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Abstract

Byzantine-Fault-Tolerant (BFT) systems are rapidly emerg-
ing as a viable technology for production-grade systems,
notably in closed consortia deployments for �nancial and
supply-chain applications. Unfortunately, most algorithms
proposed so far to coordinate these systems su�er from sub-
stantial scalability issues, and lack important features to
implement Internet-scale governance mechanisms.

In this paper, we observe that many application workloads
o�er little concurrency, and propose PnyxDB, an eventually-
consistent Byzantine Fault Tolerant replicated datastore that
exhibits both high scalability and low latency. Our approach
is based on conditional endorsements, that allow nodes to
specify the set of transactions that must not be committed for
the endorsement to be valid. In addition to its high scalabil-
ity, PnyxDB supports application-level voting, i.e. individual
nodes are able to endorse or reject a transaction according
to application-de�ned policies without compromising con-
sistency. We provide a comparison against BFT-SMaRt and
Tendermint, two competitors with di�erent design aims, and
show that our implementation speeds up commit latencies
by a factor of 11, remaining below 5 seconds in a worldwide
geodistributed deployment of 180 nodes.

1 Introduction

Byzantine-Fault-Tolerant (BFT) systems have attracted a
large body of works over the last two decades [10, 11, 16, 23,
34, 41, 47, 48], and have now moved into the public spotlight
following the dramatic rise of blockchain platforms [26, 55].
These systems typically rely on powerful BFT replication
protocols to ensure consistency between their replicas, and
withstand arbitrary failures and potential malicious behavior.
Unfortunately, traditional BFT replication protocols struggle
to scale beyond a few tens of replicas [21], while the proof-
of-work technique used by many blockchain-based systems
su�ers from large computing and storage overheads.

Recent attempts to overcome these scalability barriers
have explored leaderless designs [1, 19, 42, 45, 54, 58, 62],
alternatives to proof-of-work such as proof-of-stake [32],
or assumed access to a trusted third party providing strong
coordination and ordering guarantees [4]. All these strategies
are however fraught with limitations: existing leaderless
protocols rely either on clients for consistency checks [1]

(increasing computing overhead) or on the availability of
strong coordination mechanisms, such as a trusted peer-
sampling service [62] or atomic broadcast primitives [4, 19,
45, 58]; proof-of-stake links a node’s in�uence to its stake in
the system, a problematic dependency for many use cases;
and trusted third parties considerably limit the applicability
of such solutions to well-controlled environments.

Compounding these limitations, all above approaches are
ill-equipped to support in-system governance mechanisms,
a growing requirement for applications involving indepen-
dent organizations [33]. More speci�cally, although most of
these solutions rely on internal voting or quorum mecha-
nisms, these mechanisms are not exposed to applications as
�rst-class primitives. As a result, individual nodes cannot
implement application-de�ned policies to endorse or reject
transactions without additional e�ort, costs, and complexity.
This is problematic, as such application-level voting capa-
bilities are key to a number of emerging decentralized BFT
applications involving independent participants who need to
balance con�icting goals and shared interests [26, 56]. Exam-
ples of such governance concerns include basic membership
management with access control, resource allocation and
sharing, crowdsourced scheduling, policy administration and
knowledge distribution. In all these examples, di�erent par-
ties are likely to pursue di�erent agendas, prompting the
need for participants to be able to in�uence the distributed
decision making process according to their own application-
de�ned policies and beliefs [15, 33, 46].

To address these challenges, we advocate in this paper
a radically di�erent line of attack: we borrow a popular
strategy from non-Byzantine distributed datastores [35, 63,
66, 68], and tackle scalability by weakening the consistency
guarantees, while maintaining Byzantine Fault Tolerance.
We illustrate this design with PnyxDB

1 a Byzantine-Fault-

Tolerant Replicated Datastore for closed consortia. PnyxDB is
eventually consistent in that clients might perceive con�icting
views of the datastore for short periods of time. PnyxDB
also provides a unique application-level voting mechanism
that allow participating nodes to support or reject proposed
transactions according to application-de�ned policies.

Our proposal leverages the long-observed fact that many
workloads exhibit a large proportion of commutative and

1The Pnyx hill was used as the main meeting place in Athenian democracy.
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independent operations [44, 54]: these operations can be
executed out of order without compromising the eventual
convergence of all correct nodes. We exploit these commu-
tative operations through a modi�ed Byzantine Quorum pro-

tocol [47] that ensures the safety and agreement of our sys-
tem. More speci�cally, we introduce conditional endorsements

within quorums as a mean to �ag and handle con�icts by
allowing each node to specify the set of transactions that
must not be committed for the endorsement to be valid.

In this paper, we make the following contributions:
1. We present PnyxDB, a scalable low-latency BFT repli-

cated datastore that supports democratic voting for
participants.

2. We propose a novel con�ict resolution protocol that
is resilient to Byzantine faults. This protocol lies at
the heart of PnyxDB, and leverages commutative and
independent operations to ensure safety in the face of
Byzantine behavior, while delivering scalability and
low-latency.

3. We implemented PnyxDB and published its source
code [61] We evaluate our implementation against
two well-known systems, BFT-SMaRt [10, 11] and
Tendermint [13], two competitors representing alter-
native trade-o�s in the design space. We demonstrate
that our system is able to reduce commit latencies
by at least an order of magnitude under realistic In-
ternet conditions, while maintaining steady commit
throughput. We also show that PnyxDB is able to
scale to up to 180 replicas on a worldwide geodis-
tributed AWS deployment, with an average latency
of a few seconds.

The remainder of this paper is structured as follows. Sec-
tions 2 and 3 de�ne our model and speci�es our replication
protocol, alongside with properties proofs. Section 4 presents
the technical choices made to implement PnyxDB. Section 5
evaluates our PnyxDB implementation. We present related
work in section 6, followed by a discussion of limitations in
section 7. Section 8 concludes this paper.

2 PnyxDB overview

2.1 System Model and Assumptions

We assume a system made of distributed machines (nodes)
communicating through messages. Our system de�nes three
types of roles that one node may implement independently:
• Clients can submit transactions, each consisting of a

list of operations on a replicated key-value datastore;
• Endorsers are able to participate in Byzantine con-

sensus quorums by validating and voting on clients’
transactions. Like existing decentralized ledgers, they
store the whole datastore state in order to serve clients
and make policy-based decisions;
• and Observers maintain a copy of the shared datas-

tore, but are not able to validate transactions.

Node pi
Application

PnyxDB

State

Transactions

(clients)

Voting callback

(endorsers)

YES / NO

Network

Conditional endorsements

Speculative execution

Figure 1. Overview of PnyxDB: the application submits transac-
tions to be executed on shared state, and polls the application back
for transaction approval before creating conditional endorsements.

Each system contains a known number n of endorsers, of
which a maximum of f can act as Byzantine. Byzantine nodes
are allowed to ignore the protocol speci�cation occasionally
or completely, and they can collude to create more sophisti-
cated attacks. Such a behavior is typically the case for mal-
formed, corrupted or malicious nodes. Non-Byzantine nodes
are said to be correct.

We also assume we have access to a reliable BFT broad-
cast primitive with the following property: if one message is

delivered to one correct node, every correct node will eventually

receive that message [12]. In our implementation, we rely on
eventually synchronous networks to ensure that assumption,
as detailed in § 4.2. Cryptographic signatures are used to ver-
ify nodes’ identity and authorizations. We make the standard
assumptions that Byzantine participants cannot break these
signatures, and that participants know each other before-
hand. In the parlance of distributed ledgers, our system is
permissioned: this allows for message authenticity and data
access control while staying relatively dynamic.

2.2 Intuition and Overview

Closed-membership Byzantine state machine replication typ-
ically rely on some form of Byzantine-tolerant consensus
that ensures strong consistency [10, 13, 34, 65]. As a result,
they unfortunately do not scale beyond a few tens of repli-
cated nodes, due to the inherent cost of executing a Byzan-
tine agreement protocol [25, 49]. One strategy to overcome
this scalability barrier exploits a trusted computing base for
coordination and ordering, such as Kafka or Raft in recent
versions of Hyperledger [4, 27], but this approach weakens
the security model of the protocol. Another strategy consists
in using proof-of-work or proof-of-stake techniques from
open-membership Byzantine ledgers [3, 6, 32]. These tech-
niques are either costly or link a node’s in�uence to its stake
in the system, two undesirable properties in many cases. In
this paper we tackle scalability by weakening consistency
guarantees—a strategy often used by large-scale datastores—
while maintaining Byzantine Fault Tolerance (BFT).

Figure 1 gives an overview of PnyxDB’s interface and
mechanisms. Clients submit transactions that are made of
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operations on keys of the PnyxDB datastore. These oper-
ations are typically reads and writes, but PnyxDB can be
extended to other shared objects with a sequential speci�ca-
tion. These transactions are then broadcast to all endorser
nodes, which vote for or against the transaction through an
application-level voting callback. This callback provides in-
system governance by allowing nodes to endorse transactions
according to application-level policies. Transactions must be
supported by a con�gurable lower threshold of a majority
of correct nodes to proceed.

The properties of PnyxDB result from the novel combina-
tion of two key ingredients: leaderless quorums for scalability,
and conditional endorsements for eventual consistency.

2.2.1 Leaderless quorums

PnyxDB does not use any coordinator, rotating or elected,
in contrast to many existing BFT replication solutions [10,
13, 16, 34]. This choice removes a recurring performance
bottleneck in the process, trading o� weaker consistency
guaranties for higher scalability. Transactions only need to
be endorsed by a Byzantine quorum of endorsers (more than
n+f

2 ) to be permanently committed to the system’s state.
If two transactions commute (i.e. they contain no con�ict-
ing operations), their respective quorums can be built inde-
pendently, and the transactions applied out of order, thus
ensuring PnyxDB’s eventual consistency. This strategy is
directly inspired from Con�ict-Free Replicated Datatypes
(CRDTs) [60, 63, 66] and leverages the fact that many opera-
tions in distributed datastores either commute or are inde-
pendent. When this is the case, these transactions may be
executed out of order on di�erent nodes without breaking
local consistency [43, 60], while allowing every correct node
to eventually converge to the same global datastore state. A
typical example is the popular Unspent Transaction Outputs
model (UTXO) used in cryptocurrencies [28, 55] that avoids
concurrency by writing to a variable only once: within this
model, con�icts only occur when Byzantine nodes try to
re-use an expired variable. (This problem is well-known as
the “double-spending” attack.)

2.2.2 Conditional endorsements

Leaderless quorums work well for commutative transactions,
but might lead to deadlocks in case of con�icts, for instance
when modifying the same key with non-commutative oper-
ations. We overcome this problem with a second core mech-
anism: conditional endorsements. When an endorser broad-
casts an endorsement, it also publishes a (possibly empty)
list of transactions that must not be committed for the en-
dorsement to be valid. (These con�icting transactions are the
conditions of the endorsement.) Given a pair of con�icting
transactions, all correct nodes will use the same heuristics
(based on time-stamps) to decide which one to promote over
the other, ensuring a consistent con�ict resolution. With-
out additional mechanisms, conditional endorsements may

Pending

Applicable

Applied

Committed Dropped

Client submission

Cleanup

Endorsements

Speculative Execution

Commit

Rollback

Figure 2. Transaction state diagram, as viewed by a node. From
the Pending state, a transaction evolve either to Dropped or Com-
mitted given received messages. Dropped and Committed are
eventually consistent across all nodes. In contrast, Pending, Appli-
cable and Applied are intermediate states local to each node.

Table 1. Notations used in this paper.

System parameters

n Number of nodes
f Number of faulty nodes
ω Required quorum of endorsements

Γ(∆, ∆̄) =

{
true if ∆ and ∆̄ con�ict

false otherwise

where ∆, ∆̄ are two lists of operations

Message t ← Transaction〈id, d, R, ∆〉
t .id Unique identi�er
t .d Absolute deadline
t .R Preconditions on datastore state
t .∆ List of operations

Message e ← Endorsement〈id, i, C 〉
e .id Endorsed transaction unique identi�er
e .i Endorser node identi�er
e .C Endorsement conditions, the set of transactions that

must not be applied for this endorsement to be valid

Variables of node pi
isSpeculativei Whether pi speculatively applies transactions

Statei Datastore state
Ti Transactions endorsed by pi so far

Ei, id Endorsements received by pi for transaction id

Policyi Set of rules that de�ne if pi agrees to apply given
transactions. This is not necessarily a deterministic
function and may involve human interaction

however lead to an ever-growing acyclic dependency graph
between transactions. We avoid this outcome by periodically
triggering garbage collections (or checkpoints) using a binary
Byzantine Veto Procedure (§ 5.7).

As a result of leaderless quorums and conditional endorse-
ments, transactions proceed through the life cycle presented
in Figure 2. First, a client broadcasts a transaction to en-
dorsers. If it agrees with the transaction’s operations, an
endorser node can acknowledge the transaction by broad-

3



casting its endorsement. If a threshold of valid endorsements
is received within a transaction deadline (as de�ned in § 3),
that transaction may enter the Applicable state. A trans-
action in that state has enough valid endorsements, but the
node is not certain that those endorsements will remain valid
- because of possible future con�icts. The Applied state is an
artifact introduced by the speculative execution of a transac-
tion, when this mode is activated: in this temporary state, the
system cannot yet commit a transaction but it may execute
the operations on the datastore state. This optional opti-
mization is useful to reduce global latency if the estimated
probability of commit is very high. Transactions can �nally
transition to �nal states Committed—once the node is sure
that the endorsement will always stay valid—or Dropped, as
we will detail in the following sections.

3 The protocol

The used variables and notations are summarized in Table 1.

3.1 Transaction applicability and endorsement

validity

The notion of applicable transactions (Figure 2) plays a key
role in the eventual consistency of PnyxDB, and is recursively
de�ned in terms of valid endorsements. More precisely:
• A transaction t is Applicable at node pi if and only

if there exists at least ω Valid endorsements for t at
node pi , where ω is a Byzantine quorum threshold,
chosen to be larger than b n+f2 c.
• An endorsement e = 〈id, i,C〉 of a transaction t =
〈id,d,R,∆〉 with (e .id = t .id) is Valid at node pi
if and only if every transaction c in the condition
set e .C of e has an earlier deadline than t and is not
Applicable. A transaction deadline is set by its is-
suer and constrained by system-wide policies to avoid
excessively-large deadlines.

The interplay between these two notions drives how a
transaction proceeds through the state diagram of Figure 2,
and is illustrated on the scenario shown in Figure 3. In this
example, Nodes p1 and p2 propose two con�icting transac-
tions q and r (Figure 3a). q is at �rst only endorsed by p1 and
p2. (ex,i denotes the endorsement of transaction x by node
pi .) When transaction r is broadcast, p1 and p2 detect a poten-
tial con�ict with q, which they have already endorsed, and
issue conditional endorsements for r . p4 has not endorsed q:
it can endorse r unconditionally.

The resulting condition graph on every node at this point
is shown in Figure 3b. Endorsement conditions are repre-
sented by dashed lines: for instance, er,1 is valid if q is not
Applicable. In Figure 3b,q has only received 2 endorsements,
and is therefore not applicable under a quorum threshold
of ω = 3. r has received 3 endorsements (from p1,2,4), all of
which are valid: er,4 because its condition set is empty, er,1
and er,2 becauseq is not applicable. Transaction r is therefore

Algorithm 1 Message callbacks at node pi
1: upon reception of Transaction〈id, d, R, ∆〉
2: t ← Transaction〈id, d, R, ∆〉
3: done ← ⊥
4: . Continue until no active con�icting transaction present
5: while done = ⊥ do

6: if CanEndorse(t ) then
7: C ← {c : c ∈ Ti ∧ Γ(c .∆, ∆)}
8: if C = ∅ then
9: . No con�icting transaction

10: Endorse(t, ∅)
11: done ← >
12: else

13: if ∀c ∈ C, c .d ≤ now () then
14: . Expired con�icting transactions
15: Endorse(t, C )
16: done ← >
17: . Otherwise, not done, going back to start of while loop

18: else

19: . Unable to endorse
20: done ← >

21: upon reception of Endorsement〈id, j, C 〉
22: Ei, id ← Ei, id ∪ {Endorsement〈id, j, C 〉 }
23: ∀t ∈ Ti : CheckState(t )

Algorithm 2 Endorsement checks at node pi
1: function CanEndorse(t )
2: if t .d ≤ now () then
3: return abort . Timeout
4: if Statei not compatible with t .R then

5: return abort . Consistency

6: State
′ ← t .∆(State)

7: if State
′ does not comply to Policyi then

8: return abort . Policy

9: return OK

10: function Endorse(t, C )
11: Broadcast(Endorsement〈t .id, i, C 〉)
12: Ti ← Ti ∪ t .id

Applicable, and may be speculatively executed but cannot
be Committed yet as q has not been Dropped.

When a third endorsement eq,3 for q is �nally received
from p3, the condition graph of each node changes to that of
Figure 3c. At this point, the minimum number of valid en-
dorsements is now reached for q, making two endorsements
for r invalid. q is now Applicable while r is no longer so.

3.2 Algorithm

The detail of PnyxDB’s workings is presented in Algorithms 1,
2, 3 and 4. Our design is reactive: endorsers and observers re-
act to the Transaction and Endorsementmessages they re-
ceive from the network. For simplicity, we do not include au-
thentication and invariant checks. (In the following, ‘line x.y’
refers to line y of Algorithm x.)

A client starts a set of operations by broadcasting a Trans-
action〈id,d,R,∆〉 to nodes, with a con�gurable deadline d
and a set of operations ∆. On receiving this Transaction
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p1

p2

p3

p4

q eq,i r er,i

Node unavailable

3b 3c
eq,3

p4 is against q , ignoring it

Legend

Transaction

Endorsement
Message about q
Message about r

(a) Simpli�ed history of messages exchanged between the four nodes in our example. Node p1 �rst submits transaction q, that is endorsed by both p1 and p2
through eq,1 and eq,2. Shortly after, p2 submits a con�icting transaction r that is endorsed by 3 nodes: with conditions for p1 and p2 (see 3b) and without
condition for p4. After a period of unavailability, p3 broadcasts its endorsement of q, leading to state 3c.

eq,1

eq,2 q
er,1

er,2

er,4

r

(b) r is Applicable given its 3 valid endorsements.

3b 3c
eq,1

eq,2

eq,3

q
er,1

er,2

er,4

r

(c) Since q is now Applicable, er ,1 and er ,2 are no longer valid.
Hence, r is no longer Applicable.

Figure 3. Example of graph of conditions for transactions q, r and their respective endorsements eq,i and er,i . er,1 and er,2 are conditioned
by q, while other endorsements are not. We set ω = 3. (3b) shows the knowledge of correct nodes before the arrival of eq,3 (3c).

Algorithm 3 Predicates at node pi
1: function Applicable(id)
2: E+i, id ← {e : e ∈ Ei, id ∧ Valid(e)}
3: return |E+i, id | ≥ ω

4: function Valid(e )
5: return ∀c ∈ e .C, ¬Applicable(c .id)

(line 1.1), each endorser �rst checks whether the transac-
tion can be endorsed (CanEndorse() at line 1.6, described
in Algorithm 2). In particular, endorsers must check that the
transaction’s deadline has not been reached with respect to
their local clock (line 2.2). Endorsers can also deliberately
choose not to endorse a transaction simply by ignoring it, for
local policy reasons (line 2.8). If CanEndorse() returns true,
each endorser pi then checks that it has not already endorsed
con�icting transactions C (lines 1.7-1.8). The predicate Γ re-
turns true if the two transactions passed as arguments are in
con�ict. Three cases may happen:
• If no con�icting transaction exists, pe can broadcast

itsEndorsement〈id, i, ∅〉 without condition (line 1.10).
• IfC only contains outdated transactions,pe can broad-

cast a conditional Endorsement〈id, i,C〉, allowing
the application of the transaction given the non ap-
plicability of every outdated transactions (line 1.15).
• Otherwise, pe must wait until con�icting deadlines

are over, and restarts the while loop (line 1.5).
New endorsements are received at line 1.21, and trigger

the execution of the CheckState() function (described in
Algorithm 4) on all transactions already endorsed by the

receiving endorser (Ti set). CheckState() ensures that the
state of the datastore Statei is consistent with the Applica-
ble state of transactions (lines 4.4 and 4.7). It also triggers the
Commit operation on transactions q when there are a su�-
cient number of unconditional endorsements on t (line 4.9).
Finally, the procedure can decide to trigger checkpoints when
conditions are blocking newer transactions (represented by
the Old trigger, tested at line 4.15).

More speci�cally, once a node has received a prede�ned
quorum ω of valid and distinct endorsements for a given
transaction t (implemented by the Applicable() and Valid()
functions in Algorithm 3, invoked at line 4.2), CheckState()
applies t .∆ if the node is con�gured to execute applicable
transactions speculatively (line 4.7). Coming back to Figure 2,
it means that the transaction moves either to the Applicable
state (if the node is not speculative) or the Applied state
otherwise.

We must ensure that ω >
⌊
n+f

2

⌋
to tackle Byzantine en-

dorsements. Higher ω values allow to build stricter transac-
tion acceptance rules, requiring up to unanimous agreement
(ω = n), but this comes at the cost of availability by de-
pending on Byzantine nodes to endorse transactions. (The
minimum number of nodes to allow both availability and
safety is n ≥ 3f + 1 [47].)

The CheckState() function is also used to verify the valid-
ity of previously-valid endorsements because of endorsement

conditions (line 3.5), potentially triggering transaction roll-
back(s) (line 2.4, as illustrated in Figure 3). A transaction can
move back and forth from its initial Pending state to the
Applicable state. It is important to note that those states
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Algorithm 4 State checking at node pi
1: function CheckState(t )
2: if ¬Applicable(t ) then
3: if Applied(t ) then
4: Statei ← Rollback(Statei , t )
5: else

6: if ¬Applied(t ) and isSpeculativei then

7: Statei ← Apply(Statei , t ) . Speculative execution

8: . Endorsements that will always stay valid
9: Σi,t = {e ∈ Ei,t : e .C = ∅}

10: if |Σi,t | ≥ ω then

11: if ¬Applied(t ) then Statei ← Apply(Statei , t )
12: Statei ← Commit(Statei , t )
13: Ti ← Ti \ {t }
14: . Conditions that could be dropped
15: T̄ ← {∀e ∈ Ei,t , c ∈ e .C : Old(c)}
16: if |T̄ | ≥ 1 then

17: StartCheckpoint(T̄ )

18: . Example of checkpoint trigger for con�gurable delay δ
19: function Old(t )
20: return ¬Applicable(t ) ∧ t .d < (now () − δ )

are local: each node may have a di�erent view of Applica-
ble transactions depending on the messages it has received.
However, our safety property guarantees that no transaction
can both be Committed at a correct node pi and Dropped at
another correct node pj . Conversely, if a transaction reaches
one of those two �nal states at a correct node pi , every other
correct node will eventually set the same state for that trans-
action. We revisit these points in § 3.4, where we formally
prove some of PnyxDB’s key properties.

3.3 Checkpointing

In many cases, we expect that a node can conclude from
received endorsements that the Applicable predicate has
reached a �nal state (true or false) by analyzing the trans-
action’s graph of conditions. When complex dependencies
arise between endorsements and transactions, some transac-
tions might however interlock. As an example in Figure 3,
nodes cannot know whether r must be committed before re-
ceiving eq,3. To cope with this issue and ensure both liveness
and consistency, we use a simple checkpoint sub-protocol
(Algorithm 5) to prune the condition graph and unblock
transactions. This sub-protocol builds upon an underlying
Byzantine Veto Procedure (BVP) in which each node pi pro-
poses a choice ci ∈ {0, 1} and decides a �nal value di . BVP
is a Byzantine-tolerant version of the Non-Blocking Atomic
Commitment (NBAC) protocol [5], and is expected to satisfy
the following properties with eventually-synchronous com-

munications: 1) Termination: every correct node eventually
decides on a value; 2) Agreement: no two correct nodes de-
cide on di�erent values; and 3) Validity: if a correct node
decides 1, then all correct nodes proposed 1 (equivalently, if
any correct node proposes 0, then a correct node decides 0).
We return to the implementation details of BVP in section 4.

Algorithm 5 Checkpoint at node pi
1: function StartCheckpoint(T̄ )
2: Broadcast(Checkpoint〈T̄ 〉)

3: upon reception of Checkpoint〈T̄ 〉

4: c ←

{
0 if ∃t ∈ T̄ : Applicable(t ) ∨ Committed(t )
1 otherwise

5: decision← BVP(T̄ , c)

6: if decision = 1 then . Cleanup
7: Ti ← Ti \ T̄ . Drop transactions
8: ∀t ∈ T̄ : Ei,t = ∅ . Forget endorsements of dropped transactions
9: ∀t ∈ Ti , e ∈ Ei,t : e .C = e .C \ T̄ . Forget conditions

10: ∀t ∈ Ti ∪ T̄ : CheckState(t )

When a node decides to start a checkpoint, it triggers a
BVP instance with a Checkpoint proposal (line 5.5), a set
of transactions representing a cut of their graph of condi-
tions. Each proposal aims at removing old transactions that
block newer transactions from being committed. Informally,
a proposal might be as simple as “transaction t will never
be applicable, drop it”. During the procedure, correct nodes
are expected to propose 0 (“Veto”) if and only if they hold
evidence that the checkpoint proposal is wrong (line 5.4).
(Such nodes must submit this evidence in the form of signed
endorsements.) Two checkpoint results are possible per invo-
cation: (1) If the �nal decision is 1, correct nodes can prune
their local graph of conditions according to the con�rmed
proposal (lines 5.7-5.9); (2) otherwise, some correct nodes
have reasons for blocking the checkpoint proposal. After
having added the evidence(s) to their graph of conditions,
correct nodes can discard this checkpoint instance.

In our example from �gure 3b, if the BVP decision on the
proposal “drop q” is 1, then every node can con�dently drop
q and remove q’s condition on the endorsements er,i , thus
e�ectively commiting r . On the contrary, if the BVP decision
is 0, correct nodes can expect an evidence going against the
proposal: for instance, node p3 can broadcast eq,3 again. This
allows nodes to progress, �nally triggering the commit of q
and the drop of r for every node. We discuss and evaluate
the overhead of this checkpoint procedure in § 5.7.

3.4 Eventual consistency: proofs

We �rst show that every correct node eventually obtains
the same set of applicable transactions. We then show that
transactions entering the �nal committed and dropped states
will stay in these states for every correct node.

Lemma 3.1 (Acyclic conditions). Let q, r be two transactions
with q.d ≤ r .d . There cannot be any Endorsement〈q.id, i,C〉
broadcasted by a correct node pi with r ∈ C .

Proof sketch. In our algorithm, the only case where condi-
tional endorsements are broadcasted is at line 1.15. For this
line to be executed, CanEndorse(q) must have returned
OK. Hence, per line 2.2, we must have q.d > now(). Given
line 1.13, every element r ofC must ful�ll r .d ≤ now(). If we
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assume that local operations execute instantaneously, the
value of pi ’s local clock now shall be the same in the two
constraints. We have ∀r ∈ C, r .d < q.d . �

We can use the result of this lemma to �lter incoming
endorsements at each node, and detect Byzantine behavior.
In the following, we suppose that every malformed endorse-
ment has correctly been �ltered by correct nodes.

Proposition 3.2 (Termination). Assuming the BVP protocol

terminates, every proposed functions and callbacks terminate.

Proof sketch. This is trivial for functions CanEndorse and
Endorse in Algorithm 2. When receiving a Transaction
message at line 1.1, a node may execute the while loop
(lines 1.5-1.20) several times if con�icts are detected. A node
is, however, guaranteed to exit the while loop when Ca-
nEndorse returns false because the transaction’s deadline
is over (timeout clause). Upon reception of the messages
Endorsement (line 1.21), and Checkpoint (line 4.3), and
for the function CheckState (line 4.1), the termination is
conditioned by the termination of the Binary Veto Procedure
(BVP) and the Applicable predicate.

BVP terminates by assumption. The case of Applicable
is somewhat more involved, as the functions Applicable
and Valid recursively call each other. Every Applicable call
of transaction r will trigger a �nite number of Valid calls
on endorsements e ∈ Ei,r .id received for r (line 3.2). Each
Valid call will in turn call a �nite number of Applicable
call for every c ∈ e .C (line 3.5). Because of Lemma 3.1, we
know that for two transactions q, r with q.d ≤ r .d , there can
be no Endorsement〈q.id, i,C〉 with r ∈ C in any Ej,q .id set.
This property implies that the recursion between the two
predicates will call Applicable with transactions ordered by
decreasing deadline q.d , thus eliminating any loop. �

Lemma 3.3 (Local safety). Let pi be a correct node and q, r
two transactions with q , r :

Γ(q.∆, r .∆) ⇒ ¬(Applicable(q) ∧ Applicable(r ))

Proof sketch. Without loss of generality, we suppose q.d ≤
r .d and that Applicable(q) and Applicable(r) hold at cor-
rect node pi . Let us note C∅ a condition set such that q < C∅.
Given Lemma 3.1 and instruction 3.5, the only endorsements
for q and r that are valid for pi are E+i,q = {Endorsement-
〈q, j,C∅〉} and E+i,r = {Endorsement〈r , j,C∅〉} , for any en-
dorser pj . According to line 3.3, we must have ω ≤ |E+i,q |.
Since correct nodes cannot send both kind of endorsements
per algorithm 1, we also must have ω ≤ |E+i,r | ≤ n − |E+i,q | +

f ≤ n − ω + f , or more simply ω ≤
n+f

2 . This leads to a
contradiction with

⌊
n+f

2

⌋
+ 1 ≤ ω. �

Lemma 3.4 (Eventual consistency). After enough time, for

two correct nodes {i, j}, if Applicable(q) holds at node pi , then
Applicable(q) must hold at node pj .

Proof sketch. Given the reliable broadcast and the eventual
synchrony assumptions, every correct node will receive the
same set of endorsements. Since we have Ei,q .id = Ej,q .id ,
the value of Applicable(q) must be the same for pi and
pj nodes before checkpointing. During every checkpoint,
endorsement sets and conditions may be modi�ed by lines 5.8
and 5.9. Given the agreement property of the BVP, every
correct node will prune their graph of conditions according
to the con�rmed proposal, or no node will do. �

Proposition 3.5 (Durability). The proposed algorithm en-

sures that if a transaction t is Committed (resp. Dropped) at

a correct node pi , it will stay in this state and will eventually

be Committed (resp. Dropped) for every other correct node.

Proof sketch. TheCommitted state is triggered in theCheck-
State routine when a transaction obtains a number of uncon-
ditional endorsements k ≥ ω (line 4.9), either after receiving
a new endorsement or after a successful checkpoint. With
the same arguments than Lemma 3.4, we know that in the
�rst case every correct node will Commit t . The second case
is covered by the underlying BVP during a checkpoint: after
a successful checkpoint (decision = 1), every correct node
prunes its conditions graph in the same way, thus eventu-
ally triggering Commit operations on every correct node
(resp. Drop, line 5.7). Per line 4.4, operating a Rollback on
a transaction t is only possible if Applicable(t ) does not
hold anymore. Since we know that at least ω unconditional
endorsements for t have been received at this point, the only
way that the predicate would not hold is due to a successful
checkpoint on t ∈ T̄ , with the “endorsement-forgetting” op-
eration depicted at line 5.8. However, given line 5.4, if at least
one correct node has Committed t , no further checkpoint
on t ∈ T̄ can return a decision of 1. No Dropped transaction
could become Applicable again in correct nodes due to the
pruning of endorsements after a successful checkpoint. �

It follows from Lemmas 3.3 and 3.4 that no two con�ict-
ing operations can be committed in di�erent orders by two
correct nodes, thus ensuring eventual consistency with Propo-
sition 3.5. Another core feature of our algorithm is the ability
for correct nodes to reject any transaction without giving their

reasons, as underlined in line 2.8. We formally de�ne this
property as the system’s fairness.

Proposition 3.6 (Fairness). If no majority of correct nodes

k >
⌊
n−f

2

⌋
endorsed a transaction t , Applicable(t ) will never

hold at any correct node.

Proof sketch. Let ϵ be the number of endorsements for t . We
must haveω ≤ ϵ ≤

⌊
n−f

2

⌋
+ f for q to be Applicable, which

is impossible due to our de�nition of ω. �
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4 Implementation

We have implemented PnyxDB in Go [61, 67]. In this section,
we describe our implementation of node authentication using
a web of trust, along with practical solutions for the assumed
algorithm primitives, namely the Reliable Broadcast and the
Byzantine Veto Procedure (BVP).

Our technical choices were driven by the common size
of consortia and state of the art cryptography techniques.
Hence, we decided to target a scale of several hundreds to
thousands of nodes per network, excluding clients.

4.1 Web of trust and policy �les

Nodes need to be authorized to participate in a closed con-
sortium. The Hyperledger Fabric consortium blockchain pro-
poses a centralized approach, where a single authority gives
cryptographic certi�cates to network members [4]. How-
ever, a corrupted authority may introduce a large number
of malicious nodes in the network, potentially breaking the
assumption on the maximum number of faulty nodes f .

Our implementation relies instead on a web of trust and
policy �les, inspired from PGP [2]. The web of trust is used to
link nodes’ identities with their public key, providing a sound
authentication mechanism. Our implementation supports
several cryptographic authentication schemes, and uses the
recognized fast ed25519 procedure by default [9].

Nodes need to know the identities of endorsers, along with
useful metadata such as authorized operations and default
network parameters. We use a universal policy �le for this,
and we expect nodes to agree on the content of this policy
�le: this is similar to the distribution of a common genesis

�le required by a number of existing BFT systems [4, 10, 13].
Classic PnyxDB transactions could be used to update the
universal policy in a consistent and democratic way, for
instance as done in the Tezos Blockchain [33].

4.2 Reliable broadcast and recovery

A Byzantine-resilient reliable broadcast is required in PnyxDB
to ensure that correct nodes will eventually receive every
transaction and endorsement, possibly out-of-order. Such
an algorithm was proposed by Bracha [12], but it has a mes-
sage complexity of O(n2), which makes it impractical for
our targeted scale. Based on current public and consortium
blockchains implementations [7], we propose a probabilistic
gossip algorithm as our reliable broadcast primitive, where
each node communicates only with a small number of neigh-
bors to lower the total message complexity. Such algorithms
are known to disseminate information with a logarithmic
number of messages and are used in popular BFT public
and consortium blockchain networks. We selected Gossip-
Sub [38] from the libp2p project as our gossip broadcast
algorithm. Libp2p is a popular set of libraries for peer-to-
peer communication, that targets gossip networks of 10000
nodes with practical Byzantine Fault Tolerance. It comes
with standard mechanisms for inter-node communication

and authentication that ful�ll our speci�cations, and sup-
ports our default ed25519 authentication scheme.

Using a gossip algorithm as our broadcast primitive inher-
ently introduces uncertainty in the reliability of the broad-
cast [35]. We propose to complement this probabilistic broad-
cast with retransmissions and state transfers: with very low
probability, some nodes may not receive a given message.
In that case, they may later ask for a retransmission of a
transaction or endorsements related to a transaction. After
long failures (such as power outage or network partition),
some nodes may have missed a large number of messages
and become out-of-sync with the remainder of the network.
At this point, retransmitting every message becomes prohibi-
tively expensive: that’s why each node is able to synchronize
its complete state from its neighbors. We rely on the web
of trust (§ 4.1) to retrieve the state from neighbors that are
su�ciently trusted by the out-of-sync node. (In our imple-
mentation, a con�gurable quorum of identical values must
be received before re-synchronizing one node’s state.)

4.3 Binary Veto Procedure

The main issue with our endorsement scheme is that Byzan-
tine nodes can arbitrarily delay their endorsements. To cope
with that limitation in a practical way, we propose a BVP
implementation in Algorithm 6, based on periodic health
probes of the gossip mechanism in our eventually synchro-
nous network.

De�nition 4.1. The maximum gossip broadcast latency, de-
noted τ , is the maximum possible delay from a message
broadcast to its delivery by every correct node.

We make the following two assumptions: every correct
node pi is able to estimate (A) τ̂ such as τ̂ ≥ τ and (B)
δi, j the relative clock deviation for any endorser pj . In prac-
tice, it is possible to obtain these two values from passive
round-trip measurements in the gossip network. (We note
that under asynchrony, τ = δi, j = ∞.) With that additional
knowledge, each correct node can estimate locally the ear-
liest possible sending time of a message, and discard the
messages published after a speci�c deadline (line 6.6). This
simple approach is sound during periods of synchrony, but
may introduce signi�cant delays due to use of a deadline. As
BVP is not the main contribution of this paper, we leave the
optimization of this primitive to future work.

Proposition 4.2. Algorithm 6 satis�es the properties of BVP.

Proof sketch. Termination is trivial in eventually synchro-
nous networks (line 6.4). Per assumptions A and B every
correct node will compute the same value for ‘deadline’ at
line 6.5. By line 6.6, no endorsement for t ∈ T̄ sent after
this shared deadline can be accepted. Thanks to assumption
A, endorsements sent before ‘deadline’ are delivered before
(deadline+ τ̂ ) > (deadline+τ ), leading to the same set of en-
dorsements for T̄ being received for every correct node after
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Algorithm 6 Byzantine Veto Procedure (BVP) at node pi
1: function BVP(T̄ , ci )
2: if ci = 0 then . pi is vetoing the decision to drop T̄
3: return 0

4: wait until τ̂ < ∞∧ ∀j, δi, j < ∞ . Wait for synchrony
5: deadline = max(t .d, t ∈ T̄ ) +max(δi, j )
6: Stop delivering endorsements for t ∈ T̄ sent after deadline
7: wait until either

8: ∃t ∈ T̄ : Applicable(t ) then return 0
9: now () > deadline + τ̂ then return 1

(deadline + τ̂ ). This implies the Agreement property given
the decisions of lines 6.8 and 6.9. A correct node proposes a
veto if and only if at least one transaction in T̄ is Applicable:
Validity follows from the properties of Applicable. �

5 Evaluation

5.1 Experimental setup

We tested our implementation of PnyxDB in two di�erent
environments: an emulation setup, and a global network
using Amazon Web Services (AWS). The emulation was per-
formed on a server able to sustain several hundreds of nodes
with the Mininet [51] network emulation tool (48 threads
of Intel(R) Xeon(R) Gold 6136 CPU at 3.00GHz with 188GB
of RAM). We used Mininet [51] to isolate nodes from each
other and to simulate real network latencies. We drew la-
tency values from an exponential distribution law with an
average of 20 ms per link. Every node’s clock was shifted
by a random amount in the [−5, 5] seconds interval between
the reference time to simulate a relatively small asynchrony
between network participants. For the BVP algorithm, we
chose the conservative value τ̂ = 10 seconds: this leads to a
practical checkpoint timeout of 20 second. Each experiment
was run 40 times, taking the average as the �nal result.

5.2 Baseline

To compare our work with available solutions, we executed
the same experiments with BFT-SMaRt v1.2 server [10] and
a Tendermint v0.32.5 voting application [13]. BFT-SMaRt
has been recognized as an e�cient Java library for the BFT
problem, and is being added in a number of applications,
including Hyperledger Fabric [4, 65]. Tendermint is a BFT
Consensus mechanism based on a permissioned blockchain
with a leader-based algorithm; its implementation relies on
a gossip broadcast primitive, like PnyxDB. Both implemen-
tations allow custom application logic to be executed during
consensus; this empowered us to emulate a voting behavior
within these two existing solutions. The two systems are
leader-based, but their consensus choices are quite di�er-
ent: while BFT-SMaRt rely on a single leader as long as it
reports no issue to avoid costly view changes, Tendermint
leaders are selected in a round-robin fashion with each leader
batching transactions into blocks. BFT-SMaRt is based on a
fully connected mesh topology whereas Tendermint nodes
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Figure 4. Single transaction commit latency with increasing num-
ber of endorsers nodes (n) and emulated WAN latencies. The �
symbols mean that we were unable to perform the experiment for
a speci�c n due to network contention. PnyxDB clearly o�ers best
network scalability.

communicate via gossip. The two baselines o�er a di�erent
trade-o� than our proposal, targeting stronger consistency
guarantees but with no native democratic capabilities. (For
fair comparison, we con�gured Tendermint with the “skip
timeout commit” option to optimize its commit latency.)

5.3 Network size (n)

This �rst experiment measures the latency from a single
transaction submission to its commit by every node. We set
the required number of endorsers to ω =

⌊
2
3n
⌋
+ 1 and in-

creased n from 10 to 320. For completeness, we note that set-
ting ω = n (unanimous agreement) had the e�ect of slightly
increasing the latency, since nodes had to wait for more
votes before committing any transaction. As denoted by
the � symbols, we were unable to complete some large net-
work experiments for BFT-SMaRt (n ≥ 80) and Tendermint
(n ≥ 320) in our testbed, due to extremely high CPU and
network load. Figure 4 shows that PnyxDB outperforms ex-
isting implementations for small and large networks by an
order of magnitude.

5.4 Number of clients

To measure the e�ect of client scaling, we con�gured a vari-
ous number of clients to submit transactions at an average
rate of 2 transactions per second, as controlled by a Poisson
point process. The transactions were generated using the
Yahoo! Cloud Serving Benchmark (YCSB) [18], a well rec-
ognized non-relational datastore testing tool that allowed
us to vary the ratio of con�icting transactions, and hence
the contention level on PnyxDB. We customized the bench-
mark workload to create only update transactions to a set
of 100 keys, from which updated keys were selected using a
uniform distribution. This relatively low level of contention
re�ects a number of real workloads, but we present some
results for higher contention rates in § 5.5. Additionally, each
tested network required a quorum ofω = 7 endorsers among
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Figure 5. Commit latency and throughput with increasing load and
contention, each client submitting 2 transactions per second from
100 records selected by YCSB. PnyxDB can scale with the number
of clients while o�ering best latencies and good throughput (n = 10
and ω = 7).

n = 10 to tolerate at most f = 3 faulty nodes.
The transaction commit latencies and throughput are

shown in Figure 5. While Tendermint and PnyxDB were
able to deal with up to 30 transaction commits per second,
BFT-SMaRt was quickly saturated with client transactions:
this is due to the large number of messages emitted during
the successive rounds of consensus, and our realistic setup
with realistic network latencies. PnyxDB performed well for
the very large majority of transactions, providing an order of
magnitude of latency improvement compared to Tendermint,
and approached the optimal throughput while ensuring a low
number of dropped transactions. As summarized in Table 2,
BFT-SMaRt ensured that no single transaction was dropped.
However, Tendermint nodes were unable to commit around
9.3% of transactions: from our understanding, some nodes
failed to keep their state synchronized with the network and
gave up processing transactions. PnyxDB experienced less
than 2.3% of transaction drop on average.

5.5 E�ect of contention

We increased the level of transaction contention by rising
a “hotspot” hit probability (Figure 6), one option provided
by YCSB. This parameter has an immediate e�ect on the
probability that (at least) two transactions ask to update the
same datastore record around the same time, thus becoming
con�icting transactions for PnyxDB in our setup. (We also
note that the arti�cially-added clock shift tend to increase the
probability of con�icts with high contention levels.) We kept
10 clients for those experiments, leading to an average of 20
transactions per second (tx/s). We also tested PnyxDB with a
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Figure 6. Drop rate analysis for increasing YCSB hotspot selection
ratio. As expected for PnyxDB, the drop rate increases with the
hotspot contention.

slower rate of 10 transactions per second for comparison. The
worst case scenario would be that every transaction hitting
the hotspot is eventually dropped: in PnyxDB, a transaction
is dropped if a signi�cant number of nodes (n − ω + 1) are
unable to endorse the transaction before its deadline.

As expected, the contention level has a direct impact on
the ratio of dropped transactions. For low levels of contention
(up to 3%), almost no transaction is being dropped thanks to
conditional endorsements. For higher levels of contention
(up to excessively high levels), the drop ratio stays well below
the worst case scenario.

5.6 Speculative execution

We implemented speculative execution (§ 3) to compare its
latencies against classic commit latencies as presented in the
previous subsections. First, let us recall that once a transac-
tion is Applied by speculative execution, there is no guar-
antee that it will eventually become Committed. However,
we can expect that the probability of rolling back to a non-
Applicable (or Dropped) state stays very low (Figure 8).

Figure 7 shows the average latency observed for weak and
strong guarantees with an increasing level of concurrency
(resp. Applied and Committed states). Speculative execu-
tion bene�ts are clearly visible for any level of contention,
improving latency by up to 50%, a boost that could clearly
bene�t applications that only require weak guarantees. This
improvement came with no additional cost, since at most

0.03% of speculative executions had to rollback. In the classic
con�guration, the commit latency can be severely a�ected
by pending checkpoints, leading to less-predictable perfor-
mance. As shown in Figure 7, the commit latency is clearly
more foreseeable in the speculative execution mode, stay-
ing stable despite increasing contention. This observation
con�rms the positive impact of speculative execution.
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Table 2. Summary of comparison with emulated network latencies and 10 clients for a total of 1000 transactions.
This is the average over 40 experiments with 10 nodes tolerating up to 3 Byzantine faults (n = 10,ω = 7).

Average 95
th

perc. Throughput Drop Disk usage Transfer Exp. Bandwidth per node

latency latency rate per node per node duration average / max

BFT-SMaRt [10] 89 s 170 s 5.68 tx/s 0% - 36 MB 230 s 0.16 / 0.21 MB/s
Tendermint [13] 1.7 s 3.9 s 17.0 tx/s 9.3% 26 MB 26 MB 65 s 0.40 / 1.40 MB/s

PnyxDB (ours) 0.15 s ÷11 0.16 s ÷24 18.6 tx/s +9.4% 2.3% 1.4 MB 20 MB 71 s 0.28 / 1.27 MB/s
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Figure 8. Top: experimental ratio between the number of rollbacks
and the number of transaction applications. Bottom: number of
checkpoints executed across 1000 transaction submissions.

5.7 Impact of checkpoints for con�ict resolution

Algorithms 4 and 5 suggest that checkpoints must be trig-
gered immediately when a single transaction could be dropped
by a node. This is ine�cient, since the proposed checkpoint
procedure is costly in terms of bandwidth. Thus, we added
a pooling mechanism to limit the number of checkpoints:
by aggregating transactions before proposing checkpoints,
each node optimizes its bandwidth while slightly increas-
ing the commit latencies of con�icting transactions. In our
evaluation, at most 10 checkpoints were triggered (Figure 8).
Given that checkpoints happen mainly in times of high lev-
els of contention, we can conclude that their number is still
practical, thanks to our pooling optimization.

The longest path measured in the graphs of conditions was

Table 3. Worldwide AWS deployment: inter-region round-trip time
(May 6, 2019). Nodes were evenly sharded between regions.

(in ms) Virginia São Paulo Paris Frankfurt Sydney
California 61 194 138 147 149

Virginia 147 79 88 204
São Paulo 223 226 315

Paris 10 283
Frankfurt 292
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Figure 9. Worldwide AWS deployment: commit latency with in-
creasing number of endorser nodes. ω was set to 70% of endorsers.

of length 34, requiring less than 1 millisecond to be processed.
This observation indicates that our conditional endorsement
scheme is scalable and practical in terms of complexity. We
note that non-con�icting transactions were not a�ected and
continue to be committed even when the hotspot probability
is high. This is not the case for the other baselines, where
transactions are totally ordered by successive leaders.

5.8 Large scale experiments

To assert PnyxDB’s scalability in a global setting, we used
Amazon Web Services (AWS) t2.micro EC2 instances to de-
ploy nodes uniformly in 6 AWS regions (Table 3). During our
experiments, we observed a steady maximum inter-region
round-trip time of 315 ms between São Paulo and Sydney
regions. Even under these conditions, PnyxDB managed to
commit transactions with an average latency lower than 2
seconds for networks up to 180 nodes (Figure 9).

6 Related work

There exists a large number of consensus proposals for block-
chain-like applications [7, 30]. The consensus problem is
tackled very di�erently in public permissionless systems
compared to permissioned consortium systems. For public
systems, there have been many e�orts towards Proof-Of-
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Stake consensus: a small subset of participants are pseudo-
randomly selected to lead the consensus for a speci�c round,
based on their account balance (i.e. stake in the network).
Recent proposals rely on a multiparty coin-�ipping protocol
for leader selection [40], or propose a probabilistic method
using veri�able random functions [32]. These proposals are
said to be easily vulnerable to Sybil attacks [22] since anyone
can participate. Proof-Of-Work schemes are still considered
to be the safest, and main public networks still use it ex-
tensively. More e�cient algorithms have been proposed to
provide more fairness to small devices [59], less communica-
tion rounds [3] or more useful computations [6].

In this paper we focus on permissioned systems where
participants are known in advance. This path allows for more
�exibility in the choice of the threat model and the trust as-
sumptions. RSCoin [20] relies on a trusted central bank and
on distributed sets of authorities for improved scalability.
Similarly, the Corda platform [36] puts trust in small notary
clusters running consensus algorithms like BFT-SMaRt [10].
In its current version, Hyperledger Fabric [4, 37] also requires
that a centralized ordering service is trusted by every party.
These solutions, while giving good scalability promises, rely
on central points of trust, that if manipulated by a malicious
actor would break the entire sytem. The common assumption
is that such entities would be legally accountable through
audits: to remove that assumption, Sousa et. al. [65] proposed
to replace the current Kafka ordering service by BFT-SMaRt
in Hyperledger Fabric. PnyxDB leverages a web of trust to
ensure good scalability and node recovery, while avoiding
central points and elected leaders. We believe this makes our
proposal more robust to corruption and malicious manipula-
tion.

Other consortium systems have also been proposed [13,
19, 29, 62]. Randomization techniques have been used to
solve asynchronous BFT consensus [50, 52, 53], among which
BEAT [24] that suggests to rely on recent cryptographic
primitives. Such systems usually require that correct nodes
present deterministic execution for consistency [14, 69]. By
comparison, PnyxDB relies on a consensus algorithm specif-
ically designed for non-deterministic democratic decisions,
and exploits operations commutativity in a similar way than [36,
57, 60, 64]. In similar AWS deployments, BEAT reports a la-
tency of around 500 ms for 6 nodes and more than 1 minute
for 92 nodes, while PnyxDB proposes 130 ms and less than 1
second, respectively [24].

Speculative execution has been proposed in BFT consen-
sus to reduce latencies [23, 31, 41, 45, 64]. We considered
this optimization to speed-up our state synchronization al-
gorithm while achieving extremely low rates of rollbacks.
Finally, note that some vote schemes have been proposed
[8, 39], but they apply only for non-Byzantine fault models.

7 Discussion

PnyxDB has been designed to work with state-of-the-art
networking techniques. However, some elements can a�ect
its liveness.

Invalid deadline A client may submit a transaction with
a very low or high deadline relative to the absolute time.
The �rst case is handled by the endorsement conditions
mechanism, but nodes may block in the second case. Bounds
on deadlines would be a simple countermeasure to �lter
incoming transactions and avoid endorsing transactions with
out-of-bounds deadlines [17].

Con�icting transaction �ooding A rogue client could
send many simultaneous con�icting transactions, such that
it will be hard to reach a single quorum agreement within the
transactions deadline. This attack will not break the safety,
but the system may drop transactions, with a large number
of checkpoints being handled. A solution would be to isolate
the responsible node and rate-limit it.

Query dropsAs underlined in our evaluation, query drops
are expected during contention. This behavior is very com-
mon in classic and BFT replicated databases [45, 58], and
each client could easily propose several transactions until
one is �nally committed. It is however clear that PnyxDB
has been designed mainly for commutative workloads, as
commonly seen in modern distributed applications.

Checkpoint with asynchrony Our BVP implementa-
tion waits for good network conditions before allowing
dropping transactions. This is a safety requirement, given
that Byzantine nodes could delay their endorsements indef-
initely under asynchrony. An interesting property is that
non-con�icting transactions are always allowed to proceed,
independently of pending checkpoints.

Other optimizations We did not test batching of transac-
tions to increase throughput [24, 41, 62, 64, 65]. We focused
in this work on latency optimization, hence we believe that
transaction batching is an orthogonal optimization that may
further increase PnyxDB throughput.

8 Conclusion

In this paper, we presented PnyxDB, a scalable eventually-
consistent BFT replicated datastore. At its core lies a scal-
able low-latency con�ict resolution protocol, based on con-

ditional endorsements. PnyxDB supports nodes having dif-
ferent beliefs and policy agendas, allowing to build new
kinds of democratic applications with �rst-class support for
non-con�icting transactions. Compared to popular BFT im-
plementations, we demonstrated that our system is able to
reduce commit latencies by an order of magnitude under
realistic conditions, while ensuring steady commit through-
put. In particular, our experimental evaluation shows that
PnyxDB is capable of scaling to up to hundreds of replicas
on a geodistributed cloud deployment.
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