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Abstract: A nonlinear fault-tolerant control strategy relying on quantitative physics-based
models for a cryogenic combustion bench operation is proposed in this paper. The aim is
to improve the reliability of a cryogenic bench operation in the transients and to allow to
converge to a wider range of operating points. The fault detection is performed with residual-
based methods. The residual is generated by an unknown input observer with an unscented
transformed which also allows to reconstruct the unknown input. Then the goal is to provide a
fault-tolerant system reconfiguration mechanism with a control law which compensates for the
estimated actuator additive faults to maintain the overall system stability. For that purpose we
use a model predictive control method on an equivalent system with the reconstructed unknown
input. An error feedback and a fault compensation control law is designed in order to minimize
an infinite horizon cost function within the framework of linear matrix inequalities. The model
and the estimation part were validated on real data from Mascotte test bench (ONERA/CNES),
and the reconfiguration control law was validated in realistic simulations.

Keywords: Actuator fault accommodation, cryogenic system, fault-tolerant control, nonlinear
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1. INTRODUCTION

Monitoring engines and test benches is a major challenge
in the development and integration of new propulsion
systems for rockets, including reusable ones (Wu (2005)).
A conventional control design for such complex systems
may result in an unsatisfactory performance, or even in-
stability, in the event of malfunctions in actuators, sensors
or other system components. The objectives are to design
efficient, fast and reliable approaches to detect faults of
various magnitudes (Betta and Pietrosanto (2000)). Then,
if a minor component and/or instrument fault is detected
by the model-based Fault Detection and Isolation (FDI)
approaches as presented in Yin et al. (2016), non-shutdown
actions have to be defined to maintain the overall sys-
tem current performances close to the desirable ones and
preserve stability conditions (see Yang et al. (2010)). For
that reason, it is required to perform a reconfiguration
(see Ioannou and Sun (1996)) of the engine using Fault
tolerant control systems (FTCS). Active FTC Systems
firstly detect and estimate faults, then, the second step
is to achieve a steady-state tracking of the reference input
by compensating the fault as in Theilliol et al. (2008).
For that purpose, FDI methods have been developed to
evaluate failures and take a decision using all available
information with the help of explicit or implicit models
(Zhong et al. (2018)). The most common model-based ap-
proach for FDI makes use of observers to generate residuals
as presented in Ding (2008). Those FDI methods assume

that the mathematical model used is representative of the
system dynamics (Gertler (2013)).
To tackle the problem of unknown disturbances, a simple
class of Unknown input observer (UIO) (Darouach et al.
(1994)) for linear systems with unknown inputs has been
developed. It consists in a coordinate system transforma-
tion that decouples the disturbance effect on the system
outputs. An UIO is used to estimate the unknown state
of the system independently of the unknown input. In the
case of nonlinear systems one of the developed techniques
is to linearize and design an Extended unknown input
observer (EUIO) as described in Witczak (2007). However
as for Extended Kalman filters, in those methods the
state distribution is approximated by a Gaussian Random
Variable (GRV) which is then propagated analytically
through the “first-order” linearization of the nonlinear
system. Those linearizations imply the definition of a
steady state reference and can introduce large errors in
the true posterior distribution, which may lead to sub-
optimal performance and sometimes divergence of the
filter as presented in Wan and Van Der Merwe (2000).
For those reasons, Unscented Observers (UO) based on
the unscented transform have been developed. UO are
based on a parameterization which captures the mean and
covariance information and at the same time permits the
direct propagation of the information through an arbi-
trary set of nonlinear equations which overcome the pre-
vious limitations of extended observers (Józefowicz et al.
(2011)). In the case of actuator failures, it is necessary to



be able to handle emergency situations that can affect a
system performance. Linear quadratic regulators (LQR) or
linear Model Predictive Control (MPC) have been widely
used in different industry (Maciejowski (1999), Abbas-
Turki et al. (2007)). However, for engine applications,
nonlinear effects may affect the controller performances
and a nonlinear approach may allow to consider a wider
range of operating points (Mhaskar et al. (2006)). For
that reason, a nonlinear MPC may be used (Magni et al.
(2003)). The MPC approach provides a framework with
the ability to handle, among other issues, multi-variable
interactions, input constraints, and optimization require-
ments. The development and the performance evaluation
of the FTC methods should rely on real measurements
(Johnson (1996)). For that purpose, this work is partly
based on the exploitation of real data from the Mascotte
test bench developed at ONERA (Vingert et al. (2015)). It
is therefore necessary to have a model of the bench and its
current instrumentation to make a first validation of the
approaches using a simulation, then validate the results
on experimental data. The obtained measurements will
also allow updating and adapting the simulation models
as well as validating by identification the engine charac-
teristics on off-line tests as carried out in our previous work
(Sarotte et al. (2018)). Section 2 consists in the description
of the considered system, then a design of a nonlinear
model-based FTCS is proposed in order to compensate
for an additive actuator failure (Figure 1). The FDI part
of the FTCS is composed of an Unscented unknown in-
put observer (UUIO) as developed by Józefowicz et al.
(2011). An extension of Poursafar et al. (2010) approach
for nonlinear control of discrete-time systems is developed
for fault tolerant control applications. This extension is
composed a nonlinear model predictive control based on
the resolution of Linear matrix inequalities (LMI) and
a fault compensation system in the case of an additive
actuator failure. A second UUIO allows to reconstruct the
fault and to design the fault compensation system. This
method has been validated on realistic simulations of a
cryogenic combustion test bench cooling circuit. The faults
were simulated for several valve closing profiles.

Fig. 1. Active FTCS closed-loop

2. SYSTEM DESCRIPTION

In this section we denote:

• ṁ, the mass flow rate (kg/s),

• ρ, the density (kg/m3),
• S, the surface (m),
• c, the velocity of sound (m/s),
• P , the pressure (Pa),
• D, the orifice diameter (m),
• Dh, the hydraulic diameter (m),
• L the length (m),
• µ the dynamic viscosity (Pa.s),
• V , the volume (m3),
• dt, the time step (s).

Subscripts

• e, for input,
• s, for output,
• 1, for the cavity 1,
• 2, for the cavity 2,
• a, for the augmented state.

The flow is assumed to stay monophasic and incompress-
ible. We assume that the fluid flow velocity is small in
comparison to the velocity of sound in cavities. The model
of this part of the cooling circuit is then (for more details
see Sarotte et al. (2018)):

∂ṁ2e

∂t
= θ1ṁ

7
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2e − θ2∆P

∂P2
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)− 1
4 L

Dh

1

2ρV
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The parameter θ1 must be identified since the distance
L is unknown. We can assume here that the density and
the viscosity remain constant for the considered pressures
and temperature ranges. The system can be transformed
into an equivalent discrete-time state space system with
an Euler explicit scheme. The system considered is then:{

Xk+1 = f(Xk, Uk) + Edk + wk
Yk+1 = CXk+1 + vk+1

(2)

Xk :=

[
ṁ2e,k

P2,k

]
, Yk := P2,k, Uk := P1,k, dk := ṁ2s,k

Where ṁ2e is the cavity 2 input mass flow rate, P2 is
the cavity 2 pressure, P1 is the cavity 1 pressure and
ṁ2s is the cavity 2 unknown output mass flow rate.
Xk ∈ R2 is the state vector, Yk ∈ R is the measured
output, Uk ∈ R is known input, dk ∈ R is the unknown
input, E ∈ R2 the unknown input distribution matrix
and CT ∈ R2 the output distribution matrix. The model
presented here allows to determine the evolution of the
ferrules cooling circuit output pressure and input mass flow
rate. It is now possible to model their evolution during the
motor transients. The model was tested off-line with real
measurements of a Mascotte campaign as inputs. Those
trials last 60 seconds. The evolution of the pressure and
mass flow rate dynamics is well reconstituted (Table 1).

Table 1. Relative errors of the pressure model

Total Transient steady-state
(%) (%) (%)

Pressure 5.44 8.01 0.31
Input mass flow rate 3.31e-5 4.97e-5 6.17e-8



3. UNSCENTED UNKNOWN INPUT OBSERVER

The first step is to design an unscented unknown input
observer to estimate the state in the presence of unknown
inputs. We want to find a parameterization which captures
the mean and covariance information while at the same
time permitting the direct propagation of the informa-
tion through an arbitrary set of nonlinear equations. This
can be accomplished by generating a discrete distribution
having the same first and second moments, where each
point in the discrete approximation can be directly trans-
formed (see Wan and Van Der Merwe (2000)). Given a n-
dimensional Gaussian distribution having covariance P , we
can generate a set of O(n) points having the same sample

covariance from the columns of the matrices ±
√

2P . This
set of points is zero mean, but if the original distribution
has mean X̄, then adding X̄ to each of the points yields
a symmetric set of 2n+ 1 points having the desired mean
and covariance. To choose a matrix square root a Cholesky
decomposition is used. One can use this methodology to
derive a filtering algorithm. The augmented state vector
composed of the state and the process noise is defined as:

Xa,k|k := [Xk
Twk

T ]T

this augmented vector has a covariance matrix:

Pa,k|k =

[
Pk|k Px,w,k|k

Pw,x,k|k Qk

]
Where Qk is the covariance of wk and Rk is the covariance
of vk. The previous transformation is then used on the
Sigma points from Xa,k|k:

χi,k|k := Xa,k|k ±
√

(n+ κ)Pa,k|k

χ0,k|k := Xa,k|k
κ is a scaling parameter which may be chosen equal to 2
in the case of Gaussian distribution. To evaluate the set of
the transformed set of Sigma points in spite of the presence
of an unknown input, one can write:

dk = H(Yk+1 − C(f(Xk, Uk) + wk)− vk+1) (3)

A necessary condition for the existence of a solution is
rank(CE) = rank(E). A particular solution is then:

H = ((CE)T (CE))−1(CE)T (4)

Then the transformed set of Sigma points are evaluated
for each of the 0 to 2n points by:

χi,k+1|k := f̄(χi,k|k, Uk+1, k) + ĒYk+1 + w̌k

where f̄ = Tf , T = In−EHC and n the dimension of the
state. And w̌k = Twk − EHvk+1. The predicted mean is
computed as:

X̂k+1|k =
1

n+ κ
(κχ0,k+1|k +

1

2

2n∑
i=1

χi,k+1|k)

The predicted covariance is then computed as:

Pk+1|k =
1

n+ κ
(κ(χ0,k+1|k − X̂k+1|k)(χ0,k+1|k − X̂k+1|k)

T

+
1

2

2n∑
i=1

(χi,k+1|k − X̂k+1|k)(χi,k+1|k − X̂k+1|k)
T

) +Qk

To complete the design of the filter, the equivalent statis-
tics for the innovation sequence and the cross correlation
must be determined. The observation model gives:

Yi,k+1|k = Cχi,k+1|k + vk+1

Then the mean observation is:

Ŷk+1|k =
1

n+ κ
(κY0,k+1|k +

1

2

2n∑
i=1

Yi,k+1|k)

The measurements covariance matrix is determined from:

Pyy,k+1|k = (κ(Y0,k+1|k − Ŷk+1|k)(Y0,k+1|k − Ŷk+1|k)
T

+

1

2

2n∑
i=1

(Yi,k+1|k − Ŷk+1|k)(Yi,k+1|k − Ŷk+1|k)
T

)
1

n+ κ
+Rk

If the disturbances w̌k and vk are uncorrelated, the cross
correlation matrix is:

Pxy,k+1|k = (κ(χ0,k+1|k − X̂k+1|k)(Y0,k+1|k − Ŷk+1|k)
T

+
1

2

2n∑
i=1

(χ0,k+1|k − X̂k+1|k)(Yi,k+1|k − Ŷk+1|k)
T

)
1

n+ κ

The updated equations are then:

Kk+1 = Pxy,k+1|kP
−1
yy,k+1|k (5)

X̂k+1|k+1 = X̂k+1|k +Kk+1(Yk+1 − Ŷk+1|k) (6)

P̂k+1|k+1 = Pk+1|k −Kk+1Pyy,k+1|kKk+1
T (7)

The gain matrix Kk+1 is chosen to minimize the variance
of the state estimation error. The estimation period used
on real measurements is fixed to 0.001 seconds. The state
estimation error (ek = Xk − X̂k) is taken as a residual.
We then compare the UUIO to an EUIO on the basis of
Mascotte test bench real data (see Table 2).

Table 2. Relative errors of the pressure and
input mass flow rate estimations

Model Total Transient steady-state
(%) (%) (%)

Pressure UUIO 8.02e-3 1.24e-2 5.07e-3
(Pa) EUIO 6.71e-3 1.85e-2 2.87e-3

Mass flow rate UUIO 1.51 2.46 0.10
(kg/s) EUIO 2.15 6.42 0.41

The unknown input is reconstructed from (3). To validate
the result, the unknown input reconstruction is compared
to the cavity 2 output mass flow rate measurements
available for this trial. Results are reported in Figure 2 and
Table 3 and show a correct convergence after the transient
phase.

Fig. 2. Unknown input reconstruction



Table 3. Relative error of the output mass flow
rate reconstruction

Model Total Transient steady-state
(%) (%) (%)

Output mass flow UUIO 1.44 3.14 4.94e-2
rate (kg/s) EUIO 2.16 4.98 0.41

It appears that UUIO estimation and fault reconstruction
performances are higher than the EUIO ones for the mass
flow rate estimation and equivalent for the pressure esti-
mation. Those performances in the transient are satisfying
even if a deviation appears at the beginning of the trial,
since the feeding valve is not directly opened, but the mass
flow rate information is not needed at that time. The offset
in the steady-state part of the trial is reduced.

4. NONLINEAR CONTROL FOR LIPSCHITZ
SYSTEMS WITH ERROR FEEDBACK AND FAULT

COMPENSATION

In this part, the fault reconstruction expression (3) is used
to write the system under a new form where the only
unknown input is an additive actuator failure. Then, in
order to annihilate the actuator fault effect on the system,
another UUIO is used to estimate the fault magnitude,
the estimated state at the instant k is then denoted X̂c,k

and the estimation error ec,k. A control law has then to
compensate the fault and is computed such that the faulty
system is as close as possible to the nominal one. The new
system for control purposes is thus:

Xk+1 = (In − EHC)f(Xk, Uk) + EHCXk (8)

+ (In + EHC)wk + (EH + C)vk − EHvk+1 +Bfak
We consider the following system:{

Xk+1 = AXk +BUk + f̃(Xk, Uk) +Bfak + w̃k
Yk+1 = CXk+1 + vk

(9)

with f̃ := (In−EHC)(f(Xk, Uk)−Xk)−BUk, w̃k = w̄k+

(EH+C)vk, A := In and B := [ 0 1 ]
T

. Where Xk ∈ R2 is
the state vector, Yk ∈ R is the measured output, Uk ∈ R
is the known input and CT ∈ R2 the output distribution
matrix, fak ∈ R is the actuator additive fault.

We define ζk := [ ηk ec,k ]
T

, with ec,k = X̂c,k − Xk the

estimation error, ηk = Xk −Xk the reconfiguration error
and Xk the state reference. The reference state dynamics
can be generated as:

Xk+1 :=AXk +BUk + f̃(Xk, Uk) + w̃k

with Uk a user-defined reference input, which can be for
example a reference trial sequence. We then have:

ζk+1 =

[
A 0
0 Kk+1C

]
ζk +

[
B
0

]
∆Uk +

[
B
0

]
fak (10)

+

[
I
0

]
(f̃(Xk, Uk)− f̃(Xk, Uk))

with ∆Uk := Uk − Uk. We can simplify the notation as:

ζk+1 = Aζk + B(∆Uk + fak) + CΦk(Xk, Uk, Xk, Uk)
(11)

with A :=

[
A 0
0 Kk+1C

]
, B :=

[
B
0

]
and C :=

[
I
0

]
and Φk := f̃(Xk, Uk) − f̃(Xk, Uk). Φk is locally Lips-

chitz for the cooling system application since f(Xk, Uk)
is locally Lipschitz on a compact set SXinf ,Xsup,Uinf ,Usup

.
The considered mass flow rates and pressures are bounded
by thermomechanical constraints, X ∈ [Xinf ;Xsup] and
U ∈ [Uinf ;Usup]. We consider a control law of the following
form:

∆Uk := Gζk − B+Bf̂ak (12)

The fault f̂ak is estimated from the following unknown
input reconstruction scheme:

f̂ak = H̃(Yk+1 − C(f̃(Xk, Uk) + w̃k)− vk+1) (13)

with H̃ = ((CB)T (CB))−1(CB)T . We consider the fol-
lowing minimization problem with respect to ∆U(·) of the
infinite horizon cost function:

Jk :=

∞∑
i=0

ζTk+iSζk+i + ∆Uk+i
TO∆Uk+i (14)

subject to ζk+i ∈ ζ̄, ∆Uk+i ∈ Ū with i ≥ 0, ζ̄ and Ū
compact subsets of R4 and R; S and O positive definite
weighting matrices. We choose the following Lyapunov
candidate function: Vk := ζTk Pζk. If Vk is a Lyapunov
function ensuring the stability of the resulting closed-loop
then (see Poursafar et al. (2010)):

Jk ≤ ζTk Pζk ≤ −γ (15)

with γ a positive scalar and regarded as an upper bound
of the objective (14).

Lemma (Poursafar et al. (2010)): Let M , N be real con-
stant matrices and P be a positive matrix of compatible
dimensions. Then:

MTPN +NTPM ≤ εMTPM + ε−1NTPN (16)

holds for any ε > 0.

Theorem: Consider the discrete-time system (11) with con-
trol input (12) at each time k. We define Vk = γζTk X

−1ζk
a Lyapunov function satisfying (17), where X > 0 and Y
are obtained from the solution of the following optimization
problem with variables γ, α,X, Y and Z := X[H G]T . The
state-feedback matrix G in the control law that minimizes
the upper bound γ of the objective function Jk is then given
by G := Y X−1, with

Vk+1 − Vk ≤ −(ζk
TSζk + ∆Uk

TO∆Uk) (17)

min
γ,α,X,Y

γ subjects to

−X ∗ ∗ ∗ ∗√
1 + ε(AX + BY ) −X ∗ ∗ ∗√

(1 +
1

ε
)WZ 0 −αI ∗ ∗

S1/2X 0 0 −γI ∗
O1/2Y 0 0 0 −γI

 ≤ 0, (18)

Where ∗ stands for symmetric terms in the matrix. And[
−I ∗
ζk −X

]
≤ 0. (19)

Proof: The linear quadratic function Vk has to satisfy (17)
then:



(Aζk + B(∆Uk + fak) + CΦk)TP (20)

(Aζk + B(∆Uk + fak) + CΦk)− ζkTPζk
≤ −(ζk

TSζk + ∆Uk
TO∆Uk)

Defining the function g(ζk,∆Uk, fak) as

g(ζk,∆Uk, fak) = (Aζk + B(∆Uk + fak))TP (21)

(Aζk + B(∆Uk + fak)) + (Aζk + B(∆Uk + fak))TP (CΦk)

+ (CΦk)TP (Aζk + B(∆Uk + fak)) + (CΦk)TP (CΦk)

and applying the Lemma, the upper bound of g(ζk,∆Uk, fak)
becomes

g(ζk,∆Uk, fak) ≤ (1 + ε)(Aζk + B(∆Uk + fak))TP (22)

(Aζk + B(∆Uk + fak)) + (1 + ε−1)(CΦk)TP (CΦk)

Consider

P ≤ λmaxI ≤ µI (23)

where λmax is the maximum eigenvalue of P and µI is a
design parameter corresponding to the upper bound of the
maximum eigenvalue of P .

g(ζk,∆Uk, fak) ≤ (1 + ε)(Aζk + B(∆Uk + fak))TP (24)

(Aζk + B(∆Uk + fak)) + (1 + ε−1)µ(CΦk)T (CΦk)

Since Φk is Lipschitz we have:

Φk
TCTCΦk ≤ [ηk

T∆Uk
T ]WTCTCW [ηk∆Uk]T (25)

Then

g(ζk,∆Uk, fak) ≤ (1 + ε)(Aζk + B(∆Uk + fak))TP (26)

(Aζk + B(∆Uk + fak))+

(1 + ε−1)µ[ηk
T ∆Uk

T ]WTCTCW [ηk ∆Uk]T

We then have:

ζk
TSζk + ∆Uk

TO∆Uk − ζkTPζk (27)

+ (1 + ε)(Aζk + B(∆Uk + fak))TP

(Aζk + B(∆Uk + fak))+

(1 + ε−1)µ[ηk
T ∆Uk

T ]WTCTCW [ηk ∆Uk]T ≤ 0

Considering the following error feedback control:

∆Uk = Gζk − B+Bf̂ak (28)

The previous equation is rewritten as:

ζk
T (S+GTOG− P + (1 + ε)(A+ BG)TP (A+ BG)

+ (1 + ε−1)µ[HT GT ]WTCTCW [H G]T )ζk ≤ 0
(29)

Which is satisfied if:

S +GTOG− P + (1 + ε)(A+ BG)TP (A+ BG) (30)

+(1 + ε−1)µ[HT GT ]WTCTCW [H G]T ≤ 0

We then denote: X := γP−1, X > 0, Y := GX, α :=
γµ−1, Z := X[H G]T . Applying Schur complements give
the LMI (18). We also have:

−X + αI ≤ 0 (31)

in order to verify (23), where ∗ stands for symmetric terms
in the matrix. And [

−I ∗
ζk −X

]
≤ 0 (32)

to ensure (15).

�

Table 4. Deviations of the simulated pressure
and input mass flow rate from references -

UUIO-MPC

Control Pressure Input mass
simulation (%) flow rate (%)

Fault 1 abrupt shift 0.17 2.82e-3
high amplitude

Fault 2 slow shift 8.77e-2 8.51e-3
high amplitude

Fault 3 abrupt shift
flow amplitude and slow 0.14 3.54e-3

shift high amplitude

Fig. 3. Pressure and mass flow rate control - Carins
simulator - UUIO+MPC

The faulty system was simulated with Carins (CNES sim-
ulator), a closing valves profile was imposed at the input
of the cooling circuit. The aim of this simulation is to
see if the controller is able to stabilize the closed-loop
system after the detection. When the fault is detected the
system switches to the FTCS. This FTCS is composed of:
a FDI part, a first UUIO for fault detection purposes as
well as unknown input reconstruction and residual analysis
algorithms; a fault compensator, a second UUIO for the
rewritten system to estimate and compensate for the fault;
a MPC to ensure the system stability and convergence to a
reference trajectory. This system has been tested on three
sets of failures, see Table 4. Failures have been compen-
sated and the control law for the rewritten system allowed
to stabilize the system around the reference steady-state
trajectory with sufficient precision. The deviations depend
mainly on the fault compensation error in the steady-state.
In a previous work (Sarotte et al. (2018)) a FTCS has
been developed and tested on the same model, linearized
around a steady state trajectory, with an EUIO for the
fault estimation and an LQR for the system convergence
and stability. The performances of those two methods can
then be compared, see Table 5. The control law perfor-
mances in terms of fault compensation and stability of
the two control methods (EUIO-LQR and UUIO-MPC)
are equivalent for the pressure regulation in the steady-
state but the performances for the mass flow rate are
increased with a factor ten. The control law allows to
compensate for a failure in the transient and to track down
a reference trajectory (see Figure 3). Since the system is
not linearized around a steady-state reference in the case
of the nonlinear FTCS, the stability domain is larger and
the fault compensation error has less impact on the system
performances.



Table 5. Deviations comparison EUIO+LQR /
UUIO+MPC

Control simulation Fault 1 Deviations
in the transient (%)

Pressure UUIO - MPC 9.24e-2
EUIO - LQR 1.08

Input mass flow rate UUIO - MPC 0.13
EUIO - LQR 0.35

Input pressure reference UUIO - MPC 2.90e-2
EUIO - LQR 1.23

5. CONCLUSION

In this paper a nonlinear FTC scheme has been proposed
to ensure the stability of pressure and mass flow rates
in the cooling circuit of a cryogenic test bench as well
as to compensate for an additive actuator failure. Once
the fault in the actuator has been detected by the FDI
method composed of a first UUIO, the designed FTCS
based on a fault estimator and a second UUIO permits to
compensate for the failure and to converge if necessary to a
chosen steady state. This FTCS consists in a MPC based
on the minimization of an infinite horizon cost function
and a direct fault compensation under the resolution of
LMIs on an equivalent system where the unknown input
is expressed as a function of the known state and known
input vectors in order to decouple only the fault effect
on the system. This method has been compared to a
FTCS composed of an EUIO and a LQR controller and
shows better performances for fault compensation and
state reference tracking in the transients. Future work will
address the design of a method to take into account the
effect of input saturation, the limitation of overshoots and
the validation of the developed FTCS on other part of the
test bench facilities.
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