991). The overall impact of predation on the meiofauna can be evaluated by excluding 74 

predators over small (Hall et al. 1990) or large scales (Carpenter et al. 1995, Deegan et al. 75 

2007). However, the effects of predation are confounded with indirect effects, such as 76 

depletion of the meiofaunal food source (Ólafsson et al. 1993) and/or physical disturbance 77 

due to regular bioturbation by predators (Austen & Widdicombe 1998, Schratzberger & 78 

Warwick 1999, Ólafsson 2003, Fleeger et al. 2008). The use of stable isotopes is considered 79 

to be a powerful tool for determining nutrient sources for consumers, as stable carbon and 80 

nitrogen ratios are largely determined by diet (Fry 2006). The full potential of stable isotopes 81 

is closely linked to the discrimination of potential food sources in terms of isotopic 82 

composition. Stable isotopes can also be used as tracers, after the artificial enrichment of 83 

preys. This approach has been used to evaluate the ingestion of bacteria and 84 

microphytobenthos by meiofauna (Moodley et al. 2002, Pascal et al. 2008b, Pascal et al. 85 

2008c), macrofauna (Pascal et al. 2008a, Leroy et al. 2012) and fishes (Como et al. 2018). A 86 

similar approach has also been used to measure the consumption of macroalgae (Pascal & 87 

Fleeger 2013, Legrand et al. 2018). However, to our knowledge, this approach has never been 88 

used to assess the ingestion of meiofauna and macrofauna by predators. 89 



 Improvements in our understanding of the complexity of benthic marine food webs 90 

require both i) improvements in the quantification of the fraction of the meiofauna transferred 91 

to higher trophic levels and ii) evaluations of potential variations of this trophic flux 92 

according to the availability of other food sources. The aim of this study was to measure the 93 

simultaneous ingestion of meiofauna and macrofauna by common dwellers of the tropical 94 

intertidal mudflat of the coast of Amazonia. 95 

 96 

97 



Materials and methods 98 

Study site 99 

This study was performed in the intertidal mudflat of Awala-Yalimapo (05°44’44”N, 100 

53°55’36”W), in Western French Guiana, 850 km away from the mouth of the Amazon River 101 

(Fig 1). The study site has a humid tropical climate, with a wet season from January to July 102 

and a dry season from August to the end of December. This coast is subject to a semidiurnal 103 

tidal cycle, with a tidal range of 0.8 m (neap tides) to 2.9 m (spring tides). Over the course of 104 

the year, mud temperature oscillates between 29 and 33°C, sediment pore water salinity varies 105 

between 12 and 46 and sediment organic content fluctuates between 5.6 and 6.8% (Nguyen et 106 

al. 2018). The sampling station was located in the upper area of the intertidal mudflat, in very 107 

fluid mud adjacent to an area of consolidated mud with young mangrove trees. 108 

In this area, meiofaunal abundance fluctuates between 1.7 x 10
6
 and 4.4 x 10

6
 ind.m

-2
, 109 

equivalent to dry weights of 3.3 and 8.3 g m
-2

, respectively, and the community is dominated 110 

by nematodes, with harpacticoid copepods and other groups (Ostracods, Platyhelminthes and 111 

Molluscs) accounting for only 26% and less than 1%, respectively, of the benthic meiofauna 112 

(Dupuy et al. 2015). The term “macrofauna” is used here for animals with a length of 0.5 mm 113 

to 20.0 mm. The macrofauna is not very diverse and is dominated by a small number of few 114 

taxa, such as tanaids, with the species Halmyrapseudes spaansi accounting for 84% of 115 

macrofauna specimens, with mean abundances from 2,600 ind.m
-2

 to up to 73,000 ind.m
-2

 116 

corresponding to a maximum dry weight of 12.1 g m
-2

 (Jourde et al. 2017; Nguyen et al. 117 

2018). The macrofauna also includes members of the Polychaetes and, to a lesser extent, 118 

Gastropods and Nemertea (Jourde et al. 2017). The macrofaunal community is dominated by 119 

small species, such as H. spaansi, which never exceeds 6.4 mm in length (Nguyen et al. 120 

2018). In this study, organisms of more than 20 mm in length, with the potential to ingest 121 

meiofauna and macrofauna, are considered to be predators. We focused on the most common 122 



predators at this site, collected locally: the crab C. bocourti, the shrimp F. subtilis and the 123 

highfin goby G. oceanicus. The abundances of C. bocourti and F. subtilis have never been 124 

evaluated in the study area. The abundance of the high fin goby G. oceanicus was previously 125 

estimated from benthic cores, which showed this species to have a patchy distribution, with 126 

densities of up to 50 ind. m
-2

 (Jourde et al. 2017). All feeding experiments were performed 127 

during the dry season, in November 2015. 128 

Predator sampling 129 

The uppermost centimeter of the sediment was collected from the mudflat at low tide, 130 

with a large rectangular scoop. The sediment was sieved with 63 µm and 500 µm meshes, to 131 

extract the meiofauna and macrofauna, respectively. C. bocourti and F. subtilis were collected 132 

at high tide, with a 500 µm-mesh landing net, G. oceanicus specimens were collected by 133 

hand, from their burrows, at low tide. 134 

Preparation of enriched preys 135 

The study site has two advantages for studies of this type: i) easy extraction of the 136 

meiofauna and macrofauna by sieving, because the sediment consists primarily of particles of 137 

less than 63 µm in diameter (Dupuy et al. 2015) and ii) ease of experimental manipulation of 138 

the macrofaunal community, due to its low diversity, dominated by a species of small tanaids 139 

(Jourde et al. 2017, Nguyen et al. 2018). Sediment was sampled as previously described. For 140 

the accurate control of prey availability, sediment depleted of as many meiofauna and 141 

macrofauna as possible was required. The sediment was therefore sieved, and the fraction 142 

passing through a 63 µm mesh was allowed to settle overnight, after which the overlying 143 

water was removed (Fig. 2). A 1 cm layer of this deposited sediment and 1 liter of local 144 

seawater, filtered through a 50 µm-mesh sieve, were placed in each 200 cm
2
 aquarium used 145 

for feeding experiments (n=16 and control (n=1); Table 1). Enriched 
13

C glucose and 
15

N 146 

ammonium were added separately to the sediment to label the bacteria and/or 147 

microphytobenthos for the secondary labeling of their grazers: the meiofauna and 148 



macrofauna. For the preparation of labeled meiofauna, the sediment was sieved and the 149 

fraction passing through a 500 µm mesh was allowed to settle overnight. This fraction of 150 

deposited sediment was mixed with 
15

NH4Cl (99% 
15

N-enriched NH4Cl; Euriso-top) at a final 151 

concentration of 4 g m
-2

 and incubated. For the preparation of labeled macrofauna, the 152 

collected sediment was mixed directly with 
13

C-glucose (99% 
15

N-enriched glucose; Euriso-153 

top) at a final concentration of 2.5 g m
-2 

and incubated. Each type of sediment was i) placed in 154 

a separate large plate, at a thickness of 0.5 cm, ii) incubated under local conditions of 155 

temperature (29-33°C (Nguyen 2018)) and irradiance (2000 kW m
-2 

y
-1

 (Elana 2017)), and iii) 156 

regularly sprayed with freshwater to compensate for evaporation. After four days of 157 

incubation, each type of sediment was independently sieved through separate meshes to 158 

collect 
15

N-enriched meiofauna (63 µm) and 
13

C-enriched macrofauna (500 µm). Each of the 159 

16 aquaria (200 cm
2
) used for feeding experiments was filled with 1 L of seawater and a 1 cm 160 

layer of fauna-free sediment, mixed with variable amounts of enriched meiofauna (
15

N) 161 

and/or macrofauna (
13

C) and one type of target predator. Species community compositions of 162 

enriched preys (meiofauna and macrofauna) were similar in all experiments. First, we 163 

increased the abundance of one resource (meiofauna or macrofauna), whilst making the other 164 

resource unavailable. Secondly both preys were available simultaneously, in different 165 

proportions (table 1). One gram (dry weight) of prey corresponds to 4.6 x 10
6
 meiofauna 166 

specimens and 6.1 x 10
3
 macrofauna specimens. 167 

Feeding experiments 168 

Predators were sampled as described above. All predators were kept for less than six 169 

hours in a large tank containing oxygenated local seawater and sediment with associated 170 

fauna before feeding experiments, to prevent starvation. We released 6 C. bocourti, 15 F. 171 

subtilis or 15 G. oceanicus specimens into each of the experimental aquaria. In the control 172 

aquarium, containing the highest abundance of each enriched prey, 15 specimens of G. 173 

oceanicus were placed in a cage closed with a 63 µm mesh, to obtain control predators unable 174 



to ingest enriched preys. All incubations with predators were performed in oxygenated 175 

aquaria, for 2 hours, under local temperature and irradiance conditions. At the end of the 176 

incubation period, the predators were collected in an aquarium fish net and immediately 177 

frozen (-18°C).  178 

Isotope analyses and calculations 179 

For the meiofauna, each stable isotope sample consisted of 700 nematodes or 300 180 

copepods picked at random, by hand, under a dissecting microscope, after extraction from 181 

sediment by sieving through a 63 µm mesh and Ludox HS40 centrifugation, and pooled 182 

(Jonge & Bouwman 1977). Macrofauna were extracted from sediment by sieving through a 183 

500 µm mesh, and six tanaid specimens per sample were pooled. For each set of conditions, 184 

three pools of two C. bocourti, five F. subtilis and five G. oceanicus specimens, selected at 185 

random, were homogenized in an Ultra-Turrax blender, frozen and freeze-dried. 186 

The nitrogen and carbon isotopic compositions of the various organisms sampled (preys 187 

and predators) were determined by EA-IRMS (Isoprime, Micromass, UK). The nitrogen and 188 

carbon isotope ratios are expressed in the delta notation δ
15

N and δ
13

C, as follows: δX = 189 

[(RReference/ RSample) − 1] × 1000, where X = δ
15

N or δ
13

C and R is the ratio 
15

N:
 14

N or 
13

C:
 12

C 190 

in the sample and in the reference material. Results are expressed relative to atmospheric 191 

nitrogen for N and to Vienna Pee Dee Belemnite (VPDB) for C, and are expressed in units of 192 

‰ ± standard deviation (SD). 193 

An excess of 
15

N, above background levels (natural 
15

N of predator without enrichment) 194 

was considered to constitute 
15

N enrichment, and is expressed in terms of specific uptake (I). I 195 

was calculated as the product of excess 
15

N (E) and the previously measured N biomass per 196 

predator (Table 2). I was converted into meiofaunal or macrofaunal carbon ingested, with the 197 

C/N ratio of each prey. E was defined as the difference between the background (Fbackground) 198 

and sample (Fsample) 
15

N fractions: E = Fsample - Fbackground, with F = 
15

N/(
15

N+
14

N) = R / (R + 199 

2) and R = the nitrogen isotope ratio. For Fbackground, we used values measured with predators, 200 



without enrichment. R was derived from the measured δ
15

N values: R = [(δ
15

N/ 1000) + 1] × 201 

RairN2. Prey intake was calculated as [I × (C/N ratio of enriched prey)/ (Fenriched prey × 202 

incubation time)] (Pascal et al., 2008). 203 

The incorporation of 
13

C was calculated in a similar manner, with F = 
13

C / (
13

C+ 
12

C) = 204 

R / (R+1), RairN2 replaced by RVPDB = 0.0112372 and Uptake = I / (Fenriched predator × incubation 205 

time)  206 

Data analyses 207 

One-way analysis of variance (ANOVA) with Tukey post hoc tests was used to analyze 208 

the differences between ingestion rates. The normality of the data was first checked in a 209 

Shapiro-Wilk test, and homoscedasticity was checked with a Bartlett test. The nonparametric 210 

Kruskal-Wallis test was used to assess the differences in isotopic composition (δ
15

N and δ
13

C) 211 

of preys and predators. The selectivity of prey ingestion was evaluated by fitting a linear 212 

model to the data for the ratio of the biomasses of macrofauna to meiofauna ingested, with a 213 

95% confidence interval. All statistical analyses were performed with R. Values are presented 214 

as means ± standard deviation (SD) unless otherwise specified. 215 

216 



 217 

Results  218 

The individual dry weight, carbon and nitrogen contents of each type of prey and 219 

predator are presented in table 2. Tanaids had a mean individual dry weight 750 times higher 220 

than that of nematodes and 300 times higher than that of copepods. The natural isotopic 221 

compositions of preys and predators are presented in figure 3. Before enrichment, δ
15

N and 222 

δ
13

C levels were similar in the meiofauna and macrofauna (Tanaidacea) (Kruskall-Wallis, p > 223 

0.05). After enrichment, the δ
15

N levels of the nematodes and copepods used during feeding 224 

experiments were not significantly different (Kruskall-Wallis, p > 0.05), with respective 225 

enrichment values (δ after enrichment minus δ at T0) of 261.0 ± 44.5 ‰ (n = 6 samples of 226 

700 specimens) and 268.0 ± 24.9 ‰ (n = 6 samples of 300 specimens). Tanaids had a mean 227 

δ
13

C content of 2789.5 ± 65.6 ‰ (n = 3 samples of 6 specimens each). 228 

C. bocourti was the predator with the lowest individual weight, followed by F. subtilis 229 

and G. oceanicus (Tab. 2). C. bocourti had a mean width of 1.3 cm ± 0.4 (n = 42) whereas F. 230 

subtilis and G. oceanicus were 4.4 cm ± 0.9 (n = 210) and 5.0 cm ± 2.0 (n = 180) long, 231 

respectively. The natural isotopic compositions of all predators (Fig. 3) were similar for δ
13

C 232 

(Kruskall-Wallis, p > 0.05), whereas F. subtilis and G. oceanicus had significantly different 233 

δ
15

N levels (Kruskall-Wallis, p < 0.01). 234 

G. oceanicus caged in the aquarium with the highest abundances of each of the enriched 235 

preys had significantly higher 
13

C and 
15

N levels than the natural isotopic composition 236 

samples  (Kruskall-Wallis, p < 0.05), by 1.5 ± 0.5 and 2.1 ± 0.7 ‰, respectively (n=3). These 237 

enrichment levels correspond to 2.7% for 
13

C and 7.1% for 
15

N relative to free specimens of 238 

G. oceanicus able to ingest enriched preys in similar incubation conditions. 239 

Meiofauna ingestion by C. bocourti was not significantly affected by meiofauna 240 

abundance, and the values obtained ranged from 11.8 to 18.9 mgCprey gCpredator
-1

 h
-1

, which is 241 



equivalent to 3584 to 5766 nematode ind
-1

 h
-1

 (Fig. 4). By contrast, the ingestion of 242 

meiofauna by F. subtilis and G. oceanicus increased with meiofauna abundance and was 243 

significantly higher at the highest meiofauna abundance tested (Fig. 4), at reaching 12.7 ± 1.0 244 

mgCprey gCpredator
-1

 h
-1

 (6342 ± 516 nematode ind
-1

 h
-1

) and 4.6 ± 0.5 mgCprey gCpredator
-1

 h
-1

 245 

(3120 ± 363 nematodes ind
-1

 h
-1

), respectively. 246 

The ingestion of macrofauna by C. bocourti was not significantly affected by prey 247 

abundance and ranged from 1.2 to 4.5 mgCprey gCpredator
-1

 h
-1

, equivalent to 2.0 to 2.9 tanaid 248 

ind
-1

 h
-1

 (Fig. 5). By contrast, the ingestion of macrofauna by F. subtilis and G. oceanicus 249 

increased significantly with macrofauna abundance, reaching 5.6 ± 0.2 mgCprey gCpredator
-1

 h
-1

 250 

(5.7 ± 0.2 tanaid ind
-1

 h
-1

) and 3.8 ± 0.4 mgCprey gCpredator
-1

 h
-1

 (5.4 ± 0.5 tanaid ind
-1

 h
-1

), 251 

respectively (Fig. 5). 252 

The ability of predators to ingest their food in a selective manner was evaluated by 253 

calculating the differences between the ratios of macrofauna to meiofauna ingested and ratios 254 

of macrofauna to meiofauna available in the environment (Fig. 6). If these two ratios were 255 

similar, it was concluded that there was no selection, whereas differences between these ratios 256 

were interpreted as indicating the preferential ingestion of meiofauna or macrofauna. For each 257 

predator, we fitted a linear model with a 95% confidence interval to the data (Fig. 6). For C. 258 

bocourti, this confidence interval included all theoretical values for non-selective ingestion, 259 

reflecting an absence of selection in feeding behavior. For F. subtilis and G. oceanicus, the 260 

lowest values of the 95% confidence interval were always higher than the theoretical values, 261 

implying a preferential ingestion of macrofauna over meiofauna by both these predator 262 

species. 263 

264 



 265 

Discussion 266 

The aim of this study is improve our understanding of benthic marine food webs by 267 

the quantification of ingestion of meiofauna and macrofauna by higher trophic levels in a 268 

tropical intertidal mudflat on the coast of Amazonia 269 

Meiofauna predation 270 

The effect of top-down control on the meiofauna is unclear. Several studies have 271 

suggested that predation on the meiofauna is negligible due to the ability of the meiofauna to 272 

disperse (Giere 2009) and fast turnover times, whereas predators are comparatively rare 273 

(Gibbons 1988, Shaw & Jenkins 1992, Coull 1999). On the contrary, other studies have 274 

concluded that predation affects meiofauna abundance (Danovaro et al. 2007, Fleeger et al. 275 

2008) and community composition (Li et al. 1996, O'Gorman et al. 2008). These 276 

discrepancies may reflect biases associated with the different methods used to evaluate 277 

trophic fluxes (see below in the part Methodological considerations). Differences in the 278 

conclusions drawn may also reflect differences in trophic links between study sites. 279 

Estimations of the top-down effect of predators require knowledge of their abundance. 280 

In the study area, the abundances of C. bocourti and F. subtilis have unfortunately never been 281 

evaluated. However, abundances of the high fin goby G. oceanicus have been estimated from 282 

measurements in benthic cores, revealing a patchy distribution, with densities reaching 50 ind. 283 

m
-2

 (Jourde et al. 2017). For evaluation of the maximum top-down effect, daily ingestion was 284 

calculated, taking into account the highest abundance of fish and lowest abundance of 285 

meiofauna (Dupuy et al. 2015), and the highest ingestion rate measured in this study. This 286 

area of the mudflat is submerged and exposed to fish predation for only six hours per day (24 287 

h). This maximum daily ingestion would therefore reach 56% of the standing stock of 288 

meiofauna in Awala. However, this assumption must be viewed with caution, because i) 289 



grazers, such as shrimps and crabs, were not considered, as their natural abundances remain 290 

unknown and ii) gobies have a patchy distribution and are not realistically sampled by benthic 291 

cores. However, our results nevertheless suggest that the meiofauna community could be 292 

regulated by predation, at least during the limited periods during which predators are 293 

abundant as previously suggested by other studies (Danovaro et al. 2007, Fleeger et al. 2008). 294 

Meiofauna predators 295 

Body size is an important determinant of many physiological processes, and maximal 296 

ingestion rate is generally inversely correlated with body size (Peters, 1983). This assumption 297 

was confirmed in this study, as maximum rates of meiofauna ingestion decreased with 298 

increasing predator weight, from crab to fish. In shrimp, the maximum daily meiofauna 299 

ingestion rate corresponded to 30% of the predator’s body weight. This rate is higher than that 300 

estimated for the shrimp Crangon crangon, which eats 8-16% (del Norte-Campos & 301 

Temming 1994, Feller 2006) or 10-12% (Pihl & Rosenberg 1984) of its own body weight 302 

daily. This higher level of ingestion activity may be due to different evaluation techniques or 303 

to the higher temperature in the tropical environment of F. subtilis than in the habitat of C. 304 

crangon. 305 

Theoretically, food uptake by a consumer should increase with food abundance. 306 

However, beyond a certain threshold prey density, uptake rates remain constant, according to 307 

Holling’s prey-dependent type II functional response (Holling 1959), as reported for shrimp 308 

(Gregg & Fleeger 1998). The threshold value was not reached here for F. subtilis and G. 309 

oceanicus. As the natural abundance of the meiofauna (Dupuy et al. 2015) and macrofauna 310 

(Nguyen et al. 2018) can exceed the abundances tested here, ingestion rates could be higher 311 

than the measured values, for both preys. 312 

The meiofauna constitutes a potentially high-quality food source, due to the high 313 

levels of unsaturated fatty acids in these animals (Fleeger 2007, Leduc et al. 2009, De Troch 314 

et al. 2012, Braeckman et al. 2015). The meiofauna is strongly associated with sediment 315 



particles. When consuming the meiofauna, predators can i) ingest bulk sediment, which 316 

entails a high cost in terms of the rejection of non-digestible material or ii) selectively ingest 317 

the meiofauna, which entails a high cost in food selection. In this study, the three predators 318 

have different feeding mechanisms for selecting their food. Juvenile crabs of the genus 319 

Callinectes selectively ingest microbes rather than bulk detritus (Fantle et al. 1999). Penaid 320 

shrimps feed selectively, with their chelate pereiopods grasping and transporting acceptable 321 

morsels of food to the mouth (Hindley & Alexander 1978). Gobies graze more or less 322 

indiscriminately on sediment, in addition to predating on larger preys on sight (Fitzhugh & 323 

Fleeger 1985, Hamerlynck & Cattrijsse 1994). The predators studied have different weight 324 

ranges, with the crab C. bocourti smaller than the goby G. oceanicus by a factor of 1.6. 325 

According to optimal foraging theory, that the greatest rewards per unit effort are obtained by 326 

predating on the largest graspable prey items (Krebs 1978). Development shifts in diet, from 327 

smaller meiofauna to larger macrofauna, have been reported for the crab Carcinus maenas 328 

(Reise 1978, Scherer & Reise 1981). The shrimp Crangon crangon displays a similar dietary 329 

shift when its total body length exceeds 20 mm (Pihl & Rosenberg 1984, Gee 1987). 330 

Similarly, in our study, the shrimp F. subtilis, with a mean length of 44 mm, also 331 

preferentially ingested macrofauna. For fish, the switch from meiofauna to macrofauna 332 

appears to occur at a threshold total length of 3-4 cm (Gee 1989), as previously reported for 333 

several goby species from the Adriatic Sea (Kovačić & la Mesa 2008), Baltic Sea (Aarnio & 334 

Bonsdorff 1993), North Sea (Schückel et al. 2013) and Atlantic Ocean (D'Aguillo et al. 2014). 335 

The results reported here are consistent with this assumption, as gobies of 5 cm or more in 336 

length preferentially ingested macrofauna. 337 

The experiments reported here suggest an important role of the macrofauna and 338 

meiofauna in the diet of G. oceanicus, but natural isotopic composition revealed limited δ
15

N 339 

enrichment between the preys and the goby, suggesting that other food items not considered 340 

here, such as detritus or microphytobenthos, might play a role in the diet of these fish. Despite 341 



preferential macrofauna ingestion, large G. oceanicus specimens continued to ingest 342 

meiofauna, unlike other goby species of similar size (de Morais & Bodiou 1984). Gobies can 343 

be opportunist predators with a diet reflecting variations in the food available (D'Aguillo et al. 344 

2014). In the Awala mudflat, the abundance of tanaids varies by a factor of 10
3
, depending on 345 

the season (Nguyen et al. 2018). The meiofauna may, therefore, play an important role in the 346 

diet of the predator in conditions of lower macrofauna availability. Such seasonal variations in 347 

the trophic role of the meiofauna have already been suggested for fish (Schückel et al. 2013). 348 

Gobies switch to the ingestion of smaller items when in competition for food resources or if 349 

the availability of large preys decreases (Henry & Jenkins 1995). Fluxes from the meiofauna 350 

to higher trophic levels appeared complexes and likely variable along the year suggesting that 351 

a temporal survey would be useful to clarify the trophic role of meiofauna. Despite those 352 

potential variations, the present study provides quantitative fluxes embeddable in ecological 353 

models of benthic food webs.  354 

Methodological considerations 355 

The potential of stable isotopes for studies of this kind depends heavily on the 356 

difference in isotopic composition between the food sources to be distinguished. In this study, 357 

the meiofaunal community and tanaids had similar isotopic compositions, rendering 358 

interpretation of the patterns obtained with natural isotopes difficult and necessitating the use 359 

of enrichment experiments. 360 

Predator abundance in the study area had been determined only for G. oceanicus 361 

(Jourde et al. 2017). For the purpose of feeding, the predators studied perform tidal 362 

migrations, following the rising tide by swimming or walking over the sediment on the 363 

bottom (Gibson, 2003). They can reach very high densities during this migration, and the 364 

shrimp (F. subtilis) and crab (C. bocourti) species studied were chosen on the basis of their 365 

high abundance and availability at the time of the experiments. Incubations were performed 366 



with high abundances of predators, potentially affecting predator interactions and feeding 367 

behavior, resulting in a possible underestimation of ingestion rates. 368 

Copepods have a caloric value 35% higher than those of most members of the 369 

meiofauna (Gee 1989). Copepods generally dwell closer to the sediment surface than 370 

nematodes, and display emergence behavior relative to the water column (Giere 2009). This 371 

differential distribution would facilitate predation on copepods by shrimps (Pihl & Rosenberg 372 

1984, Gee 1987) and fishes (Coull 1990, McCall & Fleeger 1995). However, it was not 373 

possible to differentiate between copepods and nematodes in this study, because these two 374 

groups were labeled similarly. The availability of sediment in the aquarium constituted 375 

realistic incubation conditions, because the sediment serves as a refuge, reducing the risk of 376 

predation for meiofauna and macrofauna (Arnold 1984, Lipcius & Hines 1986, Gregg & 377 

Fleeger 1998). Feeding experiments were run over a short period of two hours and did not, 378 

therefore, necessarily yield results representative of feeding behavior over longer time scales, 379 

as the feeding activity of the predators studied is known to fluctuate over the day (Hagerman 380 

& Østrup 1980, Ryer 1987, Kanou et al. 2005). However, short incubation times were used 381 

here, to limit i) label exchange between meiofaunal and macrofaunal preys and ii) the 382 

excretion of ingested label by predators. This excretion bias would be limited, as feeding 383 

experiments lasted two hours and gut retention time would not exceed this duration for 384 

Portunidae crabs (Serrano 2012) or Gobiidae fish (Kanou et al. 2005). However, this bias 385 

could be larger for Penaidae shrimps, which have gut retention times of between one and four 386 

hours (Hoyt et al. 2000). 387 

The isotopic compositions of predators changed slightly following their transfer to a 388 

mesh cage in an aquarium containing enriched preys. This finding suggests that any bias due 389 

to the inefficient removal of unincorporated label by rinsing would be limited, and that the 390 

enrichments observed with free predators were due principally to trophic processes. The mud 391 

sediment of French Guiana is dominated by silt (70-85%) and clay (10-15%), and mean 392 



particle size is below 63 µm (Dupuy et al. 2015). The fauna thus represents a large portion of 393 

the material remaining on the 63 µm mesh after sieving. However, a small fraction of detritus 394 

would also have been present and the associated bacteria would have taken up glucose-
13

C or 395 

ammonium-
15

N during the enrichment process. The ingestion of this enriched detritus by 396 

predators would then lead to an overestimation of the ingestion of meiofauna and macrofauna. 397 

This bias should be borne in mind when interpreting the results. Despite this shortcoming, the 398 

method used here has several advantages: i) the measurement of ingestion fluxes, ii) dual 399 

labeling of preys, making it possible to evaluate feeding preferences and, iii) ease of use, with 400 

incubations possible even at remote sites with limited technical resources. 401 

Conclusion 402 

The use of stable isotope-enriched meiofauna and macrofauna in feeding experiments 403 

is an appropriate method for evaluating preferential ingestion. In these experiments, feeding 404 

rates increasing with the availability of meiofauna and macrofauna food for all predators other 405 

than the crabs, suggesting that rates of ingestion of both preys may actually be higher than 406 

measured. All three predators studied ingested meiofauna, but the contribution of the 407 

meiofauna to the diet decreased with increasing predator size (C. bocourti > F. subtilis > G. 408 

oceanicus), whereas no such relationship to size was observed for the macrofauna. Larger 409 

predators preferentially ingested macrofauna to a greater extent than smaller predators, in 410 

accordance with optimal foraging theory. For larger predators, the meiofauna is an important 411 

component of the diet only at early stages of development or in the absence of large food 412 

items.   413 

414 



 415 

Figure and table 416 

Table 1. Measured prey abundances (dry weights of meiofauna and macrofauna in g m
-2

) in 417 

dual-prey feeding experiments in 16 independent aquariums. Each letter refers to a predator. 418 

A: C. bocourti (n = 4), B: F. subtilis (n = 6) and C: G. oceanicus (n = 6) 419 

  Meiofauna (g m
-2

) 

  3.7 9.1 22 

 0.9  A, B, C  

 1.3 A, B A, B  

Macrofauna (g m
-2

) 1.8 C B, C C 

 3.7  A, B, C  

 7.3  B, C  

 420 

421 



 422 

Table 2. Dry weight, carbon and nitrogen weights per specimen of prey (nematode, copepod, 423 

Tanaidacea) or predator (C. bocourti, F. subtilis, G. oceanicus) (mean ± SD, n: number of 424 

samples and number of specimens per sample used to evaluate these weights). 425 

 Individual dry 

weight 

Individual carbon 

weight 

Individual nitrogen 

weight 
n 

Specimens 

per sample 

Nematoda 217 ± 61 ng 94 ± 29 ng 23 ± 8 ng 6 700 

Copepoda 534 ± 92 ng 209 ± 31 ng 47 ± 7 ng 6 300 

Tanaidacea 162 ± 45 µg 46 ± 11 µg 10 ± 2 µg 6 6 

C. bocourti 95 ± 36 mg 29 ± 13 mg 6 ± 3 mg 45 2 

F. subtilis 122 ± 41 mg 47 ± 18 mg 13 ± 5 mg 57 5 

G. oceanicus 156 ± 92 mg 65 ± 41 mg 18 ± 11 mg 54 5 

 426 

 427 

428 



 429 

 430 

Figure 1. Location of the Awala-Yalimapo study site in French Guiana 431 

432 



 433 

 434 

 435 

Figure 2. Diagram of the protocol for enrichment of the meiofauna (I) and macrofauna (II): 436 

the sediment was a) passed through a 500 µm mesh for I and left untreated for II, b) mixed 437 

with 
15

NH4Cl for I and 
13

C-glucose for II and incubated for four days, c) passed through 438 

meshes of 63 µm for I and 500 µm for II, to collect the 
15

N-enriched meiofauna and 
13

C-439 

enriched macrofauna, respectively. The enriched fauna was mixed with non-enriched 440 

sediment devoid of fauna obtained with a 63 µm-mesh sieve 441 

442 



 443 

 444 

 445 

Figure 3. Natural isotopic composition (δ
15

N as a function of δ
13

C, ± SD, n= 6) of preys 446 

(meiofauna and macrofauna) and predators (C. bocourti, F. subtilis and G. oceanicus) 447 

448 



 449 

 450 

Figure 4. Ingestion of meiofauna (mgCprey gCpredator
-1

 h
-1

; ± SD, n= 3) by C. bocourti (A), F. 451 

subtilis (B) and G. oceanicus (C) as a function of dry meiofauna biomass (mg m
-2

). Different 452 

lower-case letters indicate significant differences between the tested abundances (ANOVA, 453 

Tukey test, p<0.005) 454 

455 



 456 

 457 

Figure 5. Ingestion of macrofauna (mgCprey mgCpredator
-1

 h
-1

; ± SD, n= 3) by C. bocourti (A), 458 

F. subtilis (B) and G. oceanicus (C) as a function of dry macrofauna biomass (mg m
-2

). 459 

Different lower-case letters indicate significant differences between the tested abundances 460 

(ANOVA, Tukey test, p<0.005). 461 

462 



 463 

464 
Figure 6. Ratio of the biomasses of macrofauna and meiofauna ingested plotted against the 465 

ratio of biomasses of macrofauna and meiofauna available (± SD, n= 3) ), for C. bocourti (A), 466 

F. subtilis (B) and G. oceanicus (C). The dotted line corresponds to a theoretical absence of 467 

selection. Points above (blue part) or below (red part) the dotted line indicate the selective 468 

ingestion of macrofauna and meiofauna, respectively. The linear models fitted to the data are 469 

presented as solid lines with 95% confidence intervals 470 

471 
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