
HAL Id: hal-02355723
https://hal.science/hal-02355723

Submitted on 8 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Autonomous Mission Controller for Earth Observing
Satellites

Cédric Pralet, Charles Lesire, Jean Jaubert

To cite this version:
Cédric Pralet, Charles Lesire, Jean Jaubert. An Autonomous Mission Controller for Earth Observing
Satellites. IWPSS 2019, Jul 2019, BERKELEY, United States. �hal-02355723�

https://hal.science/hal-02355723
https://hal.archives-ouvertes.fr

An Autonomous Mission Controller for Earth Observing Satellites

Cédric Pralet and Charles Lesire
ONERA, Université de Toulouse
2 av. Edouard Belin, BP 74025

F-31055 Toulouse Cedex 4, France

Jean Jaubert
CNES

18 av. Edouard Belin
31401 Toulouse Cedex 9, France

Abstract

This paper presents an autonomous controller developed for
managing the activities of a new generation of Earth Observ-
ing Satellites (EOSs). This controller uses a hierarchy of re-
actors as in previously existing architectures, and it exploits
specific reasoning procedures at the level of each reactor to
get fast deliberations on-board. It is able to take into account
the arrival of urgent acquisition requests, late cloud predic-
tions, and information about the real volume of data, while
meeting several operational requirements from the end-users.

1 Introduction
The mission of commercial Earth Observing Satellites
(EOSs) consists in making observations of some areas at
the Earth surface and in downloading collected data to
ground reception stations. For most of these satellites, mis-
sion plans are first b uilt o n t he g round a t t he l evel o f the
mission center, and then sent to the satellite by ground con-
trol stations. These plans contain sequences of time-tagged
telecommands that must be executed while the satellite is
orbiting around the Earth. Nowadays, the search for perfor-
mance leads to the development of a new generation of com-
mercial EOSs. As in the seminal NASA contributions on
Deep Space 1 (Muscetolla et al. 1998) and Earth Observ-
ing 1 (Chien et al. 2004), the objective is to get autonomous
satellites that quickly adapt their behavior depending on the
conditions encountered at execution time, instead of waiting
for plans sent by the ground only a few times a day.

In this paper, we consider three situations in which adapt-
ing plans directly on board is relevant. First, many images
realized by EOSs cannot be exploited due to the presence
of clouds over observed areas. To improve on this point, we
consider a scenario where the satellite regularly receives me-
teorological predictions from ground stations or from geo-
stationary relay satellites. These predictions consume a low
level of uplink bandwidth and can be received much more
frequently than time-tagged plans. Second, due to on-board
data compression, the exact volume of observation data is
not known beforehand, especially due to the uncertainty
about the presence of clouds on some parts of the images.
Our goal is then to deliver data more quickly to the end-
users by exploiting the real volumes of data files, instead of

executing a timed-tagged download plan built on the ground
based on conservative maximum volume assumptions for all
images. Third, we consider scenarios in which urgent acqui-
sition requests can be synthesized by the satellite following
on-board detections, or received from the ground or from re-
lay satellites using a low level of uplink bandwidth. The goal
for the satellite is then to be reactive and to autonomously in-
tegrate the realization of these requests in the current plan,
possibly by canceling low priority operations.

In this paper, we present techniques used for answering
these needs for a new generation of autonomous EOSs. The
main contribution is an instantiation of an architecture com-
posed of a hierarchy of modules which use heterogeneous
procedures to deliberate and which manage static memory
allocation issues and action interruptibility in a clean way.
We do not consider the functional layer of the satellite, real-
time execution aspects, or fault detection, identification and
recovery. Instead, we focus on the on-board deliberation ca-
pabilities and on the interaction with execution.

The paper is organized as follows. Sect. 2 recalls related
works, Sect. 3 motivates our design choices, Sect. 4 de-
scribes the problem to solve, Sect. 5 gives the architecture of
the EOS mission controller, Sect. 6 details the plan adapta-
tion procedures, Sect. 7 details how planning and execution
are interleaved, and Sect. 8 describes our first experiments.

2 Related Works
The development of autonomous mission controllers is not
a new topic in the space domain. Almost all systems devel-
oped in this context use so-called timeline-based reasoning,
which consists in using timelines for representing the evo-
lution of relevant state attributes of the system and its en-
vironment, such as the states of instruments or the amount
of resources available. Each timeline is composed of a se-
quence of tokens, which correspond to temporal intervals
over which a state attribute takes a given value.

In the space domain, several operational autonomous mis-
sion controllers were already deployed:
• the seminal Remote Agent (Muscetolla et al. 1998;

Jónsson et al. 2000) which managed to take the full con-
trol of the NASA DS-1 probe launched in 1998; it used
constraint-based reasoning and flaw resolution techniques
for progressively building temporally flexible plans satis-
fying all constraints required between tokens;

• CASPER (Chien et al. 1999b; 1999a; 2014; Knight et
al. 2001; Estlin et al. 2000), which was successfully
used for NASA satellites EO-1 launched in 2000 and
IPEX launched in 2013; for IPEX, CASPER reacted au-
tonomously, during at least one year of operations, to the
real on-board resource usages, to the real durations of ac-
tivities, to the real data volumes, and to events detected
on images; to do this, CASPER is called regularly (us-
ing a continuous planning strategy) and iteratively repairs
conflicts on the current plan; it does not manipulate tem-
porally flexible plans, but it contains repair procedures
which can move activities; CASPER also exploits hierar-
chical decompositions of activities to perform short-term
planning for low-level activities and long-term planning
for high-level ones;

• the VAMOS experiment of the DLR BIROS satellite
launched in 2016 (Wörle and Lenzen 2013); given a base-
line ground plan represented as a set of successive time-
line blocks, VAMOS is able to autonomously activate
timeline extensions on-board depending on the amount of
resources available at execution time and to react to event
detection by quickly generating new timeline extensions
from a catalog of predefined extensions; to make these op-
erations very quickly, VAMOS uses decision rules based
on resource thresholds precomputed on the ground;

• the three ESA PROBA satellites, launched in 2001, 2009,
and 2013; for instance, PROBA-1 is able to realize au-
tonomous maneuvers for realizing observations on ar-
eas whose coordinates are provided by the ground, and
PROBA-V uses on-board decision rules to activate the ac-
quisition flow for imaging lands (Ilsen et al. 2014);

• the autonomous controllers used for the NASA Martian
rovers; for these rovers, mission plans are built on the
ground and on-board reasoning is used for autonomous
navigation tasks, for opportunistic science in the middle
of navigation tasks, and for coping with activities whose
duration is longer than expected based on some clean up
operations if the real cumulated duration of a block of ac-
tivities is longer than a given margin (Gaines et al. 2016).

Besides these deployed systems, several other experimen-
tal autonomous controllers have been tested.

• As in the Remote Agent and IxTeT-eXeC (Lemai and In-
grand 2004), some experimental controllers execute tem-
porally flexible plans. This is the case for the GOAC archi-
tecture (Fratini et al. 2011; Cesta et al. 2012) and for the
SanchoExpress on-board executive (Victoria et al. 2015).
Both of them manipulate plans defined as timelines where
transition times between tokens are subject to minimum
and maximum temporal distance constraints. Simple tem-
poral network reasoning is then used to propagate the ear-
liest possible start time of each transition and to detect
potential conflicts. Other experimental controllers manip-
ulate temporally flexible plans defined as partial order
schedules (Policella et al. 2004): see (Pralet et al. 2014)
for an application to flexible download plans for EOSs
and (Chi et al. 2018) for an application to the flexible ex-
ecution of the Mars 2020 rover activities.

• As in CASPER, other prototypes use iterative plan repair,
but with a specific effort to use predefined intelligent re-
pair rules to decrease the computational effort. This is the
case for MEXEC developed for the future Europa Clip-
per mission near Jupiter (Verma et al. 2017), and for the
TVCR system studied for ExoMars (Woods et al. 2006).

• As in VAMOS, other approaches combine ground plan-
ning and on-board reasoning by using, at the level of
the flight software, a set of resource thresholds computed
on the ground to decide whether additional activities can
be activated online (Maillard et al. 2015; 2016). In the
space domain, only a few work has been realized on
plans containing explicit conditional branches (Washing-
ton, Golden, and Bresina 2000).

• Some other autonomous controllers follow a different
approach, where execution is interleaved with planning
based on a fast greedy search that has a reduced worst-
case time complexity (Khatib et al. 2013; Chien and
Troesch 2015; Pouly, Jouanneau, and Olhagaray 2014;
Rabideau and Benowitz 2017; Pralet, Infantes, and Ver-
faillie 2013; Rabideau, Chien, and Laren 2009). Such
greedy searches manipulate consistent plans and use an
iterative selection-insertion mechanism. At each step, the
latter selects one candidate activity a and tries to insert
a into the plan. If the insertion succeeds, a new current
plan is obtained, otherwise a is rejected and the next ac-
tivity is considered. The contributions that follow this ap-
proach differ in the way the next activity is selected and
in the way insertions are made. For replanning in case of
addition of a new goal, some of these approaches restart
from an empty plan (Chien and Troesch 2015), while oth-
ers use incremental processing, for instance by restarting
from a plan where only the lowest priority activities are
removed (Rabideau, Chien, and Laren 2009).

In another direction, the definition of autonomous con-
trollers in the space domain requires the definition of a
robotic architecture composed of several modules. Some ap-
proaches use a three-tier architecture involving a delibera-
tive layer, an executive layer, and a functional layer. Other
approaches are inspired by the work on IDEA (Muscettola
et al. 2002) and T-REX (McGann et al. 2008), which al-
low for a more flexible interleaving between planning and
execution. Basically, a T-REX agent controls a set of con-
trol loops called reactors. The latter manipulate timelines,
and to progressively build a globally consistent plan they
exchange goals defined as desired future timeline values.
At each deliberation cycle, a T-REX agent tries to synchro-
nize the view of the timelines among the reactors, dispatches
goals between the reactors, and finally allocates some time
to each reactor to deliberate. In the space domain, the T-
REX approach was used for the APSI deliberative reactor
of the GOAC architecture developed for ESA, where the
APSI framework is used to deliberate (Fratini et al. 2011;
Cesta et al. 2012). More recently, it was also used in
ERGO (Ocón et al. 2018), where a PDDL planner is used by
a mission reactor, and where the autonomy level can range
from reactive to deliberative behaviors.

3 Towards an Autonomous EOS Controller
To deal with our autonomous EOS scenario, we devel-
oped a timeline-based mission controller whose main design
choices are given below.

First, we use simple decision rules rather than black-box
multi-criteria planning procedures. One reason for this is
that the mission controller must bring some guarantees on
how preferences of the end-users are taken into account. For
instance, high priority requests must always be preferred to
low priority ones, the geocentric pointing (pointing in the
direction of the Earth center) must be preferred when there
are sufficiently long periods without observation, and the de-
vices (the mass memory, the acquisition instrument, and the
emission antenna) must be switched off when possible but
not too often for long-term reliability issues. Also, the mis-
sion controller is an embedded software which must not use
dynamic memory allocation. This means that the used mem-
ory must be reserved at the initialization step, and not during
the execution of the decision procedures. This is why we do
not use black-box planners which do not offer such a guar-
antee.

Second, we use the T-REX approach that decomposes the
mission manager into several reactors. This allows to have
several smaller subproblems for which specific reasoning
procedures can be used instead of a global problem which
is harder to solve. This is particularly useful because EOSs
have low computational capabilities (typically 100 times
slower that a modern laptop), and the time available to make
decisions is limited to avoid missing acquisition and down-
load opportunities while the satellite is moving on its orbit.
The T-REX approach also leads to a modular architecture
where reactors can be more easily changed, reused, and val-
idated. We also make some efforts to get incremental delib-
eration procedures that quickly deal with goal updates and
avoid replanning from scratch.

Third, in our architecture, a reactor can manipulate flexi-
ble plans internally but we do not have a global simple tem-
poral network representing the set of all feasible plans. One
reason for this choice is that in the EOS scenario considered,
postponing an activity is not just a matter of temporal con-
straints, essentially due to complex state constraints. One of
them is related to the kinematic features of agile satellites,
which use gyroscopic actuators to move around their grav-
ity center along the three axes (roll, pitch, and yaw). Also,
acquisition and download activities can be performed in par-
allel but there is a coupling between the pointing of the satel-
lite used for observing and the pointing required for down-
loading data to a given ground station (download is not pos-
sible if the angle between the current satellite pointing and
the satellite-station vector is too high). To take these state
constraints into account, we fix the timings of acquisition
activities when building the download plan.

Fourth, as in CASPER, we manipulate both long-term
high-level plans (coarse acquisition and download activities)
and short-term low-level plans (detailing when the devices
must be switched on and off). To get an explicit relationship
between high-level activities and low-level ones, we exploit
hierarchical decompositions of goal activities.

Fifth, to perform planning and execution in parallel, we

make a clear distinction between the activities whose ex-
ecution is committed and the activities whose presence in
the plan can still be changed if needed, and a clear distinc-
tion between the activities that can be interrupted and those
which cannot, as in IxTeT-eXeC (Lemai and Ingrand 2004).

4 Planning Problem Description
At each step, the autonomous controller must consider:

• a set of observation requestsR; each request r ∈ R has a
priority, a duration, and a set of possible realization time
windows; each request r ∈ R also has an estimated data
volume (exact volume if data has already been acquired
and compressed) and a boolean cloud cover prediction for
each possible realization window;

• the kinematic capabilities of the satellite; to simplify the
presentation, we only consider maneuvers in terms of roll
angles (pointing of the satellite to the right or to the left
of its ground trace); we use a simple model where the
minimum transition duration between two successive ob-
servation requests r1, r2 is obtained from the difference
between the roll angle RollEndr1 obtained at the end of
r1 and the roll angle RollStartr2 required at the start of
r2, divided by a mean rotation speed around the roll axis;1

• a set of ground reception stations S, with for each station
s ∈ S a set of time windows during which downloading
data is possible; observing and downloading is parallel is
possible, but only if the pointing used for observing is not
too far (in terms of angular distance along the roll axis)
from the direction of the satellite-station vector;

• the features of the devices (the observation instrument, the
mass memory, and the emission antenna), including the
fixed durations required to switch on and off each device.

Fig. 1 shows, at two different steps of the execution, the
kind of plans obtained from the autonomous EOS controller
presented in this paper. In Fig. 1, the current execution time
is represented by the red vertical dashed line, and the current
start time of the planning horizon is represented by the blue
vertical dashed line. Several timelines are used:

• pointing, which represents the evolution of the pointing
of the satellite; possible tokens are MAN(ρ, ρ′) (maneuver
from roll angle ρ to roll angle ρ′, in magenta), GEO (geo-
centric pointing, in blue), and ACQ(ρ, ρ′) (pointing for re-
alizing an acquisition whose start and end roll angles are
ρ and ρ′ respectively, in red);

• memWrite, which represents the unique identifier of
the file in which acquisition data are being written; possi-
ble tokens are WRITE(f) (when file number f is written,
in red) and IDLE (when no file is written, in gray);

• memRead, which represents the unique identifier of the
file from which downloaded data is being read; possible
tokens are READ(f) (when file number f is read, in or-
ange) and IDLE (when no file is read, in gray);

1The approach can be extended to deal with fully agile satellites
which can move around the three axis (roll, pitch and yaw), with
time-dependent effects in terms of minimum transition durations.

• instrState, memoryState, and antennaState,
which represent the evolution of the state of each device;
for these timelines, the possible tokens are ON A (ON state
used for supporting acquisition and download activities,
in green), ON M (ON state maintained between two activ-
ities, in green too; contrarily to ON A, the ON M token can
be interrupted if needed), OFF (OFF state of the device, in
gray), OFF TO ON (warming of the device, in yellow), and
ON TO OFF (ON to OFF transition, in yellow too).
Fig. 1 also shows the visibility windows available over

three stations. Globally, each plan contains (1) a sequence
of acquisitions interleaved with maneuvers and geocentric
pointings, (2) download activities realized during station vis-
ibility windows, (3) operations over the devices to have the
mass memory and the instrument ready during acquisitions,
and to have the mass memory and the antenna ready dur-
ing download activities. It is also possible to see that multi-
ple planning horizons are used, with a long-term horizon for
the global acquisition and download plans, and a short-term
horizon for the detailed management of the devices.

Figure 1: Timelines used by the mission controller

5 Reactor-based Decisional Architecture
To build the plans presented before, the EOS autonomous
controller uses the acyclic architecture provided in Fig. 2,
which is composed of 10 reactors. To transform high-level
goals into fine-grain plans, the reactors exchange goal re-
quests (solid lines) and information on the system state
(dashed lines). A reactor can also cancel a goal previously
sent to another reactor.

At the highest level of the hierarchy, the Mission Reactor
is responsible for managing the arrival of new observation
requests. For each new request received, the Mission Reactor
sends one acquisition goal to the Acquisition Reactor and
one download goal to the Download Reactor.

At the lowest level, the Pointing Monitor, the Instrument
Monitor, the Memory Monitor, and the Antenna Monitor are
respectively responsible for managing the commands con-
cerning the pointing of the satellite, the observation instru-
ment, the mass memory, and the data emission antenna.
These low-level reactors directly interact with the functional
layer of the EOS. They receive time-tagged commands and
they simply order these commands chronologically to send
them to the devices when needed.

MemoryReactor

MissionReactor

DownloadReactor

AntennaReactor

InstrumentMonitor MemoryMonitor AntennaMonitor

Agent Manager

InstrumentReactor

cmdSwitch cmdSwitch cmdSwitch

onGoal

acqGoal

acqEndTime

onGoal

cmdWrite

onGoal

cmdRead

cmdPointing
onGoal

antennaStatememoryStateinstrState

memRead

AcquisitionReactor

pointing

pointing

memWrite

dataVolume

cloudPresence

dlGoal

newRequest

PointingMonitor

Figure 2: Reactor-based architecture

The Acquisition Reactor is responsible for producing a
high-level acquisition plan from the set of candidate acqui-
sition goals it receives and from updated cloud cover pre-
dictions over the areas to be observed. It sends “ON goals”
to the Memory and Instrument Reactors, to request the mass
memory and the observation instrument to be switched on
during observations. It also sends pointing commands to the
Pointing Monitor, and write commands to the Memory Mon-
itor (command to write the data flow generated by the obser-
vation instrument during a fixed time window).

The Download Reactor is responsible for producing a
download plan from the set of candidate download goals it
receives, from all inputs on the real data volume after com-
pression, from the end dates of acquisitions (to ensure that
for each request, data download is realized after data acqui-
sition), and from the pointing of the satellite synthesized by
the Acquisition Reactor. Such a pointing can indeed limit
download opportunities over a given station. The Download
Reactor sends ON goals to the Memory and Antenna Reac-
tors, to request that the mass memory and the antenna must
be switched on for downloading data.

The Instrument Reactor, the Memory Reactor, and the An-
tenna Reactor are respectively responsible for managing the
ON/OFF state of the observation instrument, the mass mem-
ory, and the emission antenna. To achieve the ON goals re-
ceived, they compute switch-on/switch-off commands that
are then sent to the device monitors. These reactors are in-
stantiations of a generic Device Reactor.

As in T-REX, each timeline is owned by a unique reactor.
For example, as shown in Fig. 2, the memoryState time-
line is owned by the Memory Reactor. The reactors interact
through goal transmissions and read operations over exter-
nal timelines (e.g., the Download Reactor listens to updates
on the pointing managed by the Acquisition Reactor).

Goal Decompositions The decomposition of high-level
goals into subgoals is shown in Fig. 3. The decomposition
also associates with each goal g the set of all possible tokens
that might be useful over timelines to achieve g. All goals
and their tokens are created at the initialization of the flight
software, to avoid dynamic memory allocation. Fig. 3 shows
the 6 types of goals manipulated:

• the request goal, which covers one acquisition goal and
one download goal;

• the acquisition goal (acqGoal), which covers:

– tokens IDLE and WRITE over the memWrite time-
line; the first one is used to model an idle state of the
data writing process between the end of the previous
acquisition and the start of the acquisition associated
with the goal; the second one is used to describe that
data is written in a file during the acquisition;

– commands used to start and end the recording of the
acquisition flow (cmdStartWrite and cmdEndWrite);

– ON goals over the mass memory and the instrument
(memOnGoal and instrOnGoal);

– pointing commands, including cmdManeuverToGeo
used for reaching a geocentric pointing between the
last acquisition realized and the acquisition considered
(command used only if there is a sufficient time gap
between the two acquisitions), cmdManeuverToAcq
used for realizing a maneuver just before the acqui-
sition considered, and cmdScanAcq used for scanning
a ground area; four tokens are associated with the
pointing timeline to describe the evolution of the
pointing from these commands;

• the download goal (dlGoal), whose decomposition is sim-
ilar to the decomposition of an acquisition goal; the main
difference is that it does not involve elements related to
the pointing of the satellite;

• the ON goals over the three kinds of devices (instrOn-
Goal, memOnGoal, antennaOnGoal); each ON goal has
fixed start and end times; it covers tokens and commands
that can be used to enforce the goal (see the algorithms
described in the following section).

dlGoal

memWrite.IDLE

memWrite.WRITE

cmdStartWrite

cmdEndWrite

memOnGoal

instrOnGoal

cmdManeuverToGeo

cmdManeuverToAcq

cmdScanAcq

pointing.MAN

pointing.GEO

pointing.MAN

pointing.ACQ

memRead.IDLE

memRead.READ

cmdStartRead

cmdEndRead

memOnGoal

antennaOnGoal

acqGoalrequest dlGoal

memOnGoal

memoryState.ON_TO_OFF

memoryState.OFF

memoryState.OFF_TO_ON

memoryState.ON_M

memoryState.ON_A

cmdMemSwitchOff

cmdMemSwitchOn

antennaOnGoal

antennaState.ON_TO_OFF

antennaState.OFF

antennaState.OFF_TO_ON

antennaState.ON_M

antennaState.ON_A

cmdAntennaSwitchOff

cmdAntennaSwitchOn

instrOnGoal

instrState.ON_TO_OFF

instrState.OFF

instrState.OFF_TO_ON

instrState.ON_M

instrState.ON_A

cmdInstrSwitchOff

cmdInstrSwitchOn

acqGoal

Figure 3: Decomposition of goals into subgoals and to-
kens potentially used for realizing them (high-level goals in
green, atomic low-level goals in magenta, tokens in yellow)

Even if it is not explicitly represented here, each goal has
parameters which describe its features. There is also a rela-
tionship between the parameters of a goal and the parame-
ters of the subgoals and tokens it covers. For instance, for an
acqGoal realized over time slot [150, 173], subgoal memOn-
Goal has [150, 173] as a required time slot. Similarly, given
an acquisition goal, if the roll angle at the start of the acqui-
sition is 24 degrees, then the cmdManeuverToAcq command
also has as a target the 24 degrees roll angle.

Data Structures Associated With Reactors In the au-
tonomous EOS controller, each goal type is handled by a
unique reactor and each reactor handles a finite set of poten-
tial goals. For instance, there is a constant giving the maxi-
mum number of acquisition goals which can be handled by
the system. If this number is exceeded, low priority goals
can automatically be rejected. Also, for the sake of future
incremental decision procedures, each goal has an update
status: ADDED in case of an addition of the goal, REMOVED
in case of a cancellation by the reactor which requested the
goal, UPDATED in case of change in the parameters of the
requested goal, and NONE otherwise.

Additionally, one token is used for each timeline to rep-
resent its initial state, and static data structures are used to
represent the final evolution of timelines. As an illustration,
the Acquisition Reactor can use a cmdManeuverToGeo com-
mand to realize a maneuver to the geocentric pointing at the
end of the planning horizon, together with some associated
tokens over the pointing timeline. The acquisition and down-
load reactors can use IDLE tokens at the end of their plan-
ning horizon. Each device reactor can used a cmdSwitchOff
command to switch the device off after the last activity, to-
gether with tokens over the device state timeline.

6 Plan Adaptation Procedures
To handle the set of reactors, the autonomous controller uses
a planningStep() function which sequentially calls the
plan adaptation procedures of each reactor, from high-level
reactors to low-level reactors. From a generic point of view,
it makes reactors deliberate in a topological order of the
DAG whose arcs correspond to goal and timeline value
transmissions between reactors (note that the Download Re-
actor is at a lower level than the Acquisition Reactor due
to read operations over the pointing and acqEndTime
timelines). We now detail the deliberation procedure used
by each reactor. We exclude the MissionReactor which only
forwards acquisition and download subgoals without mak-
ing any decision. We also exclude the Instrument, Mem-
ory, Antenna, and Pointing Monitors which only maintain
a chronological ordering of the goals they receive.

Acquisition Reactor: Greedy Hierarchical Adaptation
The Acquisition Reactor computes the sequence of acquisi-
tions which must be successively realized by the satellite. It
uses a generic temporal constraint manager (Pralet 2017) to
automatically obtain earliest and latest start times of succes-
sive acquisitions, based on the realization window chosen
for each of them and on the required roll angle transitions

between acquisitions. Internally, the reactor handles tempo-
rally flexible plans, but the ON goals sent to low-level reac-
tors are time-tagged (by the earliest start and end times of
acquisitions).

Given the current plan, the Acquisition Reactor uses the
following steps to adapt its internal plan and the sub-goals
sent to lower level reactors (see Fig. 4 for an illustration):

1. read all acquisition goals updates (with status REMOVED,
ADDED, or UPDATED); remove from the plan all goals
whose status equals REMOVED or UPDATED, and add to
the set of active goals all goals having the ADDED status;
in Fig. 4, this step removes acquisition A from the plan
due to the cloud cover prediction over A;

2. apply a greedy selection-insertion search: at each step, se-
lect an unplanned active goal that has no cloud cover and
whose priority is the highest, and break ties by consider-
ing first the oldest activated goals; to insert the acquisition
a associated with the goal:

• consider the next possible acquisition window w for a
in the chronological order; to free some place for a, re-
move all acquisitions a′ of the plan which have a prior-
ity lower than a and which overlapw in the earliest start
time plan (taking into account roll angle transitions); in
Fig. 4, when the insertion of F is considered, this step
removes observations B and C from the plan;

• try to insert a into the plan at a position which offers
the highest temporal flexibility in the realization of a,
to favor future acquisition insertions;

• if the insertion of a succeeds, then a new current plan
is obtained; the acquisitions removed for inserting a
can possibly be reinserted at future steps of the greedy
search; in Fig. 4, this occurs for observation B, as
shown in the final plan obtained, but not for C;

• if the insertion of a fails, come back to the state of the
plan before the test of the insertion of a in window w;
try to insert a in the next window if one exists, or con-
sider the next candidate acquisition for insertion;

3. in the plan, add intermediate geocentric pointings as soon
as the distance between two successive acquisitions is
greater than a given threshold, and come back to a geo-
centric pointing at the end of the planning horizon; add
maneuvers to fill the pointing timeline;

4. from the earliest start time plan obtained, derive all up-
dates on goals to be sent to the lower level reactors.

The incrementality of the previous procedure could be im-
proved, for instance by avoiding the recomputation of all
geocentric pointings each time a new plan is synthesized.

Download Reactor: Chronological Decision Rules The
Download Reactor restarts from an empty download plan
when there is a change in the end time of an acquisition
or in the data volume after compression. It also rebuilds a
plan when a change in the pointing profile invalidates one
download activity of the current plan. The Download Re-
actor deliberates following decision rules that fill the down-
load plan in a chronological way, by considering at each step

step 1 : remove A (status = UPDATED and cloud cover = true)

step 2.3 : try insert C => fail
step 2.2 : try insert B => success
step 2.1 : try insert F and remove low priority acq. B, C => success

* clouds for A
* new urgent request F

New events :

Acq. plan before adaptation

Acq. plan after adaptation

B

C

D

B

D

A

E

E
F

Active goals: A,B,C,D,E

Active goals: B,C,D,E,F

Figure 4: Adaptation of the acquisition plan (prioritary ac-
quisitions in red, non prioritary ones in green)

a download goal (dlGoal) associated with a highest priority
request (greedy selection-insertion mechanism). The delib-
eration procedure is illustrated in Fig. 5 and works as fol-
lows.

1. Based on the pointing timeline obtained from the Acqui-
sition Reactor, the set of available station visibility win-
dows is reduced in order to get effective visibility win-
dows during which downloading data is compatible with
the pointing used for observing (angle between the satel-
lite pointing and the satellite-station direction less than a
given threshold). In Fig. 5, the visibility window of station
1 is split into two effective visibility windows.

2. To initialize the chronological construction of a plan, the
current time t is set to the maximum between the start
time of the first effective station window and the first date
at which both the mass memory and the emission antenna
can be in the ON state, given the initial state of the device
state timelines.

3. At each step, the planning algorithm selects the highest
priority download goal whose realization can start at time
t and finish before the end of one effective station win-
dow available at t. Ties are broken by considering first
the download goals associated with data whose acquisi-
tion time is the lowest (the oldest data).
(a) If one such download goal g exists, it is enqueued at
the end of the download plan and the new current time
is set to the end time of the realization of g. In Fig. 5,
this decision rule first inserts the download dl(A) of ac-
quisition A when the current time equals t3, and then the
download dl(B) of acquisition B when the current time
equals t4. The download of A is inserted first because A
has a highest priority. The download of B is realized be-
fore the download of F because dl(F) is not a candidate
download yet when the current time equals t4, since the
end time of acquisition F has not been reached yet.
(b) If no such download goal exists, the current time t
is moved forward to the minimum between the next ac-
quisition end time and the next start time of an effective
download window. The first case occurs when the current
time is changed from t6 to t7 in Fig. 5.

4. The algorithm stops when there is no more effective sta-
tion window or download goal over the planning horizon.

��������
��������
��������
��������

t5t1 t2 t3 t4 t6 t7 t8 t9

dl(B)dl(A)

dl(F) dl(D)

dl(E)

EndAcq(F) EndAcq(E)EndAcq(D)

Station2

Station1

EndAcq(A)
EndAcq(B)

Figure 5: Successive insertions of downloads in the down-
load plan during a deliberation of the Download Reactor

Device Reactors: Chronological Decision Rules A De-
vice Reactor restarts from an empty plan when an ON goal
is updated (added, removed, or moved). It then deliberates
over a short-term horizon to produce a so-called ON/OFF
plan for the device. The deliberation procedure is illustrated
in Fig. 6 and uses the following steps.

1. The ON goals are ordered by increasing start times. Some
of these goals come from the Acquisition Reactor, while
others come from the Download Reactor, hence there can
be a temporal overlapping between them.

2. At each step, the next ON goal g over a given temporal
window [t1, t2] is considered. Let δ denote the duration
required by an OFF TO ON transition. Two cases are ana-
lyzed to deliberate.
(a) In the first case, the last token on the device state time-
line takes value OFF or ON TO OFF and finishes at time t.
If it is not possible to have the device in the ON state at t1
(t1 − t < δ), the ON goal is rejected. Otherwise, the de-
vice is kept off until time t1−δ, switched on at t1−δ, and
used in the ON state over [t1, t2] (insertion of one OFF to-
ken over [t, t1− δ], one OFF TO ON token over [t1− δ, t1],
and one ON A token over [t1, t2]). In Fig. 6, these steps are
used for planning the realization of goal g1 (yellow).
(b) In the second case, the last token on the device state
timeline takes value ON A (active ON), ON M (maintain
ON), or OFF TO ON. If t ≥ t2, no operation is needed.
Otherwise, if t ≥ t1, a token is added to use the device in
the ON state until time t2 (insertion of an ON A token over
[t, t2], used for instance when inserting goal g2 in Fig. 6).
Otherwise, the reactor decides whether the device must
be temporarily switched off just after t and then switched
on a short time before t1 (option used for the insertion of
goal g3 in Fig. 6), or whether it must be maintained on
from t to t1 (option used for the insertion of goal g4 in
Fig. 6). The choice between the two options is realized by
switching the device off when t1− t exceeds a predefined
threshold. At any step, the tokens added on timelines are
those which are statically associated with goals, as defined
in Fig. 3. Note that in Fig. 6, goal g4 is located after the
end of the planning horizon (vertical bars on the figure),
but it must be taken into account to determine whether the
device must be switched off between the end of g3 and the
end of the planning horizon.

3. If the end time of the planning horizon is not reached,
commands and tokens are added to switch the device off
just after the last token of the device state timeline and to
keep it off until the end of the planning horizon.
The incrementality of the previous procedure could be im-

proved to avoid building ON/OFF plans from scratch each

ON_AON_ASWSW ON_A ON_A OFF SW ON_M

ON(g3)ON(g2)

ON(g1)

OFF

ON(g4)

OFF

Goals: g1: ON [3,6], g2: ON [5,9], g3: ON [18,21], g4: ON [23,25]

Figure 6: Plan built by a Device Reactor to satisfy ON
goals over fixed time intervals (SW tokens correspond to
ON TO OFF and OFF TO ON transitions)

time an input ON goal changes. However, the operations re-
alized already have a low worst-case time complexity. Note
also that for building an ON/OFF plan, there is no need to
use a complex constraint-based or PDDL-based planner. The
dedicated procedure proposed is both intuitive for the end-
users and fast. Moreover, it is generic since it is used for
three devices, the only parameter to set being the duration
of ON TO OFF and OFF TO ON transitions, and the threshold
defining when a device must be temporarily switched off.

Goal Planning Failures Goal planning failure is not an
issue for the reactors used. Indeed, even if the sets of acqui-
sition and download goals requested by the Mission Reac-
tor usually lead to over-constrained planning problems, hav-
ing unplanned goals is not an issue for the Mission Reactor.
Moreover, the Acquisition and Download Reactors integrate
constraints that ensure that the ON goals they request will
always be feasible by the Device Reactors.

In a more general context, when a reactor r fails in plan-
ning a goal g requested by another reactor r′, reactor r′ re-
ceives a message expressing that the realization of g has not
been planned. At the next deliberation cycle, r′ can decide
to update its own plan accordingly. Such planning steps can
be iterated to try to converge to a state where all requested
goals are planned. Even if the total allocated deliberation
time does not suffice to reach a globally consistent plan, the
plans of low-level reactors still remain valid, and in the worst
case the satellite will just plan some useless operations.

7 Management of the Execution
Goal Execution Status As in the APSI Deliberative Re-
actor (Fratini et al. 2011; Cesta et al. 2012), each goal has
an execution status which allows to determine whether it
needs to be taken into account by the deliberation proce-
dures. In our case, the execution status of an active goal takes
value BUFFERED when the execution of the goal has not
started yet, EXECUTING when the realization of the goal is
ongoing, EXEC SUCCESS when the execution of the goal
has succeeded, and EXEC FAIL when it has failed. In our
current prototype, we do not consider execution failures for
which an additional analysis module explaining the reasons
of the failure would be needed, together with potential re-
configuration mechanisms.

At the moment, our autonomous EOS controller is not
used on a real satellite or connected to a real processor used
in the space domain. Instead, we just simulate the execution
of all basic commands. As commands cmdStartWrite, cm-
dEndWrite, cmdStartRead, and cmdEndRead are executed
within a single execution cycle, they have a null execution

duration and immediately get status EXEC SUCCESS when
their execution is triggered. Command cmdScanAcq used
for scanning an observation area gets status EXECUTING
when it is activated, and status EXEC SUCCESS when the
duration of the associated acquisition is elapsed. Similarly,
all commands used for switching devices on and off get
status EXECUTING when they are activated, and status
EXEC SUCCESS once the fixed duration of the associated
device state transition is elapsed. The same kind of simu-
lation can be made for commands cmdManeuverToGeo and
cmdManeuverToAcq.

The execution status of an acquisition goal becomes
EXECUTING when the associated WRITE token starts, and
EXEC SUCCESS when this token ends. This implies that
for the deliberation process, the realization of an acquisition
goal can always be changed until its execution starts, even
if previous operations were performed such as switching on
devices for the sake of this goal. This brings more flexibil-
ity to insert the realization of last-minute high priority re-
quests. Similarly, the status of a download goal becomes
EXECUTING when the associated READ token starts, and
EXEC SUCCESS when this token ends. The status of an ON
goal expressed on devices (handled by the Memory, Instru-
ment, and Antenna Reactors) also takes value EXECUTING
and EXEC SUCCESS respectively at the start and end times
associated with this goal. Last, the execution status of a re-
quest becomes EXECUTING when the execution of the as-
sociated acquisition goal starts, and status EXEC SUCCESS
when the execution of the associated download goal ends.

Interleaving Execution and Planning Let t denote the
current time (the execution time). As in T-REX, if the de-
liberation process of a reactor r is triggered at time t, then
this process considers a planning horizon starting at time
t′ = t + λr where λr is called the latency of reactor r.
Another deliberation process will be triggered at time t′, to
obtain deliberations over a rolling horizon.2 At time t, the
part of the plan located over time interval [t, t′[is commit-
ted. In our implementation, the execution is simulated at all
execution cycles t′′ ∈ [t, t′[to update the execution status of
commands and goals.

The deliberation process removes all tokens ending
strictly before t′. One difficulty is then that for a time-
line tl , time t′ might be placed in the middle of a
non-interruptible token tk. Non interruptible tokens are
MAN(ρ, ρ′) and ACQ(ρ, ρ′) for the pointing timeline, READ
and WRITE for the memRead and memWrite timelines,
and ON TO OFF, OFF TO ON, ON A for the device state time-
lines. In this case, the deliberation process makes a copy of
tk and records it as the initial token for timeline tl for the
new planning horizon. Otherwise, if token tk is interruptible,
the reactor makes a copy of tk and records it as the initial to-
ken for timeline tl , but the end time of this token is set to t′,
the start time of the planning horizon. As in T-REX, each re-
actor r then builds a plan over temporal window [t′, t′+πr],

2Recent strategies defined for M2020 schedulers that mix fixed
cadence and event-driven deliberations could be considered for im-
proving the efficiency of the approach (Chi et al. 2018).

where πr is called the planning horizon of r (with πr ≥ λr).
In the end, planning and execution are synchronized based
on commit window [t, t′[, on goal execution status, and on
the initial state computed for each timeline at t′.

8 Experiments
The implementation of our EOS autonomous controller is
based on several generic features for representing timelines,
tokens, goal decompositions, reactors having planning and
execution functions, goal activation and deactivation, and
commitments. We used the prototype developed both on
hand-written scenarios to test particular configurations and
on randomly generated scenarios that validate the behavior
of the prototype on a wider range of situations.

Each scenario (hand-written or random) defines the num-
ber of acquisitions and their features (priority, duration, roll
angles, initial cloud cover prediction, maximum data vol-
ume, acquisition windows), the number of ground stations
and their features (zenith angle of the satellite, download
windows), and the features of the devices (durations of the
transitions between the ON and OFF states, and maximum
time gap for leaving the device ON between two usages).

Each scenario also defines all events that will be received
by the autonomous controller over the planning horizon, in-
cluding (1) the arrival of new acquisition requests (a sce-
nario specifies the time at which each request is received
by the controller), (2) the arrival of new cloud cover predic-
tions (a scenario specifies the time at which each prediction
is received), (3) the real volume of data associated with each
acquisition (this real volume information is received by the
controller at the end of each acquisition realized). In random
scenarios, the parameters of these events are randomized, as
well as the features of candidate observations and ground
reception stations.

During our first experiments, we were able to visualize
the events received by the autonomous controller, the evo-
lution of the current plan (same view as in Fig. 1), and the
concurrent execution of actions. For scenarios involving 10
requests, 3 priority levels, and 3 stations, each deliberation
of the full controller (i.e. over all reactors) requires at most 3
milliseconds to converge to a new current plan on a standard
laptop (Intel i5, 1.2GHz, 4GBRAM).

9 Conclusion
This paper presented an autonomous mission controller built
for a new generation of EOS. One of its main strength is
its capacity to use efficient reasoning procedure at the level
of each reactor of the architecture. We should now test the
approach on scenarios involving satellites which are agile
along the three axis, and on scenarios involving memory and
energy limitations. One challenge is also to formally validate
the behavior of the controller, by validating first the behavior
of each individual reactor, and then the interactions between
the reactors. In this direction, it would helpful to use a for-
mal language for describing the reactor architecture and the
goal decompositions. The last point would be to add new
modules providing to each reactor the current state observed
or estimated for the timelines it owns.

References
Cesta, A.; Fratini, S.; Orlandini, A.; and Rasconi, R. 2012.
Continuous planning and execution with timelines. In
ISAIRAS’12.
Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Em-
bedding a scheduler in execution for a planetary rover. In
ICAPS’18.
Chien, S., and Troesch, M. 2015. Heuristic onboard point-
ing re-scheduling for an Earth observing spacecraft. In IW-
PSS’15.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 1999a. Integrated planning and execution for
autonomous spacecraft. In IAC’99.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 1999b. Using iterative repair to increase the
responsiveness of planning and scheduling for autonomous
spacecraft. In IJCAI’99 PLAN Workshop.
Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau, G.;
Castano, R.; Davies, A.; Lee, R.; Mandl, D.; Frye, S.; Trout,
B.; Hengemihle, J.; Agostino, J. D.; Shulman, S.; Ungar, S.;
Brakke, T.; Boyer, D.; Gaasbeck, J. V.; Greeley, R.; Doggett,
T.; Baker, V.; Dohm, J.; and Ip, F. 2004. The EO-1 au-
tonomous science agent. In AAMAS’04.
Chien, S.; Doubleday, J.; Thompson, D. R.; Wagstaff, K. L.;
Bellardo, J.; Francis, C.; Baumgarten, E.; Williams, A.; Yee,
E.; Fluitt, D.; Stanton, E.; and Piug-Suari, J. 2014. Onboard
autonomy on the intelligent payload experiment (IPEX)
cubesat mission: a pathfinder for the proposed HyspIRI mis-
sion intelligent payload module. In ISAIRAS’14.
Estlin, T.; Rabideau, G.; Mutz, D.; and Chien, S. 2000.
Using continuous planning techniques to coordinate multi-
ple rovers. Electronic Transactions on Artificial Intelligence
4(A).
Fratini, S.; Cesta, A.; Benedictis, R. D.; Orlandini, A.; and
Rasconi, R. 2011. APSI-based deliberation in goal oriented
autonomous controllers. In ASTRA’11.
Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; Fesq, L.; Ingham, M.; Maimone, M.; and Nesnas, I.
2016. Productivity challenges for Mars rover operations. In
PlanRob’16.
Ilsen, S.; Gerrits, D.; Vrancken, D.; Naudet, J.; Mellab,
K.; Santandrea, S.; Laroche, T.; and Verheyden, A. 2014.
PROBA-V: The example of onboard and onground auton-
omy. In AIAA/USU’14.
Jónsson, A. K.; Morris, P.; Muscettola, N.; and Rajan, K.
2000. Planning in interplanetary space: Theory and practice.
In AIPS’00.
Khatib, L.; Frank, J.; Smith, D.; Morris, R.; and Dungan, J.
2013. Interleaved observation execution and rescheduling
on Earth observing systems. In the ICAPS’03 Workshop on
Plan Execution.
Knight, R.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. CASPER: Space exploration through
continuous planning. Intelligent Systems IEEE 16(5):70–75.

Lemai, S., and Ingrand, F. 2004. Interleaving temporal plan-
ning and execution in robotics domains. In AAAI’04.
Maillard, A.; Verfaillie, G.; Pralet, C.; Jaubert, J.; Sebbag, I.;
and Fontanari, F. 2015. Postponing decision-making to deal
with resource uncertainty on Earth-observation satellites. In
IWPSS’15.
Maillard, A.; Verfaillie, G.; Pralet, C.; Jaubert, J.; Sebbag,
I.; Fontanari, F.; and L’Hermitte, J. 2016. Adaptable
data download schedules for agile Earth-observing satellites.
Journal of Aerospace Information Systems 13(8).
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2008. A deliberative architecture for AUV
control. In ICRA’08.
Muscetolla, N.; Nayak, P. P.; Pell, B.; and Williams, B. 1998.
Remote Agent: to boldly go where no AI system has gone
before. Artificial Intelligence 103:5–47.
Muscettola, N.; Dorais, G.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. IDEA: Planning at the core of autonomous
reactive agents. In IWPSS’02.
Ocón, J.; Buckley, K.; Colmenero, F.; Bensalem, S.;
Dragomir, I.; Karachalios, S.; Woods, M.; Pommerening,
F.; and Keller, T. 2018. Using the ERGO framework for
space robotics in a planetary and an orbital scenario. In
ISAIRAS’18.
Policella, N.; Smith, S.; Cesta, A.; and Oddi, A. 2004.
Generating robust schedules through temporal flexibility. In
ICAPS’04.
Pouly, J.; Jouanneau, S.; and Olhagaray, P. 2014. Au-
tonomous mission planning in space : Mission benefits and
real-time performances. In ERTS2.
Pralet, C.; Verfaillie, G.; Maillard, A.; Hébrard, E.; Joze-
fowiez, N.; Huguet, M.-J.; Desmousceaux, T.; Blanc-
Paques, P.; and Jaubert, J. 2014. Satellite data download
management with uncertainty about the generated volumes.
In ICAPS’14.
Pralet, C.; Infantes, G.; and Verfaillie, G. 2013. A generic
constraint-based local search library for the management of
an electromagnetic surveillance space mission. In ICAPS’13
Application showcase.
Pralet, C. 2017. An incomplete constraint-based system for
scheduling with renewable resources. In CP’17.
Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the Mars 2020 rover. In IWPSS’17.
Rabideau, G.; Chien, S.; and Laren, D. M. 2009. Tracatable
goal selection with oversubscribed resources. In IWPSS’09.
Verma, V.; Gaines, D.; Rabideau, G.; Schaffer, S.; and Joshi,
R. 2017. Autonomous science restart for the planned Eu-
ropa mission with lightweight planning and execution. In
IWPSS’17.
Victoria, J. M. D.; Yeomans, B.; Gao, Y.; and Stryk, O. V.
2015. Autonomous mission planning and execution for two
collaborative mars rovers. In ASTRA’15.
Washington, R.; Golden, K.; and Bresina, J. 2000. Plan
execution, monitoring, and adaptation for planetary rovers.
Electronic Transactions on Artificial Intelligence 4(A).

Woods, M.; Long, D.; Baldwin, L.; Aylett, R.; Wilson, G.;
Ward, R.; and Vituli, R. 2006. On-board planning and
scheduling for the ExoMars mission. In DASIA’06.
Wörle, M., and Lenzen, C. 2013. Ground assisted onboard
planning autonomy with VAMOS. In IWPSS’13.

