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Abstract—The evidence combination is a kind of decision-
level information fusion in the theory of belief functions. Given
two basic belief assignments (BBAs) originated from different
sources, one can combine them using some combination rule,
e.g., Dempster’s rule to expect a better decision result. If one
only has a combined BBA, how to determine the original two
BBAs to combine? This can be considered as a defusion of
information. This is useful, e.g., one can analyze the difference
or dissimilarity between two different information sources based
on the BBAs obtained using evidence decombination. Therefore,
in this paper, we research on such a defusion in the theory of
belief functions. We find that it is a well-posed problem if one
original BBA and the combined BBA are both available, and it
is an under-determined problem if both BBAs to combine are
unknown. We propose an optimization-based approach for the
evidence decombination according to the criteria of divergence
maximization. Numerical examples are provided illustrate and
verify our proposed decombination approach, which is expected
to be used in applications such the difference analysis between
information sources in information fusion systems when the
original BBAs are discarded, and performance evaluation of
combination rules.

Index Terms—information fusion, decombination, belief func-
tions, combination, divergence maximization

I. INTRODUCTION

The theory of belief functions, which is also known as the

Dempster-Shafer evidence theory [1], has been widely used

in many information fusion based applications including the

pattern classification [2], [3], multi criteria decision making

(MCDM) [4], fault diagnosis [5] and image processing [6].

The information fusion in the theory of belief functions is

implemented by evidence combination based on some combi-

nation rule, e.g., the well-known Demspter’s rule. There have

also emerged various alternative combination rules including

Yager’s rule [7], Dubois & Prade’s rule [8], Smets’ rule [9],

Murphy’s rule [10], Florea’s rule [11], proportional conflict

redistribution 5 (PCR5), and PCR6 [12], [13], etc.

The inverse process of the information fusion, which can

also be called as information “defusion” or “decombination”,

is also meaningful in information processing and analysis.

Like the blind source separation (BSS) [14] and independent
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component analysis [15], which aim to recover independent

sources given only the observations that are unknown linear

mixtures of the unobserved independent source signals, can

be considered as a process of information decombination. One

can analyze the original information sources and judge their re-

lationship based on the results obtained using decombination.

The community of belief functions theory seldom research

on the information decombination problem, which means that

given a combined BBA, how to determine the original BBAs

for the combination. In Smets’ work [16], the concept of

decomposition of evidence was proposed, which focuses on

decomposing any BBA (not always assumed to a combined

BBA) into many simple support function of BBAs. He also

proposed the inverse operation of evidence combination, which

only focus on the following case: given a combined BBA and

one BBA participating the combination, how to restore another

BBA participating the combination. In this paper, we focus

on the information decombination (separation) or evidence

decombination in the theory of belief functions. For simplicity,

here we only concern the evidence decombination for two

information sources. We find that given the combined BBA

together with one original BBA, it is well-posed, that is, the

other BBA can be uniquely determined. However, it turns out

to be an under-determined problem (with multiple solutions)

if both BBAs participating the combination are unknown and

the combined BBA is given. The optimization (maximization)

based decombination method is proposed accordingly, where

the objective function is the distance between the two orig-

inal BBAs (unknown variables to determine). Examples and

experiments are provided to illustrate and verify our proposed

information decombination method for the belief function.

II. BASICS OF BELIEF FUNCTIONS THEORY

The basic concept in the theory of belief functions [1] is the

frame of discernment (FOD), which is determined by what

we want to know and what we know. Elements in an FOD

are mutually exclusive and exhaustive. m : 2Θ → [0, 1] is

defined as a basic belief assignment (BBA, also called a mass

function) defined on the FOD Θ satisfying

∑

A⊆Θ
m(A) = 1, m(∅) = 0 (1)



where 2Θ denotes the powerset of Θ. if ∀m(A) > 0, then A
is called a focal element of m(·). If a BBA only has singleton

focal elements, then it is called a Bayesian BBA.

Given a BBA m(·), its corresponding belief function (Bel)
and plausibility function (Pl) are respectively defined as

Bel(A) =
∑

B⊆A
m(B) (2)

Pl(A) =
∑

A∩B 6=∅
m(B) (3)

The belief Bel(A) represents the justified specific support for

the focal element (or proposition) A, while the plausibility

Pl(A) represents the potential specific support for A. The

length of the belief interval [Bel(A), P l(A)] represents the

imprecision degree of A.

The evidence combination is the fusion of the BBAs

originated from different sources. Two independent BBAs

m1(·) and m2(·) can be combined using Dempster’s rule of

combination [1] defined by

m(A) =











0, A = ∅
∑

Ai∩Bj=A

m1(Ai)m2(Bj)

1−
∑

Ai∩Bj=∅

m1(Ai)m2(Bj)
, A 6= ∅

(4)

Dempster’s rule in general can be considered as a multiplica-

tive and conjunctive fusion rule. Dempster’s rule of combi-

nation has been criticized for its counter-intuitive behaviors

[17], [18], especially in high conflict cases. Many alternative

combination rules have been proposed accordingly. See [12],

[19], [20] for details. Other researchers like Haenni [21] think

that the conflict results from a fault in the framing of problem.

Distance of evidence is for measuring the dissimilarity

between BBAs. The most commonly used and strict distance

of evidence is Jousselme’s distance [22] defined as follows.

dJ (m1,m2) ,

√

0.5 · (m1 −m2)
T
Jac (m1 −m2) (5)

where the elements Jac(A,B) of Jaccard’s weighting matrix

Jac are defined as

Jac(A,B) = |A ∩B|/|A ∪B| (6)

Here A, B are focal elements of m1 and m2, respectively.

Jaccard’s matrix has been proved to be positive-definite [23],

therefore, Jousselme’s distance is a strict metric satisfying

four requirements of the distance metric including the non-

negativity, non-degeneracy, symmetry, and triangular inequal-

ity.

III. EVIDENCE DECOMBINATION IN BELIEF FUNCTIONS

THEORY

The evidence combination can be considered as a procedure

of information fusion1 as shown in Fig. 1.

1or information compression because from two BBAs we get one.

Fig. 1. Evidence combination - Information Fusion.

Given a BBA obtained after the combination, if one wants to

know the possible original BBAs, then the evidence decombi-

nation is needed, which can be considered as a procedure of

information decombination as shown in Fig. 2.

Fig. 2. Evidence decombination - Information Decombination or “Defusion”.

In this paper, we focus on determining the original BBAs given

a combined BBA. First, we analyze the relationship between

the combined BBA and the original ones. For simplicity, we

only suppose that there are two original BBAs in this paper.

A. Relation between Combined BBA and Original Ones ac-

cording to Dempster’s Rule

According to the Dempster’s rule in Eq.(4), one can obtain

the following equations. Suppose that m1(·) and m2(·) are

two BBAs defined on the FOD Θ = {θ1, ..., θn}. For each

BBA, there are at most 2n−1 focal elements as shown below.

m1 m2












{θ1}
{θ2}

{θ1, θ2}
...
Θ

























{θ1}
{θ2}

{θ1, θ2}
...
Θ













Define a matrix R(k) for each k = 1, ..., 2n − 1 where

R(k)(i, j) =

{

1, if Ck = Ai ∩Bj

0, if Ck 6= Ai ∩Bj
(7)

where Ai is the focal element of m1(·), and where Bj is

the focal element of m2(·). The combined BBA is m(·) =
m1(·)⊕m2(·), and Ck is the focal element of m(·). Note that

i, j, k = 1, ..., 2n − 1. According to Dempster’s rule, the mass

assignment of focal element Ck in the combined BBA is

m(Ck) =











m1({θ1})
m1({θ2})

...

m1(Θ)











T

R(k)











m2({θ1})
m2({θ2})

...

m2(Θ)











1−K
(8)



where k = 1, ..., 2n − 1 and K =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj)
denotes the conflict coefficient. For simplicity in the sequel,

we denote the mass value vector as

m1 =





















m1({θ1})
m1({θ2})
m1({θ1, θ2})
m1({θ3})
m1({θ1, θ3})
m1({θ2, θ3})
m1(Θ)





















T

,m2 =





















m2({θ1})
m2({θ2})
m2({θ1, θ2})
m2({θ3})
m2({θ1, θ3})
m2({θ2, θ3})
m2(Θ)





















T

Then, Eq. (8) can be rewritten as

m(Ck) =
m

T
1 R

(k)
m2

1−K

1) Case I: In this case, the combined BBA m(·) is avail-

able, and both original BBAs are unknown. That is, m1(Ai)
(i = 1, ..., 2n−1) and m2(Bj) (j = 1, ..., 2n−1) are unknown

variables to determine, then the quantity of the unknown

variable is 2n − 1× 2 = 2n+1 − 2. For the BBA, there exists

2n−1
∑

i=1

m1(Ai) = 1 (9)

2n−1
∑

j=1

m2(Bj) = 1 (10)

Considering Eqs. (8)-(10), we have 2n − 1 + 2 = 2n + 1
simultaneous equations. As aforementioned, to determine all

the mass values of m1(·) and m2(·), we have 2n+1 − 2
unknown variables. That is, the quantity of the unknown

variables is larger than that of the equations. Therefore, this

is an under-determined problem with multiple solutions in

general.

2) Case II: In this case, the combined BBA m(·) and one

original BBA (e.g., m1(·)) are available, while another original

BBA (e.g., m2(·)) is unknown. To determine m2(·), we have

2n − 1 unknown variables. By considering Eqs. (8) and (10),

we have 2n simultaneous equations. That is, the quantity of the

unknown variables is less than that of the equations. Therefore,

this is an over-determined problem, and then m2(·) can be

determined uniquely.

B. Optimization Based Evidence Decombination

As aforementioned, given a combined BBA, to determine

the two original BBAs is an under-determined problem, for

which, the optimization-based approach is feasible. Then, the

key issue is to select an appropriate criterion to establish the

objective function for the optimization.

In fact, the evidence decombination is like the blind source

separation (BSS), where the divergence between different

sources are used for the optimization based source sepa-

ration, e.g, minimization of the mutual information (MMI)

[24], which represents the largest divergence. Therefore, in

this paper, we use for reference the criterion in BSS to

design the objective function in optimization based evidence

decombination. Here we use the distance of evidence to

describe the divergence between BBAs. Furthermore, we use

the simultaneous equations including the Eqs (8)-(10) together

with inequalities (to assure a legal BBA2 with the mass value

lies in [0,1]) as the constraints for the distance maximization

to implement the evidence decombination as illustrated in

Eq. (11).

max
m1,m2

dJ(m1,m2) =

√

0.5 · (m1 −m2)
T

Jac (m1 −m2)

s.t.











































m(Ck) =
m1

TR(k)
m2

1−K
2n−1
∑

i=1

m1(Ai) = 1

2n−1
∑

j=1

m2(Bj) = 1

0 ≤ m1(Ai) ≤ 1, ∀i = 1, ..., 2n − 1
0 ≤ m2(Bj) ≤ 1, ∀j = 1, ..., 2n − 1

(11)

By solving3 the constrained maximization problem in Eq. (11),

one can obtain a pair of BBAs that are farthest to each

other, and that provide the combined BBA when fusioned with

Demspter’s rule.

IV. NUMERICAL EXAMPLES OF EVIDENCE

DECOMBINATION BASED ON OPTIMIZATION

In this section we give different examples illustrating how

BBAs decombination can be obtained based on optimization

of evidence decombination.

A. Example 1

Suppose that the FOD is {θ1, θ2, θ3}. A BBA obtained after

the combination of two unknown BBAs is

m({θ1}) = 0.1,m({θ2}) = 0.2,m({θ1, θ2}) = 0.1,
m({θ3}) = 0.1,m({θ1, θ3}) = 0.1,
m({θ2, θ3}) = 0.3,m(Θ) = 0.1.

The equality constraints for the maximization problem include

m({θ1}) = 0.1 =







m1({θ1})
m1({θ2})
m1({θ1, θ2})
m1({θ3})
m1({θ1, θ3})
m1({θ2, θ3})
m1(Θ)







T

R(1)







m2({θ1})
m2({θ2})
m2({θ1, θ2})
m2({θ3})
m2({θ1, θ3})
m2({θ2, θ3})
m2(Θ)







1−K

where

R(1) =







1 0 1 0 1 0 1
0 0 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0







It can be rewritten to a simpler form as

m({θ1}) = 0.1 =
m1

TR(1)
m2

1−K

For other focal elements,

m({θ2}) = 0.2 =
m1

TR(2)
m2

1−K

2to obtain admissible BBAs with values in [0,1] and their sum equals to
one.

3Here we use the global optimization toolbox in MatlabTM .



where

R(2) =







0 0 0 0 0 0 0
0 1 1 0 0 1 1
0 1 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 0 0 0 0 0







m({θ1, θ2}) = 0.1 =
m1

TR(3)
m2

1−K

where

R(3) =







0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0







m({θ3}) = 0.1 =
m1

TR(4)
m2

1−K

where

R(4) =







0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 0 1 0 1 0
0 0 0 1 1 0 0
0 0 0 1 0 0 0







m({θ1, θ3}) = 0.1 =
m1

TR(5)
m2

1−K

where

R(5) =







0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0 0







m({θ2, θ3}) = 0.3 =
m1

TR(6)
m2

1−K

where

R(6) =







0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 0







m(Θ) = 0.1 =
m1

TR(7)
m2

1−K

where

R(7) =







0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1







and the two equations in Eqs.(9) and Eqs.(10). The inequality

constraints are
0 ≤ m1({θ1}) ≤ 1
0 ≤ m1({θ2}) ≤ 1
0 ≤ m1({θ1, θ2}) ≤ 1
0 ≤ m1({θ3}) ≤ 1
0 ≤ m1({θ1, θ3}) ≤ 1
0 ≤ m1({θ2, θ3}) ≤ 1
0 ≤ m1(Θ) ≤ 1

and
0 ≤ m2({θ1}) ≤ 1
0 ≤ m2({θ2}) ≤ 1
0 ≤ m2({θ1, θ2}) ≤ 1
0 ≤ m2({θ3}) ≤ 1
0 ≤ m2({θ1, θ3}) ≤ 1
0 ≤ m2({θ2, θ3}) ≤ 1
0 ≤ m2(Θ) ≤ 1

According to the constrained maximization in Eq. (11), one

can obtain two BBAs as follows:

ma({θ1}) = 0, ma({θ2}) = 0,ma({θ1, θ2}) = 0.0323,
ma({θ3}) = 0.1612, ma({θ1, θ3}) = 0.1612,
ma({θ2, θ3}) = 0.4840, ma(Θ) = 0.1613.

and

mb({θ1}) = 0.0834, ma({θ2}) = 0, mb({θ1, θ2}) = 0.3666,
mb({θ3}) = 0,mb({θ1, θ3}) = 0.0001,
mb({θ2, θ3}) = 0, mb(Θ) = 0.5499.

It is easy to verify that the combination result ma(·)⊕mb(·)
is the same as the given BBA m(·).

B. Example 2

Suppose that there are two BBAs defined on the FOD Θ =
{θ1, θ2, θ3}:

m1({θ1}) = 0.6,m1({θ2}) = 0.2,
m1({θ2, θ3}) = 0.1,m1(Θ) = 0.1.

and
m2({θ1}) = 0.2,m2({θ2}) = 0.6,
m2({θ2, θ3}) = 0.1,m2(Θ) = 0.1.

By calculating the Jousselme’s distance in Eq. (5), one obtains

that

dJ (m1,m2) = 0.4.

With Dempster’s rule of combination, one obtains that m(·) =
m1(·)⊕m2(·) with

m({θ1}) = 0.3846,m({θ2}) = 0.5385,
m({θ2, θ3}) = 0.0577,m(Θ) = 0.0192.

According to the evidence decombination approach in Eq (11),

one obtains that

ma({θ1}) = 0,ma({θ2}) = 0.8750,
ma({θ2, θ3}) = 0.0851,ma(Θ) = 0.0400.

and
mb({θ1}) = 0.9399,mb({θ2}) = 0,
mb({θ2, θ3}) = 0.0131,mb(Θ) = 0.0470.

It is easy to verify that the combination result ma(·)⊕mb(·) =
m(·), which is the same as m1(·)⊕m2(·).

By calculating the Jousselme’s distance given by Eq. (5),

one can verify that

dJ (ma,mb) = 0.9265 > dJ (m1,m2) = 0.4.

C. Example 3

A given combined BBA is the same as that in Example 2.

m({θ1}) = 0.3846,m({θ2}) = 0.5385,
m({θ2, θ3}) = 0.0577,m(Θ) = 0.0192.

Moreover, suppose that we have additional information and

we also know m1(·):

m1({θ1}) = 0.6,m1({θ2}) = 0.2,
m1({θ2, θ3}) = 0.1,m1(Θ) = 0.1.

Then, we try to use the BBA decombination to calculate

the m̂2(·) and to check whether it is the same as m2(·) in



Example 2. Here is just the case II as aforementioned in Sect

III.A. Therefore, m̂2(·) should be unique. So, there should

exist m2(·) = m̂2(·). It is an over-determined problem, and

we can still use the optimization to solve m̂2(·) by modifying

the optimization problem to

max
m̂2

dJ (m1, m̂2) =

√

0.5 · (m1 − m̂2)
T

Jac (m1 − m̂2)

s.t.



















m(Ck) =
m1

TR(k)
m̂2

1−K
2n−1
∑

j=1

m̂2(Bj) = 1

0 ≤ m̂2(Bj) ≤ 1, ∀j = 1, ..., 2n − 1
(12)

where

m̂2 =











m̂2({θ1})
m̂2({θ2})

...

m̂2(Θ)











By solving Eq. (12), one obtains

m̂2({θ1}) = 0.2, m̂2({θ2}) = 0.6,
m̂2({θ2, θ3}) = 0.1, m̂2(Θ) = 0.1.

That is, given a combined BBA and one original BBA, another

original one can be determined uniquely.

V. FURTHER ANALYSIS ON EVIDENCE DECOMBINATION

A. Divergence Minimization or Maximization?

In the evidence decombination shown in Eq. (11), distance

maximization is adopted. This is inspired by the minimization

of mutual information (i.e., the maximization of divergence)

between sources in Blind Source Separation (BSS), which

aims to bring out more independent components [24]. One

can also try to implement the evidence decombination based

on the distance minimization. Based on our analysis, we find

that if the distance minimization is used, the minimum distance

will be zero and the BBAs of two sources are identical.

Suppose that m1(·) = m2(·) = m0(·), one can rewrite the

constraints in Eq. (11) as















m(Ck) =
m0

TR(k)
m0

1−K
2n−1
∑

i=1

m0(Ai) = 1

0 ≤ m0(Bj) ≤ 1, ∀j = 1, ..., 2n − 1

(13)

where

m0 =











m0({θ1})
m0({θ2})

...

m0(Θ)











As we see in Eq. (13), there are 2n − 1 unknown variables

(mass values for 2n−1 focal elements in m0(·)) to determine.

There are 2n − 1 + 1 = 2n simultaneous equations in total.

Therefore, if the solution exists, in general this is an over-

determined problem which has the unique solution.

Here we provide an example to verify this, where the

combined BBA is still as chosen in Example 2, which is

m({θ1}) = 0.3846,m({θ2}) = 0.5385,
m({θ2, θ3}) = 0.0577,m(Θ) = 0.0192.

According to Eq. (11) and change the maximization to mini-

mization, we obtain that m1(·) = m2(·) = m0(·), which is

m0({θ1}) = 0.3877,m0({θ2}) = 0.3958,
m0({θ2, θ3}) = 0.1082,m0(Θ) = 0.1082.

It is easy to verify that m0(·)⊕m0(·) = m(·).

We prefer the criterion of distance maximization, since it

can bring out more distinct (likely to be more independent)

evidences.

Note that since we select the maximization, to assure to

find the unique global optimal, the objective should be upper-

convex. However, the objective function, i.e., the distance

of evidence cannot satisfy this. Therefore, in our work in

this paper, intelligent optimization algorithms [25] (e.g., the

particle swarm algorithm and genetic algorithm) are adopted

for the maximization to achieve a better solution.

B. Possible Applications

Note that given a combined BBA m(·), ma(·) and mb(·)
after the evidence decombination. However, we do not know

the specific correspondence between {ma(·), mb(·)} and

{m1(·), m2(·)}. That is, ma(·) could correspond to m1(·) or

m2(·), and mb(·) could also correspond to m1(·) or m2(·).
Therefore, it cannot be used for analyzing or evaluating

specific single sensor; however, the evidence decombination is

expected to be used in applications like divergence evaluation

between sensors, which is helpful for the sensor management.

Given a BBA, if one can decombine it into two BBAs, then

the maximum difference between corresponding information

sources can be evaluated by calculating the distance between

the two BBAs.

Another possible application is the evaluation of different

combination rules. Here, we only use the Dempster’s rule to

construct the evidence decombination. In fact, other alternative

combination rules can also be used for finding evidence

decombination, where the difference between most of existing

rules of combinations available in the literature lies in the

choice of matrix R(k) in Eq. (7). Then, given a BBA, one

can use different decombination methods corresponding to

different combination rule to bring out different pairs of BBAs.

One can calculate the distance between two BBAs in each pair

to represent the aggregation capability of the corresponding

combination rule. That is, an evidence decombination ap-

proach can bring out a more divergent BBA pair, then the

decombination method’s corresponding combination rule can

aggregate (combine) a more divergent BBA pair to the same

BBA compared with other rules. So we say that it has a better

aggregation capability.



VI. CONCLUSIONS

In this paper, an evidence decombination approach is pro-

posed, where the distance maximization criterion is adopted

in the evidence decombination. Some numerical examples and

related analysis are provided to illustrate our proposed method

and the possible applications are forecasted.

In this paper, the distance of evidence used in the op-

timization is Jousselme’s distance. In our future work, we

will try other strict distance metric [26], [27] in the theory

of belief functions for comparison. Currently, the objective

function is the distance of evidence. In future work, we will

try to use the difference between BBAs’ uncertainty measure

values [28], [29]. Furthermore, we only consider two sources

of evidence for the evidence decombination for simplicity. In

our future work, we will try to design more sources (larger

than two) for the evidence decombination. This paper is only

a preliminary work on the evidence decombination, in future

research work, we will try to apply the proposed method in

various appropriate applications.
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