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Terrain-aided navigation with an atomic gravimeter

Cold atom interferometer is a promising technology to obtain a highly sensitive and accurate absolute gravimeter. With the help of an anomalies gravity map, local measurements of gravity allow a terrain-based navigation. This paper follows the one we published in Fusion 2017. Based on an atomic gravimeter we present a method to map the gravity anomaly. We propose a modification of the Laplace-based particle filter so as to make it more robust. Some simulation results demonstrate a better robustness of the proposed filter.

I. INTRODUCTION

This paper follows the one published in Fusion 2017 [START_REF] Musso | Absolute gravimeter for terrain-aided navigation[END_REF]. The purpose of the paper is to provide a solution for surface or sub-surface navigation by Terrain Matching using an absolute gravimeter. Application of atom interferometry to the inertial navigation sensors has been proposed in [START_REF] Hugh | Submarine navigation applications of atom interferometry[END_REF]. ONERA has developed a compact and robust atom gravimeter, with the support of the French Defense Agency (DGA). Dedicated to measure gravity aboard a boat or a plane, the GIRAFE2 atom gravimeter considered is similar to the one described and used in reference [START_REF] Bidel | Compact cold atom gravimeter for field applications[END_REF].

In section II, we present the improved absolute atom gravimeter GIRAFE2. It is based on the acceleration measurement of a free falling gas of ultra-cold atoms thanks to atom interferometry. In section III, we propose a method for mapping the gravity anomaly. Based on this atomic gravimeter and with the aid of an external sensor delivering the height of the carrier, we develop a method to extract the gravity anomaly. In section IV, we present an improvement of the Laplace-based particle filter for terrain-based navigation [START_REF] Musso | Absolute gravimeter for terrain-aided navigation[END_REF]. It is based on a multimodal importance function with a heavy tail. Finally, in section V, some simulation results demonstrate, in case of high terrain ambiguities, the robustness of the proposed filter compared with the previous one.

II. ABSOLUTE GRAVIMETER BASED ON ATOM

INTERFEROMETRY

The inertial sensor used in numerical simulations provides an absolute measurement of the acceleration (its continuous value and all temporal variations), with the help of a gyrostabilized platform which maintains an atom accelerometer aligned with the gravity direction despite angular movements of the carrier (Fig. 1). The GIRAFE2 atom gravimeter considered is similar to the one described and used in reference [START_REF] Bidel | Compact cold atom gravimeter for field applications[END_REF]. It is based on the acceleration measurement of a free falling gas of ultra-cold atoms thanks to atom interferometry [START_REF] Ch | Atomic interferometry with internal state labelling[END_REF], [START_REF] John | Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry[END_REF]. Precisely, this absolute gravimeter is measuring vertical proper acceleration. It is absolute in the sense that it provides absolute values of acceleration of free-falling rubidium atoms with respect to the baseplate of the instrument.

The test mass is produced from a magneto-optical trap loaded from a background vapor. After the trap loading, a stage of optical molasses and a microwave selection, we obtain a cloud of few millions of atoms at a temperature about few µK. The acceleration of the free falling cloud of ultra-cold atoms is then measured by light pulse atom interferometry (Fig. 2). After this sequence, the interference signal is then obtained by measuring the population of atoms in the two hyperfine states corresponding to the two output ports of the interferometer. This measurement is obtained by a standard fluorescence method. The proportion P of atoms in a specific state can be written as

P = P m - C 2 cos 4πT 2 λ Γ (1) 
where P m is a constant called offset of the fringe, C is an experimental constant called contrast, λ is the laser wavelength, T the time separation between Raman laser pulses and Γ is the acceleration of the atoms along the direction of the laser beam. This simple relation ( 1) is well verified with no drift or unknown bias at sub mGal level [START_REF] Gillot | Stability comparison of two absolute gravimeters: optical versus atomic interferometers[END_REF] (1mGal = 10 -6 g ≈ 10 -5 m/s 2 ). This new technology has already been used to build absolute static gravimeter and demonstrates better or equal performances than classical absolute gravimeter. Typical stability demonstrated in this kind of instrument is largely below 100 µ Gal/Hz 1/2 in static mode. Recent tests have shown the possibility to operate this next generation of inertial sensors on a moving platform such as aircrafts or marine ship [START_REF] Geiger | Detecting inertial effects with airborne matter-wave interferometry[END_REF], [START_REF] Bidel | Absolute marine gravimetry with matter-wave interferometry[END_REF].

For instance, considering marine ship, due to higher vibration level aboard, absolute measurement at a level of 1mGal / Hz 1/2 could be awaited under calm sea level. 

III. A METHOD TO MAP THE GRAVITY ANOMALY WITH THE ATOMIC GRAVIMETER

The absolute gravimeter described in section II provides local gravity measurements. In the earth-centered, earth-fixed coordinate system (ECEF), the highly nonlinear vertical acceleration model is expressed as follows

Γ = -g(φ, λ) + z + γ c (λ) + 2 V × Ω(λ), u z γe→ Eötvös effect (2)
where γ c is the centripetal acceleration

γ c = V 2 E R(λ) -z + V 2 N R(λ)(1-e 2 ) (1-e 2 sin 2 (λ)) -z (3) 
We assume an ellipsoidal earth modeling. ., . denotes the inner product and × the cross product. φ is the longitude and λ the latitude. g(φ, λ) is the modulus of the local gravity acceleration vector, V = [V N , V E , V Z = ż] T is the carrier speed and u z is a unit down vertical vector provided by the gyro-stabilized platform (Section II). z is the vertical acceleration due to the carrier movement. Ω(λ) = ω [cos(λ), 0, -sin(λ)]

T is the earth's axis of rotation expressed in the ECEF frame, ω being the earth rotation speed. R(λ) is Earth's radius at latitude λ and e is the earth eccentricity.

The local gravity acceleration g(φ, λ) is expressed as the sum of the standard gravity g 0 and the gravity anomaly g a (φ, λ) (Fig. 3).

       g 0 (λ) =
a g e cos 2 (λ) + b g p sin 2 (λ)

a 2 cos 2 (λ) + b 2 sin 2 (λ) g(φ, λ) = g 0 (λ) + g a (φ, λ) (4) 
where a and b are the equatorial and polar semi-axes, and where g e , g p are the gravity accelerations at the equator and poles respectively. For the purpose of navigating, developing gravity anomaly maps is required. The use of a carrier instrumentation to obtain coverage over an extended geographical area is a convenient approach in terms of fast mapping. The aim of this section is to propose a method to estimate the gravity anomaly g a . The difficulty of the experimentation aboard a carrier lies in the spectrum of the acceleration z(t) (2) to which the atomic gravimeter (AG) is subjected. A suitable location of the AG suspension should be not far from the carrier's center of mass. To pick up g a from the measure Γ(t) (2) it is required to estimate z(t) accurately. We propose a method to determine the vertical acceleration z(t) by means of an external measurement of z(t).

A. Mapping the gravity anomaly

The approach described here responds to the scenario where the knowledge of the displacement z according to the local vertical direction is available and accurately known. The vertical acceleration z(t) signal is first determined before extracting g a from the gravimeter's measure Γ(t) (2). We model z(t) as a polynomial of degree n ≥ 2. We estimate the coefficient a = (a 1 , ..., a n+1 ) T of this polynomial by means of the weighted least square method (WLS). Let us introduce the N-vector of the vertical measurements z m (t) up to time t

Z m (t) = [z m (t -(N -1)∆t), z m (t -(N -2)∆t), ..., z m (t)] T (5) 
The WLS leads to minimize the following criterion w.r.t a

min a (Z m (t) -Ha) T R (Z m (t) -Ha) (6) 
where the matrix R is a positive semi-definite matrix such that the weights of the measures z m (t) are greater around the center of Z m (t) and where

H = [H i,j
] for i = 1, ..., N and j = 1, ..., n + 1

H i,j = (i -1) j-1 ∆t j-1 (7) 
The solution of ( 6) is the following

â = K Z m K = (H T RH) -1 H T R (8)
The acceleration zc is estimated at the midpoint

t c = t-∆t c = t -(N +1)∆t 2 as follows      ẑc = G â G = [G 1 , ..., G n+1 ] with G 1 = G 2 = 0 and G i = i(i -1)∆t i-2 c
for i ≥ 2 (9) Indeed, the acceleration ẑc is determined by the second derivative of the fitted polynomial with coefficient â at time t c . The following equation allows us to extract g a g a (t) = zc (t) -g 0 (t) -Γ(t) -γ e (t) + ν(t) [START_REF] Murangira | Proposal distribution for particle filtering applied to terrain navigation[END_REF] where zc (t) is estimated by ( 9), g 0 is the standard gravity (4), γ e is the Eötvös effect (2) and where Γ is provided by the atomic gravimeter (2). ν(t) is a white gaussian noise. The direct extraction of g a , based on this equation, gives an inaccurate estimation. The signal evolution of the gravity anomaly has a very low frequency w.r.t the error signal affecting z. In this context, a low band Kalman filter based on the following 2nd order dynamic is proposed for accurately estimating g a (t).

ga + 2 ξω ġa + ω 2 g a = η (11) 
η is a white gaussian noise, ω is the pulsation depending on the carrier velocity and ξ is a damping coefficient. In order to establish the map (such as Fig. 3), it is necessary to know the position and the velocity of the carrier, the standard gravity g 0 (4), and the Eötvös effect γ e (2).

B. Simulation results

As an example, a typical z profile during 900s of a carrier at a speed of 5m/s is illustrated on Fig. 4. The carrier is subjected to an anomaly generated by a second order stochastic process [START_REF] Sanjeev | A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[END_REF] having a pulsation ω close to 5.10 -5 rd/s. The power spectral density of the noise η is such that the output of this process gives a 30 mGal s.t.d which is typical for anomaly signal variation (Fig. 5). The discretization of the process is done with a sample frequency 1/∆t = 10 Hz (5). The degree of the polynomial fitting z is n = 8. The size of the window ( 5) is 2∆T c = 10.2s (N = 101). The s.t.d. of the noises affecting the measurement of z(t) and the gravimeter outputs Γ(t) are equal respectively to 0.01m and 1 mGal.

Simulations show that the s.t.d of z(t) -ẑ(t) is 383 mGal (Fig. 4). The error of the estimated anomaly obtained by Kalman filtering [START_REF] Sanjeev | A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[END_REF] shows a s.t.d equal to 0.62 mGal (Fig. 6) with a negligible bias. The estimation error of g a is a colored noise, mainly due to the smoothing method. It is clear that the performance crucially depends on the accuracy of the measurement of z(t). 

IV. GRAVITY ANOMALIES FOR TERRAIN-AIDED

NAVIGATION

The measurement equation is based on the model (2). The carrier is here a boat: the vertical acceleration zk is considered negligible when the integration time producing the gravity measurement is long enough. The term γ c will also be ignored as it is negligible in comparison with the anomalies map errors. This leads to the simplified measurement equation where g(φ k , λ k ) is defined in [START_REF] Ch | Atomic interferometry with internal state labelling[END_REF]. k is a Gaussian with s.t.d σ g . It is assumed that the carrier follows a constant heading course (rhumb line) with a constant speed at zero altitude. The state is as follows

Y k = -g(φ k , λ k ) + 2 V × Ω(λ k ), u z + k (12) 
X k = [φ k , λ k , V N , V E ] T (13)
where φ k and λ k are the longitude and the latitude at time (k) and where V N and V E are the north and east velocities respectively. The vertical velocity is supposed to be null. The dynamics is non-linear and is given by

   λ k = λ k-1 + ∆T V R cos(K) φ k = φ k-1 + [ϕ(λ k ) -ϕ(λ k-1 )] tan(K) (14) 
where ϕ(λ) = log 1+sin(λ) cos(λ)

, where ∆T is the sampling period and K is the heading relative to the north.

In the case of a large uncertainty in the initial state, it is necessary to use a nonlinear filter since the measure (12) is highly nonlinear and multimodal. The particle filter is very convenient and was introduced for the terrain-aided navigation in [START_REF] Bergman | Recursive bayesian estimation[END_REF] and was improved later for example in [START_REF] Murangira | Proposal distribution for particle filtering applied to terrain navigation[END_REF]. A large variety of particle filters (PF) has been proposed (see tutorial [START_REF] Sanjeev | A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[END_REF]). We recall the basics of the PF and we propose an improvement of the Multimodal Laplace Particle Filter presented in [START_REF] Musso | Absolute gravimeter for terrain-aided navigation[END_REF]. This filter has proved to be effective in a multimodal context for the TBD (Track Before Detect) [START_REF] Bui | Approximation particulaire et méthode de laplace pour le filtrage bayésien[END_REF], [START_REF] Murangira | Nouvelles approches en filtrage particulaire. application au recalage de la navigation inertielle[END_REF], [START_REF] Musso | Improvement of the laplace-based particle filter for track-before-detect[END_REF].

A. Generic particle filter

Consider the following dynamical and measurement model.

X k = f k (X k-1 ) + η k Y k = h k (X k ) + k ( 15 
)
where f k and h k being possibly non-linear functions and where k , η k are zero mean Gaussian noises. The aim of the PF is to estimate the posterior density

p k (x) P (X k = x|Y 1:k ) (16) 
The PF estimates the state given all the measurements until time (k) by means of a Dirac mixture of N weighted particles

X i k , w i k p k (x) ≈ N i=1 w i k δ x=X i k pk (x) (17) 
The particles X i k evolve according the dynamical model ( 15) and are corrected through the likelihood

Ψ k (x) P (Y k |X k = x) (18) 
The following steps summarize the Sampling Importance Resampling algorithm (SIR) with prior proposal [START_REF] Neil J Gordon | Novel approach to nonlinear/non-gaussian bayesian state estimation[END_REF]:

1) Initialisation: sample X i 0 ∼ p(x 0 ) for i = 1, . . . , N and set

ω i 0 = 1 N 2) Prediction: sample X i k ∼ p X k = x|X i k-1
for i = 1, . . . , N 3) Measurement update:

• compute the weights ωi k = ω i k-1 Ψ k (X i k ) • set ω i k = ωi k N j=1 ωj k • compute Xk = N i=1 ω i k X i k 4) Resampling step: discard/multiply particles X i k ac- cording to high/low weights ω i k
This PF algorithm can be significantly improved when considering importance functions (IF) which take account the current measurement such as the Laplace IF. We recall briefly this algorithm, details are provided in [START_REF] Musso | A laplacebased particle filter for track-before-detect[END_REF], [START_REF] Musso | Absolute gravimeter for terrain-aided navigation[END_REF].

B. Laplace-based importance function

We ignore for a while the time index (k). Consider an unknown d-dimensional state x distributed according to a prior q and observed through a measurement

y = h(x) + (19) 
h being a non-linear function and a zero mean Gaussian noise. The prior q is not expressed in closed form, only a sample from q is available (it is the case in particle filtering). We suppose in this section that the posterior has a predominant mode. We recall the Laplace method [START_REF] Bui | Multidimensional laplace formulas for nonlinear bayesian estimation[END_REF] which is useful to design an efficient proposal function. The likelihood p(y|x) is denoted by Ψ(x), the posterior is written as

P (X = x|Y = y) p(x|y) ∝ Ψ(x) q(x) (20) 
We wish to compute an estimate of the posterior. The importance sampling (IS) estimator p of p(x|y) is obtained by drawing N samples X i from a proposal distribution q so that p(x|y)

≈ N i=1 w i δ x=X i p(x) (21) 
where

w i = wi N i=1
wi with the following importance weights

wi = Ψ(X i )q(X i ) q(X i ) (22)
The choice of the proposal distribution is crucial for controlling the Monte Carlo error which can be large if the prior and the likelihood have little overlap (Fig. 7). This is the case for example if the gravity anomalies measurements are very accurate (which is the case with the atom gravimeter).

In this case, the information contained in the measurement function is very high and most samples fall in a region where the likelihood is low. It is well-known that the optimal importance function is the posterior qopt (x) = p(x|y). For this purpose, we choose a proposal, for instance a Gaussian, which has moments nearly equal to those of the posterior. The posterior expectation E[X|Y ] and the posterior covariance matrix V[X|Y ] are well approximated by the Laplace formula if the posterior has a predominant mode. The following approximations are in general sufficient [START_REF] Musso | Improvement of the laplace-based particle filter for track-before-detect[END_REF] Fig. 7. Small overlap between the prior (red) and the narrow likelihood (blue). Posterior (green)

E[X|Y ] ≈ x V[X|Y ] ≈ Ĵ-1 ( 23 
)
where x is the maximum a posteriori (MAP)

x = arg max

x∈R d {Ψ(x) q(x)} (24) 
Assuming that the prior q(x) is Gaussian the posterior information matrix J can be approximated by

Ĵ ≈ -(log Ψ) (x) + P -1 ( 25 
)
where P is the covariance matrix of the prior q. The proposal density q is chosen so that it has x as mean and Ĵ-1 as covariance matrix

q ∼ q (x, Ĵ-1 ) (26) 
Of course, q must be chosen among densities that are easy to sample from. A good criterion for evaluating the accuracy of the approximation (21) is the asymptotic variance of the unnormalized weights wi [18]

V(q) ≈ 1 N   R d Ψ(x) 2 q(x) 2 q(x) dx ( R d Ψ(x) q(x)dx) 2 -1   ( 27 
)
It is suitable for robustness reasons to chose q close to the posterior with heavy tails. Indeed, if, for example, q and q are Gaussian in (27), q 2 /q can be unbounded if the s.t.d of q is too small. Therefore, in the sequel, we take q as a multivariate Student distribution.

t d (x; ν, µ, Σ) = Γ( ν+d 2 )(πν) -ν 2 |Σ| -1/2 Γ( ν 2 ) [1 + (x -µ) T Σ -1 (x -µ)/ν]
ν+d 2

(28) The smaller the value of ν, the heavier tail is.

C. Approximation of the MAP adapted to the gravity measurement model

In most filtering problems, only a small part of the state vector X k = [x 1,k , x 2,k ] T contributes non linearly in the measurement equation:

h k (X k ) = h k (x 1,k , x 2,k ) = h 1 (x 1,k ) + M (x 1,k ) x 2,k (29)
This is the case in our context where the latitude and the longitude (φ k , λ k ) are the nonlinear contribution in the measurement equation [START_REF] Bui | Approximation particulaire et méthode de laplace pour le filtrage bayésien[END_REF]. The velocities (V N , V E ) contribute linearly in the measurement equation. Splitting the state as

X k = [ φ k , λ k x 1,k , V N , V E x 2,k ] T
the measurement equation ( 12) can be expressed as follows:

Y k = -g(φ k , λ k ) + 2 V × Ω(λ k ), u z + k = h 1 (x 1,k ) + M (x 1,k ) x 2,k + k = h k (X k ) + k where M (x 1,k ) = -2 ω u T z   0 sin(λ k ) -sin(λ k ) 0 0 cos(λ k )   ( 30 
)
We aim to approximate the MAP xk defined as:

xk = arg max x∈R 4 {Ψ k (x) q k (x)} (31) 
where Ψ k the likelihood [START_REF] Del | Genealogical and interacting particle systems with applications, probability and its applications[END_REF] and the q k is the prior [START_REF] David T Sandwell | New global marine gravity model from cryosat-2 and jason-1 reveals buried tectonic structure[END_REF].

The nonlinear contribution can be handled separately in the maximization (31) under the Gaussian assumption on the prior q k . This leads to the following algorithm [START_REF] Musso | Improvement of the laplace-based particle filter for track-before-detect[END_REF] which approximates the MAP.

1) Minimize the conditional criterion with respect to x

1 x1 = arg min x1∈R 2 G(x 1 ) 2) Evaluate x2 x2 = γ(x 1 ) (32) 
with x 1 ∈ R 2 and where G(x 1 ), described in [START_REF] Musso | Absolute gravimeter for terrain-aided navigation[END_REF], depends entirely on x 1 and γ is an explicit function of x 1 . The prior q k (x) = q k (x 1 , x 2 ) is assumed to be Gaussian. The MAP (31) is simply estimated by xk = [x 1 , x2 ] T . Finally, the initial 4dimensional maximization (24) to get the MAP boils down to a 2-dimensional minimization.

D. Improvement of the MM Laplace Particle Filter

In order to address the problem of multimodality due to ambiguities of the gravity anomalies map, we can use a multimodal importance function. At time (k) the posterior has the following form

p(X k = x k |Y k ) = p(x 1,k , x 2,k |Y k ) ∝ Ψ k (x 1,k , x 2,k ) q k (x 1,k , x 2,k ) (33) 
This posterior can be multimodal, so we need to compute m local MAP xj k for j = 1, • • • , m of the posterior (33). This is done in 2 steps as described in (32). We maximize first the 2dimensional criterion G(x 1,k ) = G(φ k , λ k ) over the latitudes and the longitudes to get m local MAP xj 1,k . The domain of this maximization is restricted to the confidence ellipse (uniform mesh) given by the predicted covariance matrix P k . P k is computed empirically with the predicted particles. Then, we compute (32) xj 2,k = γ(x j 1,k ) (which corresponds to the north and east velocities) to get the full components of the local MAP

xj k = (x j 1,k , xj 2,k ).

The proposed importance function q2

k consists in a mixture of m Student distributions (28) centered on the local MAP

           q1 k (x) = m j=1 ρ j k φ x, xj k , [ Ĵj k ] -1 q2 k (x) = 1 m m j=1 t d x, xj k , Σ k (34) 
where Σ k = ν-2 ν P k such that the covariance of t d is equal to P k and where q1 k is defined in [START_REF] Musso | Absolute gravimeter for terrain-aided navigation[END_REF] with φ being a Gaussian. Laplace-based resampling, i.e generating particles Xi k according to qj k (x) (34), is performed only in case of degeneracy of the weights w i k . It replaces the traditional (multinomial) resampling. This degeneracy is detected by the effective sample size of particles

N ef f = 1 N i=1 [w i k ] 2
when it is less than a threshold N th [START_REF] Kong | Sequential imputations and bayesian missing data problems[END_REF]. The evaluation of q k ( Xi k ) needed for computing the weights ( 22) is done by taking the prior equal to a Student distribution (28) centered on the mean of the predicted particles µ k with Σ k = ν-2 ν P k . The algorithm of the proposed PF is described below. 1) Initialisation (k=1) For i = 1, . . . , N . Generate the particles

X i k-1 = (x i 1,k-1 , x i 2,k-1
) (positions and velocities) according to the prior. with w i k-1 ≡ 1/N

2) Prediction For i = 1, . . . , N . Propagate the particles by applying the carrier dynamics ( 14)

X i k|k-1 = f k (X i k-1 ) + η i k
3) Correction For i = 1, . . . , N . Compute the likelihood (12) Ψ k (X i k|k-1 ) = P (Y k |X i k|k-1 ) and the weights 

w i k ∝ Ψ k (X i k|k-1 ) w i k-1 such that N i=1 w i k = 1. Compute N ef f = 1 N i=1 [w i k ] 2 * If N ef f ≥ N th . The corrected particles are X i k , w i k = X i k|k-1 , w i k * If N ef f < N th then
∝ Ψ k ( Xi k ) q k ( Xi k ) q2 k ( Xi k ) such that N i=1 wi k = 1 with the prior q k ∼ t d (., µ k , Σ k ) The corrected particles are X i k , w i k = Xi k , wi k 4) State estimation The state is estimated by Xk = N i=1 w i k X i k Go to the prediction step k → k + 1 V. SIMULATION RESULTS
We evaluate the performances of the proposed algorithm compared to the original one [START_REF] Musso | Absolute gravimeter for terrain-aided navigation[END_REF]. For that purpose, we simulate 2 trajectories generating anomaly gravity signals which can be problematic for a particle filter (Fig. 10). The anomaly gravity map (Fig. 8) covers the zone [-9

• -4 • ]x[46 • 49 • ]
in the longitude-latitude plan. This map is extracted from the map presented in [START_REF] David T Sandwell | New global marine gravity model from cryosat-2 and jason-1 reveals buried tectonic structure[END_REF] and has spatial resolution of 12 arc second (which corresponds to 400m at this latitude). Below, we present the characteristics of the 2 scenarios and of the parameters of the 2 filters. 

Scenario 1

The zone where the trajectory 1 starts presents severe ambiguities: many carrier trajectories starting from the uncertainty zone collect a similar anomaly measurements history (taking account the measurement noise) for the first 20 iterations (Fig. 9). At the beginning of this trajectory, there is a strong variation of the gravity anomaly (Fig. 10) which provides a great (local) information to the filter. But, in this context where the ambiguity is strong and where the initial uncertainty zone is large, we expect the filter to have a poor behavior. Indeed, we have observed 25 divergences for algorithm 1 and 11 divergences for algorithm 2. The latter shows a better robustness in this difficult quasi unobservable context. The improved filter can estimate temporarily a wrong trajectory but, due to the heavy tail of the IF, it can join the true one. We can see (Fig. 9) that some particles generated by the IF act as a kind of "trailblazer". The support (99.9 confidence ellipse) of the mesh is enlarged. The RMSE for the 4 components of the state vector is computed for the 2 algorithms only on the convergent trials (Fig. 11 &12). During the first 30 iterations the anomaly gravity signal varies widely (Fig. 10) which leads to a fast convergence of the filters. Then the signal varies slowly and the estimation does not improve. We observe that the latitude is better estimated. This is due to the fact that the Eötvös effect, which depends on the latitude provides acceleration information (2) [START_REF] Musso | Absolute gravimeter for terrain-aided navigation[END_REF]. The Laplace-based resampling rate for algorithm 1 is about 21% and 15% for algorithm 2. For the 60 iterations, the computational cost is 13 s for the algorithm 1 and 9 s for the algorithm 2 on a 2.5 GHz Intel Core I5. The trajectory 2 (Fig. 8) shows a slowly varying anomaly gravity signal (Fig. 10). However, the zone is less ambiguous that the one of the scenario 1. For the two algorithms we have observed 2% of divergences. The RMSE of these algorithms are comparable (Fig. 13 & 14) for the 4 components. The Laplace-based resampling (section ??) rate for algorithm 1 is about 25% and 10% for algorithm 2. For the 60 iterations, the computational cost is 11 s for algorithm 1 and 6 s for algorithm 2.

The algorithm 2 offers a better robustness with a slightly better RMSE. Moreover, as the Laplace-redistributions are less frequent for this algorithm, the computational cost is reduced. 
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 1 Fig. 1. Cold atom gravimeter prototype (GIRAFE2), aboard Norlandair Twin-Otter during an airborne gravimetric survey.
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 2 Fig. 2. Spatio-temporal diagram of the atomic free-fall. Output signal is simply proportional to the sinus of the absolute acceleration with a welldefined period.
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 3 Fig. 3. Gravity anomalies. North atlantic map. Bureau Gravimétrique International (BGI). View of the mid-Atlantic ridge
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 6 Fig. 6. Time history of the gravity anomaly error after Kalman filtering
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 8 Fig. 8. Anomalies gravity map with the carrier's trajectories
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 9 Fig. 9. illustration of the behavior of the heavy-tailed importance function (iterations 7 and 8)
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 10 Fig. 10. Time history of the gravity anomaly for the 2 scenarios
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 11 Fig. 11. Scenario 1. Position RMSE comparison of algorithm 1 (left figure) with algorithm 2 (right figure).
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 12 Fig. 12. Scenario 1. Velocity RMSE comparison of algorithm 1 (left figure) with algorithm 2 (right figure).

Fig. 13 .

 13 Fig. 13. Scenario 2. Position RMSE comparison of algorithm 1 (left figure) with algorithm 2 (right figure).

Fig. 14 .

 14 Fig. 14. Scenario 2. Velocity RMSE comparison of algorithm 1 (left figure) with algorithm 2 (right figure).VI. CONCLUSIONWe present the new version of the absolute gravimeter based on atom interferometry developed by ONERA. Based on it and on external measurements of the height of the carrier, we propose a method to map the gravity anomaly. The modified Laplace-based particle filter proposed for terrainbased navigation shows a better robustness in difficult contexts.
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