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A nonlinear fault-tolerant control strategy relying on quantitative physics-based models for a cryogenic combustion bench operation is proposed in this paper. The aim is to improve the reliability of a cryogenic bench operation in the transients and to allow to converge to a wider range of operating points. The fault detection is performed with residualbased methods. The residual is generated by an unknown input observer with an unscented transformed which also allows to reconstruct the unknown input. Then the goal is to provide a fault-tolerant system reconfiguration mechanism with a control law which compensates for the estimated actuator additive faults to maintain the overall system stability. For that purpose we use a model predictive control method on an equivalent system with the reconstructed unknown input. An error feedback and a fault compensation control law is designed in order to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The model and the estimation part were validated on real data from Mascotte test bench (ONERA/CNES), and the reconfiguration control law was validated in realistic simulations.

Cryogenic Liquid Rocket Engine Test Bench Fault-Tolerant Control System:

Cooling System Application

INTRODUCTION

Monitoring engines and test benches is a major challenge in the development and integration of new propulsion systems for rockets, including reusable ones [START_REF] Wu | Liquid-propellant rocket engines healthmonitoring: a survey[END_REF]).

A conventional control design for such complex systems may result in an unsatisfactory performance, or even instability, in the event of malfunctions in actuators, sensors or other system components. The objectives are to design efficient, fast and reliable approaches to detect faults of various magnitudes [START_REF] Betta | Instrument fault detection and isolation: State of the art and new research trends[END_REF]). Then, if a minor component and/or instrument fault is detected by the model-based Fault Detection and Isolation (FDI) approaches as presented in [START_REF] Yin | A review on recent development of spacecraft attitude fault tolerant control system[END_REF], non-shutdown actions have to be defined to maintain the overall system current performances close to the desirable ones and preserve stability conditions (see [START_REF] Yang | Fault tolerant control and hybrid systems[END_REF]). For that reason, it is required to perform a reconfiguration (see [START_REF] Ioannou | Robust adaptive control[END_REF]) of the engine using Fault tolerant control systems (FTCS). Active FTC Systems firstly detect and estimate faults, then, the second step is to achieve a steady-state tracking of the reference input by compensating the fault as in [START_REF] Theilliol | Actuator fault tolerant control design based on a reconfigurable reference input[END_REF].

For that purpose, FDI methods have been developed to evaluate failures and take a decision using all available information with the help of explicit or implicit models [START_REF] Zhong | A survey on model-based fault diagnosis for linear discrete timevarying systems[END_REF]). The most common model-based approach for FDI makes use of observers to generate residuals as presented in [START_REF] Ding | Model-based fault diagnosis techniques: design schemes, algorithms, and tools[END_REF]. Those FDI methods assume that the mathematical model used is representative of the system dynamics [START_REF] Gertler | Fault detection and diagnosis[END_REF]).

To tackle the problem of unknown disturbances, a simple class of Unknown input observer (UIO) [START_REF] Darouach | Fullorder observers for linear systems with unknown inputs[END_REF]) for linear systems with unknown inputs has been developed. It consists in a coordinate system transformation that decouples the disturbance effect on the system outputs. An UIO is used to estimate the unknown state of the system independently of the unknown input. In the case of nonlinear systems one of the developed techniques is to linearize and design an Extended unknown input observer (EUIO) as described in [START_REF] Witczak | Modelling and estimation strategies for fault diagnosis of non-linear systems: from analytical to soft computing approaches[END_REF]. However as for Extended Kalman filters, in those methods the state distribution is approximated by a Gaussian Random Variable (GRV) which is then propagated analytically through the "first-order" linearization of the nonlinear system. Those linearizations imply the definition of a steady state reference and can introduce large errors in the true posterior distribution, which may lead to suboptimal performance and sometimes divergence of the filter as presented in [START_REF] Wan | The unscented Kalman filter for nonlinear estimation[END_REF].

For those reasons, Unscented Observers (UO) based on the unscented transform have been developed. UO are based on a parameterization which captures the mean and covariance information and at the same time permits the direct propagation of the information through an arbitrary set of nonlinear equations which overcome the previous limitations of extended observers [START_REF] Józefowicz | Design of an unscented unknown input filter with interacting multiple model algorithm[END_REF]). In the case of actuator failures, it is necessary to be able to handle emergency situations that can affect a system performance. Linear quadratic regulators (LQR) or linear Model Predictive Control (MPC) have been widely used in different industry [START_REF] Maciejowski | Modelling and predictive control: Enabling technologies for reconfiguration[END_REF], [START_REF] Abbas-Turki | Robust gain scheduled control of a space launcher by introducing LQG/LTR ideas in the NCF robust stabilisation problem[END_REF]). However, for engine applications, nonlinear effects may affect the controller performances and a nonlinear approach may allow to consider a wider range of operating points [START_REF] Mhaskar | Fault-tolerant control of nonlinear processes: performance-based reconfiguration and robustness[END_REF]). For that reason, a nonlinear MPC may be used [START_REF] Magni | Robust model predictive control for nonlinear discrete-time systems[END_REF]). The MPC approach provides a framework with the ability to handle, among other issues, multi-variable interactions, input constraints, and optimization requirements. The development and the performance evaluation of the FTC methods should rely on real measurements [START_REF] Johnson | A review of fault management techniques used in safety-critical avionic systems[END_REF]). For that purpose, this work is partly based on the exploitation of real data from the Mascotte test bench developed at ONERA [START_REF] Vingert | A rocket engine under a magnifying glass[END_REF]). It is therefore necessary to have a model of the bench and its current instrumentation to make a first validation of the approaches using a simulation, then validate the results on experimental data. The obtained measurements will also allow updating and adapting the simulation models as well as validating by identification the engine characteristics on off-line tests as carried out in our previous work [START_REF] Sarotte | Actuator fault tolerant system for cryogenic combustion bench cooling circuit[END_REF]). Section 2 consists in the description of the considered system, then a design of a nonlinear model-based FTCS is proposed in order to compensate for an additive actuator failure (Figure 1). The FDI part of the FTCS is composed of an Unscented unknown input observer (UUIO) as developed by [START_REF] Józefowicz | Design of an unscented unknown input filter with interacting multiple model algorithm[END_REF]. An extension of [START_REF] Poursafar | Model predictive control of non-linear discrete time systems: a linear matrix inequality approach[END_REF] approach for nonlinear control of discrete-time systems is developed for fault tolerant control applications. This extension is composed a nonlinear model predictive control based on the resolution of Linear matrix inequalities (LMI) and a fault compensation system in the case of an additive actuator failure. A second UUIO allows to reconstruct the fault and to design the fault compensation system. This method has been validated on realistic simulations of a cryogenic combustion test bench cooling circuit. The faults were simulated for several valve closing profiles. In this section we denote:

• ṁ, the mass flow rate (kg/s),

• ρ, the density (kg/m 3 ),

• S, the surface (m),

• c, the velocity of sound (m/s),

• P , the pressure (Pa),

• D, the orifice diameter (m),

• D h , the hydraulic diameter (m),

• L the length (m),

• µ the dynamic viscosity (Pa.s),

• V , the volume (m 3 ), • d t , the time step (s).

Subscripts

• e, for input,

• s, for output,

• 1, for the cavity 1,

• 2, for the cavity 2,

• a, for the augmented state.

The flow is assumed to stay monophasic and incompressible. We assume that the fluid flow velocity is small in comparison to the velocity of sound in cavities. The model of this part of the cooling circuit is then (for more details see [START_REF] Sarotte | Actuator fault tolerant system for cryogenic combustion bench cooling circuit[END_REF]):

     ∂ ṁ2e ∂t = θ 1 ṁ 7 4 2e -θ 2 ∆P ∂P 2 ∂t = -θ 3 ∆ ṁ (1) θ 1 := -0.316 4 πDµ -1 4 L D h 1 2ρV , θ 2 := S 2 V , θ 3 := c 2 V
The parameter θ 1 must be identified since the distance L is unknown. We can assume here that the density and the viscosity remain constant for the considered pressures and temperature ranges. The system can be transformed into an equivalent discrete-time state space system with an Euler explicit scheme. The system considered is then:

X k+1 = f (X k , U k ) + Ed k + w k Y k+1 = CX k+1 + v k+1
(2)

X k := ṁ2e,k P 2,k , Y k := P 2,k , U k := P 1,k , d k := ṁ2s,k
Where ṁ2e is the cavity 2 input mass flow rate, P 2 is the cavity 2 pressure, P 1 is the cavity 1 pressure and ṁ2s is the cavity 2 unknown output mass flow rate. 

X k ∈ R 2 is the state vector, Y k ∈ R is the measured output, U k ∈ R is known input, d k ∈ R is the unknown input, E ∈ R

UNSCENTED UNKNOWN INPUT OBSERVER

The first step is to design an unscented unknown input observer to estimate the state in the presence of unknown inputs. We want to find a parameterization which captures the mean and covariance information while at the same time permitting the direct propagation of the information through an arbitrary set of nonlinear equations. This can be accomplished by generating a discrete distribution having the same first and second moments, where each point in the discrete approximation can be directly transformed (see [START_REF] Wan | The unscented Kalman filter for nonlinear estimation[END_REF]). Given a ndimensional Gaussian distribution having covariance P , we can generate a set of O(n) points having the same sample covariance from the columns of the matrices ± √ 2P . This set of points is zero mean, but if the original distribution has mean X, then adding X to each of the points yields a symmetric set of 2n + 1 points having the desired mean and covariance. To choose a matrix square root a Cholesky decomposition is used. One can use this methodology to derive a filtering algorithm. The augmented state vector composed of the state and the process noise is defined as:

X a,k|k := [X k T w k T ] T
this augmented vector has a covariance matrix:

P a,k|k = P k|k P x,w,k|k P w,x,k|k Q k Where Q k is the covariance of w k and R k is the covariance of v k .
The previous transformation is then used on the Sigma points from X a,k|k : χ i,k|k := X a,k|k ± (n + κ)P a,k|k χ 0,k|k := X a,k|k κ is a scaling parameter which may be chosen equal to 2 in the case of Gaussian distribution. To evaluate the set of the transformed set of Sigma points in spite of the presence of an unknown input, one can write:

d k = H(Y k+1 -C(f (X k , U k ) + w k ) -v k+1 )
(3) A necessary condition for the existence of a solution is rank(CE) = rank(E). A particular solution is then: 

H = ((CE) T (CE)) -1 (CE) T ( 
Xk+1|k = 1 n + κ (κχ 0,k+1|k + 1 2 2n i=1 χ i,k+1|k )
The predicted covariance is then computed as:

P k+1|k = 1 n + κ (κ(χ 0,k+1|k -Xk+1|k )(χ 0,k+1|k -Xk+1|k ) T + 1 2 2n i=1 (χ i,k+1|k -Xk+1|k )(χ i,k+1|k -Xk+1|k ) T ) + Q k
To complete the design of the filter, the equivalent statistics for the innovation sequence and the cross correlation must be determined. The observation model gives:

Y i,k+1|k = Cχ i,k+1|k + v k+1
Then the mean observation is:

Ŷk+1|k = 1 n + κ (κY 0,k+1|k + 1 2 2n i=1 Y i,k+1|k )
The measurements covariance matrix is determined from:

P yy,k+1|k = (κ(Y 0,k+1|k -Ŷk+1|k )(Y 0,k+1|k -Ŷk+1|k ) T + 1 2 2n i=1 (Y i,k+1|k -Ŷk+1|k )(Y i,k+1|k -Ŷk+1|k ) T ) 1 n + κ + R k
If the disturbances wk and v k are uncorrelated, the cross correlation matrix is:

P xy,k+1|k = (κ(χ 0,k+1|k -Xk+1|k )(Y 0,k+1|k -Ŷk+1|k ) T + 1 2 2n i=1 (χ 0,k+1|k -Xk+1|k )(Y i,k+1|k -Ŷk+1|k ) T ) 1 n + κ
The updated equations are then:

K k+1 = P xy,k+1|k P -1 yy,k+1|k (5) 
Xk+1|k+1 = Xk+1|k + K k+1 (Y k+1 -Ŷk+1|k ) (6) Pk+1|k+1 = P k+1|k -K k+1 P yy,k+1|k K k+1 T (7)
The gain matrix K k+1 is chosen to minimize the variance of the state estimation error. The estimation period used on real measurements is fixed to 0.001 seconds. The state estimation error (e k = X k -Xk ) is taken as a residual. We then compare the UUIO to an EUIO on the basis of Mascotte test bench real data (see Table 2). The unknown input is reconstructed from (3). To validate the result, the unknown input reconstruction is compared to the cavity 2 output mass flow rate measurements available for this trial. Results are reported in Figure 2 and Table 3 and show a correct convergence after the transient phase. It appears that UUIO estimation and fault reconstruction performances are higher than the EUIO ones for the mass flow rate estimation and equivalent for the pressure estimation. Those performances in the transient are satisfying even if a deviation appears at the beginning of the trial, since the feeding valve is not directly opened, but the mass flow rate information is not needed at that time. The offset in the steady-state part of the trial is reduced.

Fig. 2. Unknown input reconstruction

NONLINEAR CONTROL FOR LIPSCHITZ SYSTEMS WITH ERROR FEEDBACK AND FAULT COMPENSATION

In this part, the fault reconstruction expression (3) is used to write the system under a new form where the only unknown input is an additive actuator failure. Then, in order to annihilate the actuator fault effect on the system, another UUIO is used to estimate the fault magnitude, the estimated state at the instant k is then denoted Xc,k and the estimation error e c,k . A control law has then to compensate the fault and is computed such that the faulty system is as close as possible to the nominal one. The new system for control purposes is thus:

X k+1 = (I n -EHC)f (X k , U k ) + EHCX k (8) + (I n + EHC)w k + (EH + C)v k -EHv k+1 + Bf ak
We consider the following system:

X k+1 = AX k + BU k + f (X k , U k ) + Bf ak + wk Y k+1 = CX k+1 + v k (9) with f := (I n -EHC)(f (X k , U k )-X k )-BU k , wk = wk + (EH + C)v k , A := I n and B := [ 0 1 ] T . Where X k ∈ R 2 is the state vector, Y k ∈ R is the measured output, U k ∈ R
is the known input and C T ∈ R 2 the output distribution matrix, f ak ∈ R is the actuator additive fault.

We define ζ

k := [ η k e c,k ]
T , with e c,k = Xc,k -X k the estimation error, η k = X k -X k the reconfiguration error and X k the state reference. The reference state dynamics can be generated as:

X k+1 := AX k + BU k + f (X k , U k )
+ wk with U k a user-defined reference input, which can be for example a reference trial sequence. We then have:

ζ k+1 = A 0 0 K k+1 C ζ k + B 0 ∆U k + B 0 f ak (10) + I 0 ( f (X k , U k ) -f (X k , U k ))
with ∆U k := U k -U k . We can simplify the notation as:

ζ k+1 = Aζ k + B(∆U k + f ak ) + CΦ k (X k , U k , X k , U k ) (11) with A := A 0 0 K k+1 C , B := B 0 and C := I 0 and Φ k := f (X k , U k ) -f (X k , U k ). Φ k is locally Lips- chitz for the cooling system application since f (X k , U k ) is locally Lipschitz on a compact set S X inf ,Xsup,U inf ,Usup .
The considered mass flow rates and pressures are bounded by thermomechanical constraints, X ∈ [X inf ; X sup ] and U ∈ [U inf ; U sup ]. We consider a control law of the following form:

∆U k := Gζ k -B + B fak (12)
The fault fak is estimated from the following unknown input reconstruction scheme:

fak = H(Y k+1 -C( f (X k , U k ) + wk ) -v k+1 ) (13) 
with H = ((CB) T (CB)) -1 (CB) T . We consider the following minimization problem with respect to ∆U (•) of the infinite horizon cost function:

J k := ∞ i=0 ζ T k+i Sζ k+i + ∆U k+i T O∆U k+i (14) 
subject to ζ k+i ∈ ζ, ∆U k+i ∈ Ū with i ≥ 0, ζ and Ū compact subsets of R 4 and R; S and O positive definite weighting matrices. We choose the following Lyapunov candidate function:

V k := ζ T k P ζ k . If V k is a
Lyapunov function ensuring the stability of the resulting closed-loop then (see [START_REF] Poursafar | Model predictive control of non-linear discrete time systems: a linear matrix inequality approach[END_REF]):

J k ≤ ζ T k P ζ k ≤ -γ (15) 
with γ a positive scalar and regarded as an upper bound of the objective (14).

Lemma [START_REF] Poursafar | Model predictive control of non-linear discrete time systems: a linear matrix inequality approach[END_REF]): Let M , N be real constant matrices and P be a positive matrix of compatible dimensions. Then:

M T P N + N T P M ≤ M T P M + -1 N T P N (16)
holds for any > 0.

Theorem: Consider the discrete-time system (11) with control input (12) at each time k. We define 17), where X > 0 and Y are obtained from the solution of the following optimization problem with variables γ, α, X, Y and Z := X[H G] T . The state-feedback matrix G in the control law that minimizes the upper bound γ of the objective function J k is then given by G := Y X -1 , with

V k = γζ T k X -1 ζ k a Lyapunov function satisfying (
V k+1 -V k ≤ -(ζ k T Sζ k + ∆U k T O∆U k ) (17) min γ,α,X,Y γ subjects to         -X * * * * √ 1 + (AX + BY ) -X * * * (1 + 1 )W Z 0 -αI * * S 1/2 X 0 0 -γI * O 1/2 Y 0 0 0 -γI         ≤ 0, ( 18 
)
Where * stands for symmetric terms in the matrix. And

-I * ζ k -X ≤ 0. ( 19 
)
Proof: The linear quadratic function V k has to satisfy (17) then: 

(Aζ k + B(∆U k + f ak ) + CΦ k ) T P (20) (Aζ k + B(∆U k + f ak ) + CΦ k ) -ζ k T P ζ k ≤ -(ζ k T Sζ k + ∆U k T O∆U k )
(Aζ k + B(∆U k + f ak )) + (1 + -1 )µ(CΦ k ) T (CΦ k ) Since Φ k is Lipschitz we have: Φ k T C T CΦ k ≤ [η k T ∆U k T ]W T C T CW [η k ∆U k ] T (25) Then g(ζ k , ∆U k , f ak ) ≤ (1 + )(Aζ k + B(∆U k + f ak )) T P (26) (Aζ k + B(∆U k + f ak ))+ (1 + -1 )µ[η k T ∆U k T ]W T C T CW [η k ∆U k ] T
We then have:

ζ k T Sζ k + ∆U k T O∆U k -ζ k T P ζ k (27) + (1 + )(Aζ k + B(∆U k + f ak )) T P (Aζ k + B(∆U k + f ak ))+ (1 + -1 )µ[η k T ∆U k T ]W T C T CW [η k ∆U k ] T ≤ 0
Considering the following error feedback control:

∆U k = k -B + B fak (28)
The previous equation is rewritten as:

ζ k T (S+G T OG -P + (1 + )(A + BG) T P (A + BG) + (1 + -1 )µ[H T G T ]W T C T CW [H G] T )ζ k ≤ 0 (29) Which is satisfied if: S + G T OG -P + (1 + )(A + BG) T P (A + BG) (30) +(1 + -1 )µ[H T G T ]W T C T CW [H G] T ≤ 0
We then denote: X := γP -1 , X > 0, Y := GX, α := γµ -1 , Z := X[H G] T . Applying Schur complements give the LMI (18). We also have: The faulty system was simulated with Carins (CNES simulator), a closing valves profile was imposed at the input of the cooling circuit. The aim of this simulation is to see if the controller is able to stabilize the closed-loop system after the detection. When the fault is detected the system switches to the FTCS. This FTCS is composed of: a FDI part, a first UUIO for fault detection purposes as well as unknown input reconstruction and residual analysis algorithms; a fault compensator, a second UUIO for the rewritten system to estimate and compensate for the fault; a MPC to ensure the system stability and convergence to a reference trajectory. This system has been tested on three sets of failures, see Table 4. Failures have been compensated and the control law for the rewritten system allowed to stabilize the system around the reference steady-state trajectory with sufficient precision. The deviations depend mainly on the fault compensation error in the steady-state.

In a previous work [START_REF] Sarotte | Actuator fault tolerant system for cryogenic combustion bench cooling circuit[END_REF]) a FTCS has been developed and tested on the same model, linearized around a steady state trajectory, with an EUIO for the fault estimation and an LQR for the system convergence and stability. The performances of those two methods can then be compared, see Table 5. The control law performances in terms of fault compensation and stability of the two control methods (EUIO-LQR and UUIO-MPC) are equivalent for the pressure regulation in the steadystate but the performances for the mass flow rate are increased with a factor ten. The control law allows to compensate for a failure in the transient and to track down a reference trajectory (see Figure 3). Since the system is not linearized around a steady-state reference in the case of the nonlinear FTCS, the stability domain is larger and the fault compensation error has less impact on the system performances. 

CONCLUSION

In this paper a nonlinear FTC scheme has been proposed to ensure the stability of pressure and mass flow rates in the cooling circuit of a cryogenic test bench as well as to compensate for an additive actuator failure. Once the fault in the actuator has been detected by the FDI method composed of a first UUIO, the designed FTCS based on a fault estimator and a second UUIO permits to compensate for the failure and to converge if necessary to a chosen steady state. This FTCS consists in a MPC based on the minimization of an infinite horizon cost function and a direct fault compensation under the resolution of LMIs on an equivalent system where the unknown input is expressed as a function of the known state and known input vectors in order to decouple only the fault effect on the system. This method has been compared to a FTCS composed of an EUIO and a LQR controller and shows better performances for fault compensation and state reference tracking in the transients. Future work will address the design of a method to take into account the effect of input saturation, the limitation of overshoots and the validation of the developed FTCS on other part of the test bench facilities.
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 1 Fig. 1. Active FTCS closed-loop

  4) Then the transformed set of Sigma points are evaluated for each of the 0 to 2n points by: χ i,k+1|k := f (χ i,k|k , U k+1 , k) + ĒY k+1 + wk where f = T f , T = I n -EHC and n the dimension of the state. And wk = T w k -EHv k+1 . The predicted mean is computed as:

  Defining the function g(ζ k , ∆U k , f ak ) asg(ζ k , ∆U k , f ak ) = (Aζ k + B(∆U k + f ak )) T P (21) (Aζ k + B(∆U k + f ak )) + (Aζ k + B(∆U k + f ak )) T P (CΦ k ) + (CΦ k ) T P (Aζ k + B(∆U k + f ak )) + (CΦ k ) T P (CΦ k )and applying the Lemma, the upper bound ofg(ζ k , ∆U k , f ak ) becomes g(ζ k , ∆U k , f ak ) ≤ (1 + )(Aζ k + B(∆U k + f ak )) T P (22) (Aζ k + B(∆U k + f ak )) + (1 + -1 )(CΦ k ) T P (CΦ k ) Consider P ≤ λ max I ≤ µI(23) where λ max is the maximum eigenvalue of P and µI is a design parameter corresponding to the upper bound of the maximum eigenvalue of P . g(ζ k ,∆U k , f ak ) ≤ (1 + )(Aζ k + B(∆U k + f ak )) T P (24)

  verify (23), where * stands for symmetric terms in the matrix. And-I * ζ k -X ≤ 0 (32)to ensure (15).

Fig. 3 .

 3 Fig. 3. Pressure and mass flow rate control -Carins simulator -UUIO+MPC

  2 the unknown input distribution matrix and C T ∈ R 2 the output distribution matrix. The model presented here allows to determine the evolution of the ferrules cooling circuit output pressure and input mass flow rate. It is now possible to model their evolution during the motor transients. The model was tested off-line with real measurements of a Mascotte campaign as inputs. Those trials last 60 seconds. The evolution of the pressure and mass flow rate dynamics is well reconstituted (Table1

Table 2 .

 2 Relative errors of the pressure and input mass flow rate estimations

	Model		Total	Transient steady-state
			(%)	(%)	(%)
	Pressure	UUIO 8.02e-3	1.24e-2	5.07e-3
	(Pa)	EUIO	6.71e-3	1.85e-2	2.87e-3
	Mass flow rate UUIO	1.51	2.46	0.10
	(kg/s)	EUIO	2.15	6.42	0.41

Table 3 .

 3 Relative error of the output mass flow rate reconstruction

	Model		Total Transient steady-state
			(%)	(%)	(%)
	Output mass flow UUIO	1.44	3.14	4.94e-2
	rate (kg/s)	EUIO	2.16	4.98	0.41

Table 4 .

 4 Deviations of the simulated pressure and input mass flow rate from references -UUIO-MPC

	Control	Pressure	Input mass
	simulation	(%)	flow rate (%)
	Fault 1 abrupt shift	0.17	2.82e-3
	high amplitude		
	Fault 2 slow shift	8.77e-2	8.51e-3
	high amplitude		
	Fault 3 abrupt shift		
	flow amplitude and slow	0.14	3.54e-3
	shift high amplitude		

Table 5 .

 5 Deviations comparison EUIO+LQR / UUIO+MPC

	Control simulation	Fault 1	Deviations
		in the transient	(%)
	Pressure	UUIO -MPC	9.24e-2
		EUIO -LQR	1.08
	Input mass flow rate	UUIO -MPC	0.13
		EUIO -LQR	0.35
	Input pressure reference	UUIO -MPC	2.90e-2
		EUIO -LQR	1.23