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Abstract

Byzantine-Fault-Tolerant systems for closed consortia have recently
attracted a growing attention notably in financial and supply-chain ap-
plications. Unfortunately, most existing solutions suffer from substantial
scalability issues, and lack self-governance mechanisms. In this paper,
we observe that many workloads present little concurrency, and propose
PnyxDB, an eventually-consistent Byzantine Fault Tolerant replicated
datastore that exhibits both high scalability and low latency. Our ap-
proach hinges on conditional endorsements that track conflicts between
transactions. In addition to its high scalability, PnyxDB supports appli-
cation-level voting, i.e. individual nodes are able to endorse or reject a
transaction according to application-defined policies without compromis-
ing consistency. We provide a comparison against BFT-SMaRt and Ten-
dermint, two competitors with different design aims, and show that our
implementation speeds up commit latencies by a factor of 11, remaining
below 5 seconds in a worldwide geodistributed deployment of 180 nodes.

1 Introduction

c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works. Presented in the 39th IEEE International Symposium on Reliable Distributed Systems
(SRDS ’20). For the final published version, refer to DOI 10.1109/SRDS51746.2020.00023

Byzantine Fault Tolerance (BFT) has attracted much attention over the last
two decades [1, 2, 3, 4, 5, 6], and has now moved into the public spotlight fol-
lowing the rise of blockchain platforms. BFT systems typically rely on advanced
replication protocols to ensure consistency between their replicas and withstand
arbitrary failures and malicious behavior. Unfortunately, traditional BFT repli-
cation protocols struggle to scale beyond a few tens of replicas [7], while the
proof-of-work technique used by many blockchain-based systems suffers from
large computing and storage overheads.

Recent attempts to overcome these scalability barriers have explored lead-
erless designs [8, 9, 10, 11, 12], alternatives to proof-of-work such as proof-of-
stake [13], or assumed access to a trusted third party providing strong ordering
guarantees [14]. All these strategies are however fraught with limitations: exist-
ing leaderless protocols rely either on clients for consistency checks [8] (increasing
computing overhead) or on the availability of strong coordination mechanisms,
such as an atomic broadcast primitive [9, 14]; proof-of-stake requires financial
incentives and could allow monopolies by linking a node’s influence to its stake
in the system; and trusted third parties limit the applicability of such solutions
to well-controlled environments.
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Compounding these limitations, all above approaches are ill-equipped to
support in-system governance, a growing requirement for applications involv-
ing independent organizations [15]. Although most of these solutions rely on
internal vote or quorums, these mechanisms are not exposed to applications.
As a result, individual nodes cannot implement application-defined policies to
endorse or reject transactions without additional costs and complexity. This
is problematic, as application-level voting capabilities are key to decentralized
BFT applications involving independent participants who need to balance con-
flicting goals and shared interests [16]. Examples of such governance concerns
include basic membership management, access control, resource allocation, and
policy administration. In all these examples, different parties are likely to pursue
different agendas, and need to be able to influence the final decision according
to their own application-defined policies and beliefs [15, 17, 18].

In this paper, we address these challenges using a radically different line of
attack: we borrow a popular strategy from non-Byzantine distributed datas-
tores [19, 20], and tackle scalability by weakening the consistency guarantees,
while maintaining Byzantine Fault Tolerance. We illustrate this design with
PnyxDB, a Byzantine-Fault-Tolerant Replicated Datastore for closed consortia.
PnyxDB is eventually consistent in that clients might perceive conflicting views
of the datastore for short periods of time. PnyxDB also provides a unique
application-level voting mechanism that allow participants to support or reject
proposed transactions according to application-defined policies.

Our proposal leverages the long-observed fact that many workloads exhibit a
lot of independent operations [11, 21] that can be executed out of order without
compromising the eventual convergence of all correct nodes. We exploit these
independent operations through a modified Byzantine Quorum protocol [1] that
ensures the safety and agreement of our system. We introduce conditional en-
dorsements within quorums as a mean to flag and handle conflicts by allowing
each node to specify the set of transactions that must not be committed for the
endorsement to be valid.

In this paper, we make the following contributions:

1. We present PnyxDB1, a scalable low-latency BFT replicated datastore
that supports democratic voting.

2. We propose a novel conflict resolution protocol that leverages independent
operations to tolerate Byzantine behavior, while delivering scalability and
low-latency.

3. We evaluate PnyxDB against two open-source systems, BFT-SMaRt [3]
and Tendermint [22], representing alternative trade-offs in the design space.
We demonstrate that our system is able to reduce commit latencies by
at least an order of magnitude under realistic Internet conditions, while
maintaining steady commit throughput. We also show that PnyxDB is
able to scale to up to 180 replicas on a worldwide geodistributed AWS
deployment, with an average latency of a few seconds.

1https://github.com/technicolor-research/pnyxdb
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In the following, we first define our model and specifies our replication pro-
tocol (Sec. 2 and 3). Sections 4 and 5 then present and evaluate PnyxDB
implementation. Related work is detailed in section 6, followed by a discussion
of PnyxDB limitations in section 7. We provide some key properties’ proofs in
Appendix A.

2 PnyxDB overview

2.1 System Model and Assumptions
We assume a system made of distributed machines (nodes) communicating
through messages. Our system defines two types of roles that one node may
implement independently. Clients submit transactions, each consisting of a
list of operations on a replicated key-value datastore. Endorsers participate
in Byzantine consensus quorums by validating and voting on clients’ transac-
tions. As in existing decentralized ledgers, they store the whole datastore state.
Each system contains a known number n of endorsers, of which a maximum
of f can act as Byzantine. Byzantine nodes are allowed to ignore the protocol
specification occasionally or completely, and they can collude to create more
sophisticated attacks. Non-Byzantine nodes are said to be correct.

We assume we have access to a reliable BFT broadcast primitive with the
following property: if one message is delivered to one correct node, every cor-
rect node will eventually receive that message [23]. In our implementation, we
rely on eventually synchronous networks as detailed in § 4.2: informally, we
assume that networks alternate between periods of synchrony and asynchrony.
For transaction liveness, we add the assumption that correct nodes are able
to detect periods of synchrony (§ 4.3). Cryptographic signatures are used to
verify nodes’ identity and authorizations. We make the standard assumptions
that participants cannot break these signatures, and that they know each other
beforehand. (In the parlance of distributed ledgers, our system is permissioned.)

2.2 Intuition and Overview
Closed-membership Byzantine state machine replication typically rely on some
form of Byzantine-tolerant consensus that ensures strong consistency [3, 6, 22,
24]. As a result, they unfortunately do not scale beyond a few tens of replicated
nodes, due to the inherent cost of executing a Byzantine agreement protocol [25,
26]. One strategy to overcome this scalability barrier exploits a trusted comput-
ing base for coordination and ordering, such as Kafka or Raft in recent versions
of Hyperledger [27, 14], but this approach weakens the security model of the
protocol. Another strategy consists in using proof-of-work or proof-of-stake
techniques from open-membership Byzantine ledgers [28, 13]. Unfortunately,
these techniques are either costly or link a node’s influence to its stake in the
system, two properties that can be undesirable in closed-membership deploy-
ments that do not have a financial dimension. In this paper we tackle scalabil-
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Node pi
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Figure 1: Overview of PnyxDB: the application submits transactions to be executed
on shared state and polls the application back for transaction approval before creating
conditional endorsements.

ity by weakening consistency guarantees—a strategy often used by large-scale
datastores—while maintaining Byzantine Fault Tolerance.

Figure 1 provides an overview of PnyxDB’s design. Clients submit trans-
actions that are made of operations on keys of the PnyxDB datastore. These
operations are typically reads and writes, but PnyxDB can be extended to
other shared objects with a sequential specification. These transactions are
then broadcast to all endorser nodes, which vote for or against the transaction
through an application-level voting callback. This callback provides in-system
governance by allowing nodes to endorse transactions according to application-
level policies. Transactions must be supported by a configurable lower threshold
of a majority of correct nodes to proceed.

The properties of PnyxDB result from the novel combination of two key
ingredients: leaderless quorums for scalability, and conditional endorsements
for eventual consistency.

2.2.1 Leaderless quorums

PnyxDB does not use any coordinator, rotating or elected, in contrast to many
existing BFT replication solutions [2, 3, 6, 22]. This choice removes a recurring
performance bottleneck, trading off weaker consistency guarantees for higher
scalability. Transactions only need to be endorsed by a Byzantine quorum of
endorsers (more than n+f

2 ) to be permanently committed to the system’s state.
If two transactions commute (i.e. they contain no conflicting operations), their
respective quorums can be built independently, and the transactions applied
out of order, thus ensuring PnyxDB’s eventual consistency. This strategy is
directly inspired from Conflict-Free Replicated Datatypes (CRDTs) [29, 20] and
leverages the fact that many operations in distributed datastores either com-
mute or are independent. When this is the case, these transactions may be
executed out of order on different nodes without breaking local consistency [29,
30], while allowing every correct node to eventually converge to the same global
datastore state. A typical example is the popular Unspent Transaction Outputs
model (UTXO) used in cryptocurrencies that avoids concurrency by writing to
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Figure 2: Transaction state diagram, as viewed by a node. From the Pending state,
a transaction evolves either to Dropped or Committed given received messages.
Dropped and Committed are eventually consistent across all nodes. In contrast,
Pending, Applicable and Applied are intermediate states local to each node.

a variable only once: within this model, conflicts only occur when Byzantine
nodes try to re-use an expired variable. (This problem is well-known as the
“double-spending” attack.)

2.2.2 Conditional endorsements

Leaderless quorums work well for independent transactions, but might lead to
deadlocks in case of conflicts, for instance when modifying the same key with
conflicting operations. We overcome this problem with a second core mecha-
nism: conditional endorsements. When an endorser broadcasts an endorsement,
it also publishes a (possibly empty) list of transactions that must not be com-
mitted for the endorsement to be valid. These conflicting transactions are the
conditions of the endorsement. Given a pair of conflicting transactions, all
correct nodes will use the same heuristics (based on time-stamps generated at
transaction creation) to decide which one to promote over the other, ensuring
a consistent conflict resolution. Without additional mechanisms, conditional
endorsements may however lead to an ever-growing set of unresolved transac-
tions. We avoid this outcome by periodically triggering garbage collections (or
checkpoints) using a binary Byzantine Veto Procedure (§ 5.6).

As a result of leaderless quorums and conditional endorsements, transactions
proceed through the life cycle presented in Figure 2. First, a client broadcasts
a transaction to endorsers. If it agrees with the transaction’s operations, an en-
dorser node can acknowledge the transaction by broadcasting its endorsement.
If a threshold of valid endorsements is received within a transaction deadline
(as defined in § 3), that transaction may enter the Applicable state. A trans-
action in that state has enough valid endorsements, but the node is not certain
that these endorsements will remain valid - because of possible future conflicts.
The Applied state is an artifact introduced by the speculative execution of a
transaction: in this temporary state, the system cannot yet commit a transac-
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(a) Simplified history of messages exchanged between the four nodes in our example. Node p1
first submits transaction q, that is endorsed by both p1 and p2 through eq,1 and eq,2. Shortly
after, p2 submits a conflicting transaction r that is endorsed by 3 nodes: with conditions for
p1 and p2 (see 3b) and without condition for p4. After a period of unavailability, p3 broadcasts
its endorsement of q, leading to state 3c.

eq,1

eq,2 q
er,1

er,2

er,4

r

(b) r is Applicable given its 3 valid
endorsements.

3b 3c
eq,1

eq,2

eq,3

q
er,1

er,2

er,4

r

(c) Since q is now Applicable and will
be Committed, er,1 and er,2 are no
longer valid. Hence, r is no longer

Applicable.

Figure 3: Example of graph of conditions for transactions q, r and their respective
endorsements eq,i and er,i. er,1 and er,2 are conditioned by q, while other endorsements
are not. We set ω = 3. (3b) shows the knowledge of correct nodes before the arrival
of eq,3 (3c).

tion, but it may execute the operations on the datastore state. This optional
optimization is useful to reduce global latency if the estimated probability of
commit is very high. Transactions can finally transition to final states Com-
mitted—once the node is sure that the endorsement will always stay valid—or
Dropped, as we will detail in the following sections.

3 The protocol

3.1 Transaction applicability and endorsement validity
The notion of applicable transactions (Figure 2) plays a key role in the eventual
consistency of PnyxDB and is recursively defined in terms of valid endorsements.
More precisely:

• A transaction t is Applicable at node pi if and only if there exists at least
ω Valid endorsements for t at node pi, where ω is a Byzantine quorum
threshold, chosen to be larger than bn+f

2 c.

• An endorsement e = 〈id , i, C〉 of a transaction t = 〈id , d, R,∆〉 with
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Algorithm 1 Message callbacks at node pi
1: upon reception of Transaction〈id , d, R,∆〉
2: t← Transaction〈id , d, R,∆〉
3: done← ⊥
4: while done = ⊥ ∧CanEndorse(t) do
5: C ← {c : c ∈ Ti ∧ Γ(c.∆,∆)} . List all conflicting transactions
6: if ∀c ∈ C, c.d ≤ now() then
7: Endorse(t, C) . All conflicting transactions are expired
8: done← >

9: upon reception of Endorsement〈id , j, C〉
10: Ei,id ← Ei,id ∪ {Endorsement〈id , j, C〉}
11: ∀t ∈ Ti : CheckState(t)

(e.id = t.id) is Valid at node pi if and only if every transaction c in
the condition set e.C of e has an earlier deadline than t and is not Ap-
plicable. A transaction deadline is set by its issuer and constrained by
system-wide policies to avoid excessively-large deadlines.

The interplay between these two notions drives how a transaction proceeds
through the state diagram of Figure 2, and is illustrated on the scenario shown in
Figure 3. In this example, nodes p1 and p2 propose two conflicting transactions
q and r (Figure 3a). q is at first only endorsed by p1 and p2. (ex,i denotes the
endorsement of transaction x by node pi.) When transaction r is broadcast, p1

and p2 detect a potential conflict with q, which they have already endorsed, and
issue conditional endorsements for r. p4 has not endorsed q: it can endorse r
unconditionally.

The resulting condition graph on every node at this point is shown in Fig-
ure 3b. Endorsement conditions are represented by dashed lines: for instance,
er,1 is valid if q is not Applicable. In Figure 3b, q has only received 2 en-
dorsements, and is therefore not applicable under a quorum threshold of ω = 3.
r has received 3 endorsements (from p1,2,4), all of which are valid: er,4 because
its condition set is empty, er,1 and er,2 because q is not applicable. Transaction
r is therefore Applicable, and may be speculatively executed but cannot be
Committed yet as q has not been Dropped.

When a third endorsement eq,3 for q is finally received from p3, the condition
graph of each node changes to that of Figure 3c. At this point, the minimum
number of valid endorsements is now reached for q, making two endorsements
for r invalid. While r is no longer Applicable, q received enough unconditional
endorsements to be Applicable and will be Committed.

3.2 Algorithm
The detail of PnyxDB’s workings is presented in Algorithms 1 to 4. Our design
is reactive: endorsers react to the Transaction and Endorsement messages
they receive from the network. For simplicity, we do not include authentication
and invariant checks. (In the following, ‘line x.y’ refers to line y of Algorithm x.)
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Algorithm 2 Endorsement checks at node pi
1: function CanEndorse(t)
2: if t.d ≤ now() then
3: return abort . Timeout
4: if Statei not compatible with t.R then
5: return abort . Consistency
6: State′ ← t.∆(State)
7: if State′ does not comply to Policyi then
8: return abort . Policy
9: return OK

10: function Endorse(t, C)
11: Broadcast(Endorsement〈t.id , i, C〉)
12: Ti ← Ti ∪ t.id

Algorithm 3 Predicates at node pi
1: function Applicable(id)
2: E+

i,id ← {e : e ∈ Ei,id ∧Valid(e) with distinct e.i}
3: return |E+

i,id | ≥ ω
4: function Valid(e)
5: return ∀c ∈ e.C,¬Applicable(c.id)

A client starts a set of operations by broadcasting a Transaction〈id , d, R,∆〉
to nodes, with a configurable deadline d and a set of operations ∆. On receiving
this Transaction (line 1.1), each endorser first checks whether the transac-
tion can be endorsed (CanEndorse() at line 1.4, described in Algorithm 2).
In particular, endorsers must check that the transaction’s deadline has not been
reached with respect to their local clock (line 2.2). Endorsers can also deliber-
ately choose not to endorse a transaction simply by ignoring it, for local policy
reasons (line 2.8). If CanEndorse() returns true, each endorser pi then checks
that it has not already endorsed conflicting transactions C (line 1.5). The (sym-
metric) predicate Γ returns whether the two transactions passed as arguments
are in conflict or not. Three cases may happen:

• With no conflicting transaction, C = ∅ and pe can broadcast an uncondi-
tional Endorsement〈id , i, ∅〉 (line 1.7).

• If C only contains outdated transactions, pe can broadcast a conditional
Endorsement〈id , i, C〉, allowing the application of the transaction given
the non applicability of every outdated transactions (line 1.7).

• Otherwise, pe must wait until conflicting deadlines are over, and restarts
the while loop (line 1.4).

New endorsements are received at line 1.9, and trigger the execution of the
CheckState() function (described in Algorithm 4) on all transactions already
endorsed by the receiving endorser (Ti set). CheckState() ensures that the
state of the datastore Statei is consistent with the Applicable state of trans-
actions (lines 4.4 and 4.7). It also triggers the Commit operation on transac-

8



tions q when there are a sufficient number of unconditional endorsements on t
(line 4.9). Finally, the procedure can decide to trigger checkpoints when con-
ditions are blocking newer transactions (represented by the Old trigger, tested
at line 4.15).

Once a node has received a predefined quorum ω of valid and distinct en-
dorsements for a given transaction t (implemented by the Applicable() and
Valid() functions in Algorithm 3, invoked at line 4.2), CheckState() applies
t.∆ if the node is configured to execute applicable transactions speculatively
(line 4.7). Coming back to Figure 2, it means that the transaction moves either
to the Applicable state (if the node is not speculative) or the Applied state
otherwise.

We must ensure that ω >
⌊
n+f

2

⌋
to tackle Byzantine endorsements. Higher

ω values allow to build stricter transaction acceptance rules, requiring up to
unanimous agreement (ω = n), but this comes at the cost of availability by
depending on Byzantine nodes to endorse transactions. (The minimum number
of nodes to allow both availability and safety is n ≥ 3f + 1 [1].)

The CheckState() function is also used to verify the validity of previously-
valid endorsements because of endorsement conditions (line 3.5), potentially
triggering transaction rollback(s) (line 2.4, as illustrated in Figure 3). A transac-
tion can move back and forth from its initial Pending state to the Applicable
state. Note that these states are local : each node may have a different view of
Applicable transactions depending on the messages it has received. However,
our safety property guarantees that no transaction can both be Committed
at a correct node pi and Dropped at another correct node pj . Conversely, if
a transaction reaches one of these two final states at a correct node pi, every
other correct node will eventually set the same state for that transaction.

3.3 Checkpointing
In many cases, we expect that a node can conclude from received endorsements
that the Applicable predicate has reached a final state (true or false) by
analyzing the transaction’s graph of conditions. When complex dependencies
arise between endorsements and transactions, some transactions might however
interlock. As an example in Figure 3, nodes cannot know whether r must be
committed before receiving eq,3. To cope with this issue and ensure both liveness
and consistency, we use a simple checkpoint sub-protocol (Algorithm 5) to prune
the condition graph and unblock transactions. This sub-protocol builds upon
an underlying Byzantine Veto Procedure (BVP) in which each node pi proposes
a choice ci ∈ {0, 1} and decides a final value di. BVP is a Byzantine-tolerant
version of the Non-Blocking Atomic Commitment (NBAC) protocol [31], and is
expected to satisfy the following properties with eventually-synchronous commu-
nications: 1) Termination : every correct node eventually decides on a value;
2) Agreement : no two correct nodes decide on different values; and 3) Valid-
ity : if a correct node decides 1, then all correct nodes proposed 1 (equivalently,
if any correct node proposes 0, then a correct node decides 0). We return to the
implementation details of BVP in section 4.
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Algorithm 4 State checking at node pi
1: function CheckState(t)
2: if ¬Applicable(t) then
3: if Applied(t) then
4: Statei ← Rollback(Statei, t)

5: else
6: if ¬Applied(t) and isSpeculativei then
7: Statei ← Apply(Statei, t) . Speculative execution

8: . Endorsements that will always stay valid
9: Σi,t = {e ∈ Ei,t : e.C = ∅}

10: if |Σi,t| ≥ ω then
11: if ¬Applied(t) then Statei ← Apply(Statei, t)
12: Statei ← Commit(Statei, t)
13: Ti ← Ti \ {t}
14: . Conditions that could be dropped
15: T̄ ← {c ∈ ∪e∈Ei,t

e.C : Old(c)}
16: if |T̄ | ≥ 1 then
17: StartCheckpoint(T̄ )

18: . Example of checkpoint trigger for configurable delay δ
19: function Old(t)
20: return ¬Applicable(t) ∧ t.d < (now()− δ)

When a node decides to start a checkpoint, it triggers a BVP instance with
a Checkpoint proposal (line 5.5), a set of transactions representing a cut of
their graph of conditions. Each proposal aims at removing old transactions that
block newer transactions from being committed. Informally, a proposal might
be as simple as “transaction t will never be applicable, drop it”. During the
procedure, correct nodes are expected to propose 0 (“Veto”) if and only if they
hold evidence that the checkpoint proposal is wrong (line 5.4). (Such nodes
must submit this evidence in the form of signed endorsements.) Two check-
point results are possible per invocation: (1) If the final decision is 1, correct
nodes can prune their local graph of conditions according to the confirmed pro-
posal (lines 5.7-5.9); (2) otherwise, some correct nodes have reasons for blocking

Algorithm 5 Checkpoint at node pi
1: function StartCheckpoint(T̄ )
2: Broadcast(Checkpoint〈T̄ 〉)

3: upon reception of Checkpoint〈T̄ 〉

4: c←
{

0 if ∃t ∈ T̄ : Applicable(t) ∨Committed(t)
1 otherwise

5: decision ← BVP(T̄ , c)

6: if decision = 1 then . Cleanup
7: Ti ← Ti \ T̄ . Drop transactions
8: ∀t ∈ T̄ : Ei,t = ∅ . Forget endorsements of dropped transactions
9: ∀t ∈ Ti, e ∈ Ei,t : e.C = e.C \ T̄ . Forget conditions

10: ∀t ∈ Ti ∪ T̄ : CheckState(t)
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the checkpoint proposal. After having added the evidence(s) to their graph of
conditions, correct nodes can discard this checkpoint instance.

In our example from figure 3b, if the BVP decision on the proposal “drop q”
is 1, then every node can confidently drop q and remove q’s condition on the
endorsements er,i, thus effectively committing r. On the contrary, if the BVP
decision is 0, correct nodes can expect an evidence going against the proposal:
for instance, node p3 can broadcast eq,3 again. This allows nodes to progress,
finally triggering the commit of q and the drop of r for every node. We discuss
and evaluate the overhead of this checkpoint procedure in § 5.6.

4 Implementation
We describe some key elements of our prototype: the web of trust we use for
node authentication, and how we implemented the Reliable Broadcast and the
Byzantine Veto Procedure (BVP) we rely on. Our technical choices are driven
by our target scale of hundreds to thousands of nodes per network (a reasonable
size for closed consortia), excluding clients.

4.1 Web of trust and policy files
Our implementation relies on a web of trust and policy files, inspired from
PGP, to authenticate nodes. The web of trust links nodes’ identities to their
public key, and supports several cryptographic authentication schemes, with
ed25519 used by default [32]. Nodes need to know the identities of endorsers,
along with useful metadata such as authorized operations and default network
parameters. We use a universal policy file which we assume is initially known
to all participants: this is similar to the distribution of a common genesis file
required by a number of existing BFT systems [3, 14, 22].

4.2 Reliable broadcast and recovery
A Byzantine-resilient reliable broadcast is required in PnyxDB to ensure that
correct nodes will eventually receive every transaction and endorsement, possi-
bly out-of-order. Such an algorithm was proposed by Bracha [23], but it has a
message complexity of O(n2), which makes it impractical for our targeted scale.
Following current public and consortium blockchains implementations [33], we
use a probabilistic gossip algorithm as our reliable broadcast primitive, where
each node communicates only with a small number of neighbors. Such algo-
rithms are known to disseminate information with a logarithmic number of
messages. We use GossipSub from the libp2p project as our gossip broadcast
algorithm.

Using a gossip algorithm as our broadcast primitive inherently introduces
uncertainty in the reliability of the broadcast [34]. We propose to complement
this probabilistic broadcast with retransmissions and state transfers: with very
low probability, some nodes may not receive a given message. In that case, they
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may later ask for a retransmission of a transaction or endorsements related to
a transaction. After long failures (such as power outage or network partition),
some nodes may have missed a large number of messages and become out-of-sync
with the remainder of the network. At this point, retransmitting every message
becomes prohibitively expensive: that’s why each node is able to synchronize
its complete state from its neighbors. We rely on the web of trust (§ 4.1) to
retrieve the state from neighbors that are sufficiently trusted by the out-of-sync
node. (In our implementation, a configurable quorum of identical values must
be received before re-synchronizing one node’s state.)

4.3 Byzantine Veto Procedure
The main limitation with our endorsement scheme is that Byzantine nodes can
arbitrarily delay their endorsements. To cope with that in a practical way, we
propose a BVP implementation in Algorithm 6, based on periodic health probes
of the gossip mechanism in our eventually synchronous network.

Definition 1 The maximum gossip broadcast latency, denoted τ , is the max-
imum possible delay from a message broadcast to its delivery by every correct
node.

We make the following two assumptions: every correct node pi is able to
estimate (A) τ̂ such as τ̂ ≥ τ and (B) δi,j the relative clock deviation for any
endorser pj . It is possible to obtain these two values from active or passive
round-trip measurements in the gossip network. With that additional knowl-
edge, each correct node can estimate locally the earliest possible sending time
of a message and discard messages published after a specific deadline (line 6.6).
In our implementation, nodes broadcast periodic heartbeats and we set con-
servative floor values for τ̂ and δi,j as an additional safety. Long failures (as
described in § 4.2) are indistinguishable from network asynchrony, leading to
missing heartbeats and τ̂ = max(δi,j) =∞ and blocking BVP’s progress.

This is not a concern for PnyxDB: non-conflicting transactions are still al-
lowed to commit if enough nodes are available and BVP will eventually return
after failure resolution. This simple approach is sound during periods of syn-
chrony but may introduce significant delays due to the use of a conservative
deadline. As BVP is not the main contribution of this paper, we leave the
optimization of this primitive to future work.

Proposition 1 Algorithm 6 satisfies the properties of BVP.

Proof sketch. Termination is trivial in eventually synchronous networks
(line 6.4). Per assumptions A and B every correct node will compute the same
value for ‘deadline’ at line 6.5. By line 6.6, no endorsement for t ∈ T̄ sent after
this shared deadline can be accepted. Thanks to assumption A, endorsements
sent before ‘deadline’ are delivered before (deadline+τ̂) > (deadline+τ), leading
to the same set of endorsements for T̄ being received for every correct node
after (deadline + τ̂). This implies the Agreement property given the decisions
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Algorithm 6 Byzantine Veto Procedure (BVP) at node pi
1: function BVP(T̄ , ci)
2: if ci = 0 then . pi is vetoing the decision to drop T̄
3: return 0
4: wait until τ̂ <∞∧ ∀j, δi,j <∞ . Wait for synchrony
5: deadline = max(t.d, t ∈ T̄ ) + max(δi,j)
6: Stop delivering endorsements for t ∈ T̄ sent after deadline
7: wait until either
8: ∃t ∈ T̄ : Applicable(t) then return 0
9: now() > deadline + τ̂ then return 1

of lines 6.8 and 6.9. A correct node proposes a veto if and only if at least
one transaction in T̄ is Applicable: Validity follows from the properties of
Applicable.

5 Evaluation
We tested our implementation of PnyxDB in two settings: (i) in an emula-
tion setup that allows to reproducibly vary and measure the impact of different
parameters and (ii) in a large-scale worldwide deployment for practical valida-
tion. Except in § 5.5, we did not use speculative execution. We first present
the results of the emulation-based evaluation and then detail our large-scale
deployment (§ 5.7).

5.1 Emulation setup and baselines
The emulation was performed on a server able to sustain several hundreds of
nodes with the Mininet network emulation tool (48 threads of Intel(R) Xeon(R)
Gold 6136 CPU 3.00GHz, 188GB RAM). We drew latency values for Linux
Traffic Control from an exponential distribution law with an average of 20 ms
per link. Every node’s clock was shifted by a random amount in the [−5, 5]
seconds interval between the reference time to simulate a small asynchrony
between participants. For the BVP algorithm, we chose the conservative value
τ̂ = 10 seconds: this leads to a practical checkpoint timeout of 20 second. Each
experiment was run 40 times and averaged.

To compare our work with available solutions, we executed the same exper-
iments with the BFT-SMaRt v1.2 server [3] and a Tendermint v0.32.5 voting
application [22]. BFT-SMaRt is an efficient Java library for BFT consensus.
Tendermint is a BFT Consensus mechanism based on a permissioned blockchain
with a leader-based algorithm; its implementation relies on a gossip broadcast
primitive, like PnyxDB. Both implementations allow custom application logic
to be executed during consensus; this allowed us to emulate a voting behavior
within these two existing solutions. The two systems are leader-based, but their
consensus choices are quite different: while BFT-SMaRt rely on a single leader
as long as it reports no issue to avoid costly view changes, Tendermint leaders
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Figure 4: Single transaction commit latency with increasing number of endorsers (n)
and emulated WAN latencies. The � symbols mean that we were unable to perform
the experiment for a specific n due to network contention. PnyxDB clearly offers best
network scalability.

are selected in a round-robin fashion with each leader batching transactions
into blocks. BFT-SMaRt is based on a fully connected mesh topology whereas
Tendermint nodes communicate via gossip. The two baselines offer a different
trade-off than our proposal, targeting stronger consistency guarantees but with
no native democratic capabilities. (For fair comparison, we configured Tender-
mint with the “skip timeout commit” option to optimize its commit latency.)

5.2 Network size (n)
This first experiment measures the latency from a single transaction submis-
sion by one client to its commit by every node. We set the required number of
endorsers to ω =

⌊
2
3n
⌋

+1. For completeness, we note that setting ω = n (unan-
imous agreement) had the effect of slightly increasing the latency, since nodes
had to wait for more votes before committing any transaction. As denoted by
the � symbols, we were unable to complete some large network experiments for
BFT-SMaRt (n ≥ 80) and Tendermint (n ≥ 320) in our testbed, due to ex-
tremely high CPU and network load. Figure 4 shows that PnyxDB outperforms
existing implementations for small and large networks by an order of magnitude.

5.3 Number of clients
To measure the effect of client workload, we configured a varying number of
clients to submit transactions at an average rate of 2 transactions per second,
as controlled by a Poisson point process. The transactions were generated using
the Yahoo! Cloud Serving Benchmark (YCSB) [35], a well-known non-relational
datastore testing tool. We customized the benchmark workload to create only
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Table 1: Summary of comparison with emulated network latencies and 10 clients for
a total of 1000 transactions. This is the average over 40 experiments with 10 nodes

tolerating up to 3 Byzantine faults (n = 10, ω = 7).

Average 95th perc. Throughput Drop Disk usage Transfer Bandwidth per node
latency latency rate per node per node average / max

BFT-SMaRt 89 s 170 s 5.68 tx/s 0.0% - 36 MB 0.16 / 0.21 MB/s
Tendermint 1.7 s 3.9 s 17.0 tx/s 9.3% 26 MB 26 MB 0.40 / 1.40 MB/s

PnyxDB 0.15 s 0.16 s 18.6 tx/s 2.3% 1.4 MB 20 MB 0.28 / 1.27 MB/s

update transactions to a set of 100 keys, from which updated keys were selected
using a uniform distribution. This relatively low level of contention reflects a
number of real workloads, but we present some results for higher contention
rates in § 5.4. Additionally, each tested network required a quorum of ω = 7
endorsers among n = 10 to tolerate at most f = 3 faulty nodes.

The transaction commit latencies and throughput are shown in Figure 5.
While Tendermint and PnyxDB were able to deal with up to 30 transaction
commits per second, BFT-SMaRt was quickly saturated with client transac-
tions: this is due to the large number of messages emitted during the successive
rounds of consensus, and our realistic setup with realistic network latencies.
PnyxDB performed well for the very large majority of transactions, providing
an order of magnitude of latency improvement compared to Tendermint, and
approached the optimal throughput while ensuring a low number of dropped
transactions. As summarized in Table 1, BFT-SMaRt ensured that no single
transaction was dropped. However, 9.3% of transactions were not committed
by all Tendermint nodes: from our analysis, this was caused by several timeouts
triggered by these nodes that failed to commit all transactions in time, due to
the imposed load and network latencies, leading to deadlocks and consensus
halt. PnyxDB experienced less than 2.3% of transaction drop.

In this evaluation, we did not use operation batching [24, 36], a well-known
method to boost the throughput of system operations. We focused instead on
latency optimization of single-operation transactions, and we see batching as
an orthogonal optimization that would further increase the throughput. As an
example, a recent BFT-SMaRt evaluation [37] reports 3,000 op/s for a batch
size of 500, which would be equivalent to 6 tx/s in our setup. With PnyxDB,
batching would group together multiple operations, but each operation would
still be checked independently, and endorsements of conflicting operations left
out in the resulting batch of endorsements.

5.4 Effect of contention
We increased the level of transaction contention by rising a “hotspot” hit prob-
ability (Figure 6), one option provided by YCSB. This parameter has an imme-
diate effect on the probability that (at least) two transactions ask to update the
same datastore record around the same time, thus becoming conflicting trans-
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actions. (The artificially-added clock shift tends to increase the probability of
conflicts with high contention levels.) We kept 10 clients for these experiments,
leading to an average of 20 transactions per second (tx/s). We also tested a rate
of 10 transactions per second for comparison. The worst case scenario would be
that every transaction hitting the hotspot is eventually dropped: in PnyxDB, a
transaction is dropped if a significant number of nodes (n − ω + 1) are unable
to endorse the transaction before its deadline.

The contention level impacts transaction drops as follows: for low levels
of contention (up to 3%), almost no transaction is being dropped thanks to
conditional endorsements; for higher levels of contention (up to excessively high
levels), the drop ratio stays well below the worst case scenario.

5.5 Speculative execution
We implemented speculative execution (§ 3) to compare its latencies against
classic commit latencies as presented in the previous subsections. First, let us
recall that once a transaction is Applied by speculative execution, there is no
guarantee that it will eventually become Committed. However, we can expect
that the probability of rolling back to a non-Applicable (or Dropped) state
stays very low (Figure 7).

In the classic configuration, the commit latency can be severely affected
by pending checkpoints, leading to less-predictable performance. We observed
that speculative execution provides reduced and more predictable latency (µ =
105ms, σ = 145ms) than commits in the classic configuration (µ = 117ms, σ =
645ms). This improvement, valid for every evaluated level of contention, came
with no additional cost: at most 0.03% of speculative executions had to rollback.

5.6 Impact of checkpoints for conflict resolution
Algorithms 4 and 5 suggest that checkpoints must be triggered immediately
when a single transaction could be dropped by a node. This is inefficient, since
the proposed checkpoint procedure is costly in terms of bandwidth. Thus, we
added a pooling mechanism to limit the number of checkpoints: by aggregating
transactions by elapsed time before proposing checkpoints, each node optimizes
its bandwidth while slightly increasing the commit latencies of conflicting trans-
actions. In our evaluation, at most 10 checkpoints were triggered (Figure 7).
Given that checkpoints happen mainly in times of high levels of contention, we
can conclude that their number is still practical, thanks to this pooling opti-
mization.

The longest path measured in the graphs of conditions was of length 34,
requiring less than 1 millisecond to be processed. This observation indicates
that our conditional endorsement scheme is scalable and practical in terms of
complexity. We note that non-conflicting transactions were not affected and
continue to be committed even when the hotspot probability is high. This is
not the case for the other baselines, where transactions are totally ordered by
successive leaders.
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5.7 Large scale experiment
To assess PnyxDB’s scalability in a geo-distributed setting, we deployed up to
180 nodes uniformly in 6 AWS regions (Table 2) using t2.micro EC2 instances.
We used the same asynchrony parameters and clock deviations (§ 5.1). During
our experiments, we observed a steady maximum inter-region round-trip time
of 315 ms between the São Paulo and the Sydney regions. Figure 8 shows
PnyxDB’s commit latencies for 5 independent transactions submitted by one
client, and exhibits an average latency under 5 seconds.

6 Related work
Many algorithms have emerged for blockchain-like consensus [38, 33]. For pub-
lic systems, proof-of-stake has in particular attracted much attention: a small
subset of participants are pseudo-randomly selected to lead the consensus for a
specific round, based on their account balance (i.e. stake in the network) [13].
Proof-of-work schemes are still considered to be the safest, and main public
networks still use it extensively. More efficient algorithms have been proposed
to provide more fairness to small devices [39], less communication rounds [28],
sharding [40, 41] and pipelining [42].

In this paper we focus on permissioned systems where participants are known
in advance. This path allows for more flexibility in the choice of the threat model
and the trust assumptions. RSCoin [43] relies on a trusted central bank and
on distributed sets of authorities for improved scalability. Similarly, Corda [44]
puts trust in small notary clusters running consensus algorithms such as BFT-
SMaRt [3]. In its default configuration, Hyperledger Fabric [14] also requires
that a centralized ordering service is trusted by every party. These solutions,
while delivering good scalability promises, rely on central points of trust, that if
manipulated by a malicious actor would violate the safety of the network. The
common assumption is that such entities would be legally accountable through
audits: to remove that assumption, Sousa et. al. [24] proposed to replace the cur-
rent Kafka ordering service by BFT-SMaRt in Hyperledger Fabric. PnyxDB
leverages a web of trust to ensure good scalability and node recovery, while
avoiding central points and elected leaders.

Other consortium systems have also been proposed that exploit eventual syn-
chrony [12, 22], and randomization techniques [5, 45, 46]. Such systems usually

Table 2: Worldwide AWS deployment: inter-region round-trip time (May 6, 2019).
Nodes were evenly shared between regions.

(in ms) Virginia São Paulo Paris Frankfurt Sydney
California 61 194 138 147 149
Virginia 147 79 88 204

São Paulo 223 226 315
Paris 10 283

Frankfurt 292
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require that correct nodes present deterministic execution for consistency [47,
48]. PnyxDB relies on a consensus algorithm specifically designed for non-
deterministic democratic decisions, and exploits operations commutativity in a
similar way to [29, 44, 49, 36, 50, 51]. In particular, BFT Generic Broadcast [29]
provides optimal latency for non-conflicting messages with n > 5f nodes, but
requires parallel atomic broadcasts in case of conflicting messages and does not
allow local transaction policies. The authors of BEAT [5] report a latency of
around 500 ms for 6 nodes and more than 1 minute for 92 nodes, while PnyxDB
yields 130 ms and less than 1 second in similar AWS deployments, respectively
(Figure 8).

Speculative execution has been proposed in BFT consensus to reduce la-
tencies [4, 9, 36, 52]. We considered this optimization to speed-up our state
synchronization algorithm while achieving extremely low rates of rollbacks. Fi-
nally, note that some vote schemes have been proposed [53, 54], but they apply
only for non-Byzantine fault models.

7 Discussion
This section discusses some elements that can affect the liveness of PnyxDB.

Invalid deadline. A client may submit a transaction with a very low or
high deadline relative to the absolute time. The first case is handled by the
endorsement conditions, but nodes may block in the second case. Bounds on
deadlines would be a simple countermeasure to filter incoming transactions and
avoid endorsing transactions with out-of-bounds deadlines [55].

Conflicting transaction flooding. A rogue client could send many si-
multaneous conflicting transactions, such that it will be hard to reach a single
quorum agreement within the transaction’s deadline. This attack will not break
the safety, but the system may drop transactions, with a large number of check-
points being handled. A solution would be to isolate the responsible node and
rate-limit it.

Query drops. As underlined in our evaluation, query drops are expected
during contention. This behavior is common in classic and BFT replicated
databases [9], and each client could easily propose several transactions until
one is finally committed. It is however clear that PnyxDB has been designed
mainly for commutative workloads, as commonly seen in modern distributed
applications.

Checkpoint with asynchrony. Our BVP implementation waits for syn-
chrony before allowing to drop transactions. This is a safety requirement, given
that Byzantine nodes could delay their endorsements indefinitely under asyn-
chrony. An interesting property is that non-conflicting transactions are always
allowed to proceed, independently of pending checkpoints.
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8 Conclusion
In this paper, we presented PnyxDB, a scalable eventually-consistent BFT repli-
cated datastore. At its core lies a scalable low-latency conflict resolution pro-
tocol, based on conditional endorsements. PnyxDB supports nodes having dif-
ferent beliefs and policy agendas, allowing to build new kinds of democratic
applications with first-class support for non-conflicting transactions. Compared
to popular BFT implementations, we demonstrated that our system is able
to reduce commit latencies by an order of magnitude under realistic conditions,
while ensuring steady commit throughput. In particular, our experimental eval-
uation shows that PnyxDB scales up to hundreds of replicas on a geodistributed
cloud deployment.
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A Proof sketches

A.1 Liveness
Lemma 1 (Acyclic conditions) Let q, r be two transactions with q.d ≤ r.d.
There cannot be any Endorsement〈q.id , i, C〉 broadcasted by a correct node pi
with r ∈ C.

Proof sketch. In our algorithm, the only case where conditional endorse-
ments are broadcasted is at line 1.7. For this line to be executed, CanEn-
dorse(q) must have returned OK. Hence, per line 2.2, we must have q.d >
now(). Given line 1.6, every element r of C must fulfill r.d ≤ now(). If we as-
sume that local operations execute instantaneously, the value of pi’s local clock
now shall be the same in the two constraints. We have ∀r ∈ C, r.d < q.d.

We can use the result of this lemma to filter incoming endorsements at each
node and detect Byzantine behavior. In the following, we suppose that every
malformed endorsement has correctly been filtered by correct nodes.

Proposition 2 (Termination) Assuming the BVP protocol terminates, every
proposed functions and callbacks terminate.

Proof sketch. This is trivial for functions CanEndorse and Endorse
in Algorithm 2. When receiving a Transaction message at line 1.1, a node
may execute the while loop (lines 1.4-1.8) several times if conflicts are detected.
A node is, however, guaranteed to exit the while loop when CanEndorse
returns false because the transaction’s deadline is over (timeout clause). Upon
reception of the messages Endorsement (line 1.9), and Checkpoint (line 4.3),
and for the function CheckState (line 4.1), the termination is conditioned by
the termination of the Byzantine Veto Procedure (BVP) and the Applicable
predicate.

BVP terminates by assumption. The case of Applicable is somewhat more
involved, as the functions Applicable and Valid recursively call each other.
Every Applicable call of transaction r will trigger a finite number of Valid
calls on endorsements e ∈ Ei,r.id received for r (line 3.2). Each Valid call will
in turn call a finite number of Applicable call for every c ∈ e.C (line 3.5).
Because of Lemma 1, we know that for two transactions q, r with q.d ≤ r.d, there
can be no Endorsement〈q.id , i, C〉 with r ∈ C in any Ej,q.id set. This property
implies that the recursion between the two predicates will call Applicable with
transactions ordered by decreasing deadline q.d, thus eliminating any loop, and
ensuring that the recursion terminates.

A.2 Safety
We first show that every correct node eventually obtains the same set of applica-
ble transactions. We then show that transactions entering the final committed
and dropped states will stay in these states for every correct node.
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Lemma 2 (Local safety) Let pi be a correct node and q, r two transactions
with q 6= r:

Γ(q.∆, r.∆)⇒ ¬(Applicable(q) ∧ Applicable(r)),

where q.∆, and r.∆ represent the operations of q and r, respectively, and Γ(−,−)
indicates if the two sets of operations are in conflict.

Proof sketch. Let us assume that Applicable(q) and Applicable(r)
hold at correct node pi. By Algorithm 3, this means that at least ω distinct
nodes have endorsed q with endorsements {e : r /∈ e.C}. We apply the same
reasoning for r. By using the well-known property of Byzantine Quorums [1], we
conclude that at least k ≥ f + 1 nodes endorsed both q and r without including
the other in its conflict set C.

k ≥ ω + ω − n ≥ 2

(⌊
n+ f

2

⌋
+ 1

)
− n ≥ f + 1

Some correct node(s) violated Algorithm 1 by ignoring q during the endorse-
ment of transaction r (or conversely by symmetry of Γ), leading to a contradic-
tion.

Proposition 3 (Agreement) For any two correct nodes {i, j}, no transaction
can be both Committed by i and Dropped by j.

Proof sketch. A transaction t can only be Dropped after a successful check-
point for t ∈ T̄ (BVP returning a decision of 1, line 5.7). By the validity
property of BVP, “if a correct node decides 1, then all correct nodes proposed
1”. Line 5.4 forces correct nodes to propose 0 if t ∈ T̄ is Committed. Hence,
once Committed by i, t cannot be Dropped anymore by other correct nodes.
For the other direction: if one correct node decides to drop t during checkpoint-
ing, it removes t from its sets of pending transactions Ti and endorsements Ei,
making Commit of t impossible according to Algorithm 4. By BVP agreement,
every correct node will apply this pruning as long as one decided to.

Proposition 4 (Eventual consistency) If a transaction t is Committed
(resp. Dropped) at a correct node, every correct node will eventually Commit
(resp. Drop) t.

Proof sketch. By definition of our reliable broadcast primitive, every correct
node will eventually receive all endorsements for t. If the number of broadcasted
unconditional endorsements is sufficient (line 4.9), the proof for Committed is
straightforward. If a checkpoint is proposed due to conditional endorsements
blocking progress, the checkpoint mechanism guarantees that every correct node
will remove the same conditions from received endorsements (line 5.9). Hence,
every correct node will eventually hold the same set of unconditional endorse-
ments and Commit the same transactions. Drop case is straightforward by
BVP agreement, since it can only happen during checkpointing and all correct
node decide the same value.

26



Proposition 5 (Safety) No two conflicting transactions q, r can be both Com-
mitted by any correct node.

Proof sketch. A Commit operation only happens when a Byzantine Quorums
of unconditional endorsements is available (line 4.9). In Lemma 2, we already
showed that two conflicting transactions cannot reach a Byzantine Quorum at
the same time by definition of ω. However, we need to verify the pruning
of conditions (for conditional endorsements) during checkpoints. Conditions
pointing to transaction q are removed if and only if q is Dropped (lines 5.7
and 5.9). Even is r is Committed after conditions pruning, we can be sure
that q cannot be Committed anymore thanks to Proposition 3. Proposition 4
states that every correct node reaches the same decision for q and r.

A.3 Fairness
Another core feature of our algorithm is the ability for correct nodes to reject any
transaction without giving their reasons, as underlined in line 2.8. We formally
define this property as the system’s fairness.

Proposition 6 (Fairness) If no majority of correct nodes k >
⌊
n−f

2

⌋
en-

dorsed a transaction t, Applicable(t) will never hold at any correct node.

Proof sketch. Let ε be the total number of endorsements for t. We assume
that Applicable(t) hold, hence we have ω ≤ ε ≤

⌊
n−f

2

⌋
+ f since no majority

of correct nodes endorsed t. Given the definition of ω, it yields the following
contradiction: ⌊

n+f
2

⌋
<
⌊
n−f

2

⌋
+ f =

⌊
n+f

2

⌋
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Table A.I: Notations used in this paper.

System parameters
n Number of nodes
f Number of faulty nodes
ω Required quorum of endorsements

Γ(∆, ∆̄) =

{
true if ∆ and ∆̄ are in conflict
false otherwise
where ∆, ∆̄ are two lists of operations

Message t← Transaction〈id , d, R,∆〉
t.id Unique identifier
t.d Absolute deadline
t.R Preconditions on datastore state
t.∆ List of operations

Message e← Endorsement〈id , i, C〉
e.id Endorsed transaction unique identifier
e.i Endorser node identifier
e.C Endorsement conditions, the set of transactions that

must not be applied for this endorsement to be valid

Variables of node pi
isSpeculativei Whether pi speculatively applies transactions

Statei Datastore state
Ti Transactions endorsed by pi so far

Ei,id Endorsements received by pi for transaction id

Policy i Set of rules that define if pi agrees to apply given
transactions. This is not necessarily a deterministic
function and may involve human interaction
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