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Abstract—The theory of belief functions is an important tool
in the field of information fusion. However, the fusion of Basic
Belief Assignments (BBAs) requires high computational cost and
long computing time when a large number of focal elements are
involved in the fusion rules. This problem becomes a bottleneck
of application of Belief Functions (BF) in high-dimensional real
problems. To overcome this drawback, many approaches were
proposed to approximate BBAs to reduce the computational
complexity in the fusion process. In this paper, we present a
novel method based on the compatibility of focal elements to
approximate a BBA by removing some focal elements of the
original BBA. Besides, a new mass assignment strategy based
on the distance of focal elements is proposed. Several examples,
simulations and related analyses are provided to illustrate the
interest and efficiency of the proposed method.
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I. INTRODUCTION

The evidence theory was proposed by Dempster in the study

of multivalued mapping in 1967 [1] and later promoted by

Shafer in 1976 [2] with the introduction of Belief Functions

(BF). The theory of belief functions is named also Dempster-

Shafer Theory (DST) in the literature. Belief Functions provide

an effective method for dealing with the expression and

synthesis of uncertain information and they have been widely

used in many fields such as image processing [3, 4], target

tracking [5], and fault diagnosis [6, 7].

However, the evidence combination will encounter high

computational cost when the frame of discernment (FoD) is

large. To overcome this drawback, one effective approach to

reduce the computational complexity is the BBA approxi-

mation. The BBA approximation aims to obtain a simpler

BBA by removing some focal elements according to different

simplification criteria. In existing works, the simplification

criteria can be divided into the following three categories:

1) Simplification based on the mass assignment of a
focal element. The focal elements with smaller mass

assignments are deemed unimportant, which should be

removed firstly. k − l − x [8], Summarization [9] and

D1 [10] are representatives of this criterion.

2) Simplification based on the cardinality of a focal
element. The focal elements with larger cardinalities

may cause more computational cost. k−additive ap-

proach [11] and hierarchical proportional redistribution

approach [12] accomplish the simplification according

to this criterion.

3) Hybrid simplification mixing the two previous ones.
Use the previous two criteria jointly to determine which

focal elements should be removed at first. Methods like

inner and outer approximation [13], rank-level fusion ap-

proximation [14], non-redundancy approximation [15],

iterative approximation based on distance of evidence

[16] and correlation coefficient approximation [17] enter

in this hybrid simplification strategy.

In general, the hybrid simplification is the right direction to

approximate a BBA due to the one-sidedness of the first and

the second simplification criterion.
In this paper, we propose a novel approach using the notion

of focal element compatibility. In our method, each focal

element has a compatible focal element which can be replaced

by it due to the compatibility (based on a similarity measure)

between them. To quantify the notion of compatibility, we use

the mass value and the cardinality of the set which contains

all the focal elements which can replace the given focal

element jointly. The focal element with the highest degree of

compatibility should be removed at first. Users can preset the

number of remaining focal elements. After removing a focal

element, the removed mass is redistributed to remaining focal

elements to execute the next iteration according to our new

mass assignment strategy. Experimental results based on the

comparisons with other approximation strategies and related

analyses justify that our approach is rational and effective.
This paper is organized as follows. After brief prelimi-

naries on Belief Functions in Section II and classical BBA

approximation methods in Section III, we will present the new

approximation method based on focal element compatibility in

Section IV. Evaluation of it and comparative analysis will be

done in Section V with concluding remarks in Section VI.

II. PRELIMINARIES

A. Basics of Belief Functions
We consider a frame of discernment (FoD) Θ = {θ1, ..., θn}

whose elements are mutually exclusive and exhausive. A basic



belief assignment (BBA) over the FoD Θ is defined as∑
A⊆Θ

m(A) = 1, m(∅) = 0 (1)

If m(A) > 0 holds, A is called a Focal Element (FE). The

belief function and plausibility function are defined as follows

[2].

Bel(A) =
∑
B⊆A

m(B); Pl(A) =
∑

A∩B �=∅
m(B) (2)

In DST, two independent bodies of evidence (BOEs) are

combined by Dempster’s rule as follows. ∀A ∈ 2Θ:

m(A) =

⎧⎨
⎩
0, A = ∅

1
1−K

∑
Ai∩Bj=A

m1(Ai)m2(Bj), A �= ∅ (3)

where K =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj) is the conflict coeffi-

cient, which represents the total degree of conflict. Other rules

of combinations have also been proposed to combine BBAs

in the literature [18] but they will be not detailed in this paper

since this is out of its scope.

B. Distance of Focal Elements

We use the definition proposed by Denœux [13] to measure

the distance between two focal elements, which is defined as

δ∩(Ai, Aj) =m(Ai)|Ai|+m(Aj)|Aj |
− [m(Ai) +m(Aj)]|Ai ∩Aj |

(4)

For a given focal element Ai, if δ∩(Ai, Aj) =
minj′ �=i δ∩(Ai, Aj′), we will say that Aj has the highest

compatibility degree with Ai, and Aj shares the most similar

information with Ai.

III. BRIEF REVIEW OF BBA APPROXIMATIONS

Some existing BBA approximation approaches are briefly

reviewed in this section for the purpose of comparisons with

our new method.

1) k−l−x approximation [8]. This method involves three

parameters and the approximated BBA is obtained by

• keeping no less than k focal elements;

• keeping no more than l focal elements;

• deleting the masses which are no greater than x.

In k − l − x algorithm, all original focal elements are sorted

according to the mass assignments in a decreasing order. Then,

the first p focal elements are selected such that k ≤ p ≤ l and

such that the sum of the mass assignments of these p focal

elements is no less than 1−x. The removed mass assignments

are redistributed to remaining focal elements by a classical

normalization procedure.

2) Summarization approximation [9]. This method also

keeps focal elements having largest mass values which is

similar to the k − l − x method. The only difference is that

the removed mass values are redistributed to their union set.

Suppose that m(·) is the original BBA and k is the desired

number of remaining focal elements in the approximated BBA

m̂(·). Let M denote the set of k−1 focal elements with largest

mass values in m(·). Then m̂(·) is obtained from m(·) by

m̂(A) =

⎧⎪⎨
⎪⎩
m(A), A ∈ M∑

A′⊆A,A′ /∈M m(A′), A = A0

0, otherwise

(5)

where A0 is

A0 �
⋃

A′ /∈M,m(A′)>0

A′ (6)

3) D1 approximation [10]. Suppose that m(·) is the original

BBA and k is the desired number of remaining focal elements

in the approximated BBA m̂(·). Let M denote the set of k−1
focal elements with largest mass values in m(·) and M− be the

set including all the other focal elements of m(·). D1 method

is to keep all the members of M as the focal elements of m̂(·)
and to assign the mass values of the focal elements in M−

among the focal elements in M according to the following

procedure.

For a focal element A ∈ M−, in M , find all the supersets of

A to construct a collection MA. If MA is not empty, the mass

value of A is uniformly assigned among the focal elements

having smallest cardinality in MA. When MA is empty, then

construct M ′
A as

M ′
A = {B ∈ M ||B| ≥ |A|, B ∩A �= ∅} (7)

Then, if M ′
A is not empty, m(A) is assigned among the focal

elements with smallest cardinality in M ′
A. The value assigned

to a focal element B depends on the value of |B ∩ A|. Such

a procedure is iteratively executed until all m(A) have been

assigned to the focal elements in M .

If M ′
A is empty, there are two possible cases:

• If the total set Θ ∈ M , the sum of mass values of the

focal elements in M− will be added to Θ;

• If Θ /∈ M , then let Θ be a focal element of m̂(·) and

assign the sum of mass values of the focal elements in

M− to m̂(Θ).

Note that the number of remaining focal elements is k− 1, if

Θ ∈ M .

4) Rank-level fusion approximation [14]. This method

uses jointly the mass assignments and cardinalities of focal

elements to make the simplification. The specific procedure is

listed as follows.

• Sort all the focal elements of the original BBA (with L
focal elements) according to the mass assignments (in

ascending order which is due to the assumption that the

focal element with smallest mass should be removed at

first). The rank vector obtained is

rm = [rm(1), rm(2), ..., rm(L)] (8)

• Sort all the focal elements of the original BBA according

to the cardinalities (in descending order which is due

to the assumption that the focal element with large



cardinality should be removed at first). The rank vector

obtained is

rc = [rc(1), rc(2), ..., rc(L)] (9)

• Execute the rank-level fusion and the comprehensive rank

vector is

rf = [rf (1), rf (2), ..., rf (L)] (10)

where

rf (i) = α · rm(i) + (1− α) · rc(i) (11)

The parameter α ∈ [0, 1] is to weight the two different criteria.

Finally, we remove the focal element with the smallest rf
value and do the renormalization of remaining focal elements.

Repeat the above steps until only k focal elements remain and

the total mass assignments value to be deleted is no greater

than x.
5) Correlation coefficient approximation [17]. The cor-

relation coefficient proposed by Jiang [19] can measure the

similarity between two BBAs. In this approximation approach,

we remove a focal element Ai from the original BBA m(·)
and the mass of Ai is redistributed to remaining focal el-

ements to generate a new BBA m̂i(·). Then, we calculate

the correlation coefficient between m and m̂i. We perform

the same operation for each focal element and sort all the

focal elements in ascending order according to the correlation

coefficient. Finally, we remove the largest k focal elements

from the original BBA and do the normalization according to

a new assignment strategy.
6) Iterative approximation based on distance of evidence

[16]. In this algorithm, we remove at first a focal element

Ai from the original BBA m(·) and we normalize the re-

maining focal elements to generate a new BBA m̂i(·). Then,

we calculate Jousselme’s distance between m and m̂i. We

perform the same operation for each focal element. Finally,

we remove the focal element which generates the new BBA

having the closest distance with the original BBA and after a

normalization we proceed the next iteration. The above steps

are performed iteratively until only k focal elements remain.

IV. NEW BBA APPROXIMATION BASED ON FOCAL

ELEMENT COMPATIBILITY

In this section, a novel method for approximating a BBA is

proposed. As briefly shown in the previous section, the existing

approaches remove some focal elements according to the mass

assignment, the cardinality or both two criteria. Here we adopt

a different standpoint in which a specific focal element can

be removed if there exists a number of other focal elements

compatible with it, i.e., its degree of incompatibility is small.

Now the focus is how to define the degree of incompatibility

of a focal element. We define the incompatibility degree for a

focal element at first.

A. Degree of Incompatibility of Focal Elements
As mentioned before, the distance between two focal ele-

ments is given by Eq.(4). The compatible focal element AC
i

1

1We use the notation “C” as the upper index because it is the first letter of
word “Compatible”.

of a given focal element Ai ⊆ Θ for a BBA m(·) (with l focal

elements) is defined by

AC
i � argmin

Aj

δ∩(Ai, Aj)

s.t.

{
Aj ⊆ Θ

j = 1, 2, ..., l, j �= i

(12)

AC
i has the smallest distance with the focal element Ai, i.e.,

among all focal elements, AC
i is the most compatible with

Ai. It should be noted that AC
i can be replaced by Ai, but the

reverse may not be true.
We define the degree of incompatibility of the focal element

Ai by

ICP (Ai) �
{

m(Ai)

|MC
i | , MC

i �= ∅
∞, MC

i = ∅ (13)

where

MC
i =

{
Aj |AC

j = Ai, j = 1, 2, ..., l, j �= i
}

(14)

The set MC
i contains all the focal elements which can replace

Ai. The ICP (Ai) value describes the average effect on the

|MC
i | (MC

i �= ∅) focal elements after removing Ai. The

smaller ICP (Ai) value, the smaller the effect, which is pre-

ferred. From another perspective, the effect can be explained

as the incompatibility degree of Ai. The smaller the effect,

the smaller the incompatibility degree and the more it can be

removed. MC
i = ∅ means that no focal elements can replace

Ai, so its degree of incompatibility is infinite.
Here we provide a simple example to show how MC

i and

ICP (Ai) are computed.

Example 1: Consider the BBA m(·) defined over the

FoD Θ = {θ1, θ2, θ3}. The mass assignments of focal

elements A1 = {θ1}, A2 = {θ2}, A3 = {θ2, θ3} and

A4 = {θ1, θ2, θ3} are as follows.

m(A1) = 0.5,m(A2) = 0.28

m(A3) = 0.17,m(A4) = 0.05

1) We calculate the distance between any two focal elements

and find the compatible focal element for each focal element.

δ∩(A1, A2) = 0.78, δ∩(A1, A3) = 0.84

δ∩(A1, A4) = 0.1, δ∩(A2, A3) = 0.17

δ∩(A2, A4) = 0.1, δ∩(A3, A4) = 0.05

AC
1 = AC

2 = AC
3 = A4, AC

4 = A3

2) We compute MC
i for each focal element.

MC
1 = MC

2 = ∅
MC

3 = {A4} ,MC
4 = {A1, A2, A3}

3) We compute ICP (Ai) for each focal element.

ICP (A1) = ICP (A2) = ∞
ICP (A3) =

m(A3)

|MC
3 | =

0.17

1
= 0.17

ICP (A4) =
m(A4)

|MC
4 | =

0.05

3
= 0.0167



So, A4 = {θ1, θ2, θ3} should be removed at first when

approximating the original BBA m(·).
B. New Mass Assignment Strategy

Here, we propose a new mass assignment strategy based on

distance of focal elements. Let m(·) denote the original BBA

with l focal elements and m̂(·) denote the remaining BBA after

removing the focal element Ar, where A′
i, i = 1, 2, ..., l − 1

are the focal elements of m̂(·). Then m̂(·) is obtained by

m̂(A′
i) =

{
m(A′

i) +
m(Ar)

D·δ∩(A′
i,Ar)

, A′
i �= ∅

0, A′
i = ∅ (15)

where

D =

l−1∑
i=1

1

δ∩(A′
i, Ar)

, A′
i �= ∅ (16)

The proof that m̂(·) is a true normalized BBA is given in

Appendix.

From Eq.(15) and (16), we can see that the mass of each

removed focal element Ar is redistributed to remaining focal

elements Aj according to their distances to Ar. The smaller

the distance, the more mass is committed to Aj . Based on

the compatibility of the focal elements and the new mass

assignment strategy, we propose a novel BBA approximation

approach described in the next subsection.

C. New BBA Approximation Algorithm

Let m(·) denote the original BBA with l focal elements. In

the approximation, we want to keep k (k < l) focal elements

and remove the focal elements one by one iteratively. The

detailed steps of this new BBA approximation method are as

follows.

• Step 1: Calculate ICP (Ai) for each remaining focal

element;

• Step 2: Sort all the focal elements in descending order

according to their incompatibility degree to obtain the

sorted list of focal elements;

• Step 3: Remove the last focal element Ar of the sorted

list of focal elements, and redistribute its mass value to

the mass of focal elements upper it in the sorted list to

generate an approximated BBA m̂ according to our new

mass assignment strategy. Reduce the number of focal

elements by one, i.e., l ← l − 1;

• Step 4: Assign m = m̂. If the number of removed focal

elements is not reached, go to Step 1, otherwise output

m as the final approximated BBA.

The whole procedure is illustrated in Fig.1.

Here we provide an illustrative example to show how our

approximation method works and we compare it with other

methods.

Example 2: Consider the BBA m(·) defined over the

FoD Θ = {θ1, θ2, θ3, θ4, θ5} listed in Table I.

1) k − l − x approximation. Here k and l are set to 5. x
is set to 0.2. The focal elements A2 = {θ2, θ3, θ4, θ5} and

A7 = {θ2, θ5} are removed without violating the constraints

A BBA m with l 
focal elements

l = k

Calculate ICP(Ai) for each 
remaining focal element

N

Sort all the focal elements 
in descending order

Remove the last focal 
element Ar

Redistribute the mass of Ar to 
remaining focal elements to generate 

an approximated BBA 

l = l-1, m = 

Output m as the final 
approximated BBA

Y

m̂

m̂

Fig. 1. Scheme of the new BBA approximation.

TABLE I
FOCAL ELEMENTS AND MASS VALUES OF m(·).

Focal Elements Mass Values
A1 = {θ1} 0.13

A2 = {θ2, θ3, θ4, θ5} 0.06

A3 = {θ4, θ5} 0.3

A4 = {θ3, θ5} 0.15

A5 = {θ1, θ2} 0.14

A6 = {θ2, θ4, θ5} 0.12

A7 = {θ2, θ5} 0.1

in k−l−x. The remaining total mass value is 1−0.06−0.1 =
0.84. Then, all the focal elements’ mass values are divided by

0.84 to accomplish the normalization. The approximated BBA

m̂klx(·) is listed in Table II, where A′
i, i = 1, 2, 3, 4, 5 are the

focal elements of m̂klx(·).
TABLE II

m̂klx(·) OBTAINED USING k − l − x.

Focal Elements Mass Values
A′

1 = {θ1} 0.1548

A′
2 = {θ4, θ5} 0.357

A′
3 = {θ3, θ5} 0.1786

A′
4 = {θ1, θ2} 0.1667

A′
5 = {θ2, θ4, θ5} 0.1429

2) Summarization approximation. Here k is set to 5. Ac-

cording to the summarization method, the focal elements



A2 = {θ2, θ3, θ4, θ5}, A7 = {θ2, θ5} and A6 = {θ2, θ4, θ5}
are removed and their union set {θ2, θ3, θ4, θ5} is generated

as a new focal element (existed already) with mass value

m(A2) + m(A7) + m(A6) = 0.28. The approximated BBA

m̂Sum(·) is listed in Table III.

TABLE III
m̂Sum(·) OBTAINED USING SUMMARIZATION.

Focal Elements Mass Values
A′

1 = {θ1} 0.13

A′
2 = {θ2, θ3, θ4, θ5} 0.28

A′
3 = {θ4, θ5} 0.3

A′
4 = {θ3, θ5} 0.15

A′
5 = {θ1, θ2} 0.14

3) D1 approximation. Here k is set to 5. It can be obtained

that A3, A4, A5, A1 belong to M , and A6, A7, A2 belong to

M−. For A6 and A2, there are no supersets of them in M , i.e.,

MA = ∅, and we can not construct the set M ′
A, i.e., M ′

A = ∅.

So the mass values of A6 and A2 are assigned to the total

set Θ. For A7, we can construct the set M ′
A = {A3, A4, A5}.

The parameter ratio and number are calculated to be 1 and 3.

Therefore, m(A7)/3 = 0.0333 is added to the mass value of

A3, A4 and A5 respectively. The approximated BBA m̂D1(·)
is listed in Table IV.

TABLE IV
m̂D1(·) OBTAINED USING D1.

Focal Elements Mass Values
A′

1 = {θ1} 0.13

A′
2 = {θ4, θ5} 0.3334

A′
3 = {θ3, θ5} 0.1833

A′
4 = {θ1, θ2} 0.1733

A′
5 = Θ 0.18

4) Rank-level fusion approximation. Here k and l are set

to 5 and x is 0.2. The parameter α is set to 0.5. At the

first iteration, we calculate the comprehensive vector rf =
[rf (A1), rf (A2), ..., rf (A7)] = [5.5, 1, 5, 4.5, 4, 2.5, 2.5].
Then we remove A2 = {θ2, θ3, θ4, θ5} at first and

do the normalization of remaining focal elements. At

the second iteration, we obtain the comprehensive vector

rf = [rf (A1), rf (A3), rf (A4), rf (A5), rf (A6), rf (A7)] =
[4.5, 4, 3.5, 3, 1.5, 1.5]. Then, we remove A6 = {θ2, θ4, θ5}
(or A7) and normalize the remaining focal elements to obtain

the final approximated BBA m̂Rank(·) listed in Table V.

TABLE V
m̂Rank(·) OBTAINED USING RANK-LEVEL FUSION.

Focal Elements Mass Values
A′

1 = {θ1} 0.1585

A′
2 = {θ4, θ5} 0.3659

A′
3 = {θ3, θ5} 0.1829

A′
4 = {θ1, θ2} 0.1707

A′
5 = {θ2, θ5} 0.122

5) Correlation coefficient approximation. Here k is set to 2,

i.e., we have to remove two focal elements. The correlation

coefficients between the remaining BBA m̂i(·), i = 1, 2, ..., 7
and the original BBA m(·) are 0.9805, 0.9981, 0.9274, 0.9778,

0.9842, 0.9946 and 0.9927. We sort all the focal elements in

ascending order according to the correlation coefficient and

remove the two bottom focal elements A2 = {θ2, θ3, θ4, θ5}
and A6 = {θ2, θ4, θ5} from the original BBA. Then, we

redistribute the removed mass to remaining focal elements to

obtain the final approximated BBA m̂CC(·) listed in Table VI.

TABLE VI
m̂CC(·) OBTAINED USING CORRELATION COEFFICIENT.

Focal Elements Mass Values
A′

1 = {θ1} 0.13

A′
2 = {θ4, θ5} 0.3718

A′
3 = {θ3, θ5} 0.1839

A′
4 = {θ1, θ2} 0.1677

A′
5 = {θ2, θ5} 0.1466

6) Iterative approximation based on distance of evidence.

Here k is set to 2, i.e., we have to remove two focal

elements. At the first iteration, Jousselme’s distances between

the remaining BBA m̂i(·), i = 1, 2, ..., 7 and the original BBA

m(·) are 0.1053, 0.0315, 0.1932, 0.1049, 0.105, 0.05981 and

0.05982. We remove A2 = {θ2, θ3, θ4, θ5} at first. Then, we

normalize the remaining focal elements and assign m = m̂2 to

execute the next iteration. At the second iteration, Jousselme’s

distances between the remaining BBA m̂i(·), i = 1, 3, 4, 5, 6, 7
and m(·) are 0.1113, 0.2101, 0.114, 0.1118, 0.0644 and

0.0663. So we remove A6 = {θ2, θ4, θ5} and normalize the

remaining focal elements to obtain the final approximated

BBA m̂Dis(·) listed in Table VII.

TABLE VII
m̂Dis(·) OBTAINED USING DISTANCE OF EVIDENCE.

Focal Elements Mass Values
A′

1 = {θ1} 0.1585

A′
2 = {θ4, θ5} 0.3659

A′
3 = {θ3, θ5} 0.1829

A′
4 = {θ1, θ2} 0.1707

A′
5 = {θ2, θ5} 0.122

7) ICP method (Our approximation method). The desired

remaining focal elements is set to k = 5 and we obtain the

final approximated BBA in two iterations as follows.

• The first iteration: We first calculate ICP (Ai), i =
1, 2, ..., 7 and sort all the focal elements in descending

order according to ICP (Ai) value. The result of the first

iteration is listed in Table VIII. Because ICP (A2) is the

smallest and the focal element A2 = {θ2, θ3, θ4, θ5} is

removed at first, then we redistribute the mass of A2 to

remaining focal elements to proceed the next iteration.

• The second iteration: We recalculate ICP (Ai), i =
1, 3, 4, 5, 6, 7 and sort all the remaining focal elements.

The result of the second iteration is listed in Table

VIII. Because ICP (A7) is the smallest value, the focal



element A7 = {θ2, θ5} is removed at this iteration. Now

the number of remaining focal elements is five and we

redistribute the mass of A7 to remaining focal elements

to obtain the final approximated BBA m̂ICP (·) listed in

Table IX.

TABLE VIII
THE RESULTS OF TWO ITERATIONS USING ICP.

The First Iteration
Focal Elements Mass Values |MC

i | ICP (Ai)

A3 = {θ4, θ5} 0.3 MC
3 = ∅ ∞

A4 = {θ3, θ5} 0.15 MC
4 = ∅ ∞

A7 = {θ2, θ5} 0.1 MC
7 = ∅ ∞

A5 = {θ1, θ2} 0.14 1 0.14

A1 = {θ1} 0.13 1 0.13

A6 = {θ2, θ4, θ5} 0.12 1 0.12

A2 = {θ2, θ3, θ4, θ5} 0.06 4 0.015

The Second Iteration
Focal Elements Mass Values |MC

i | ICP (Ai)

A3 = {θ4, θ5} 0.3105 MC
3 = ∅ ∞

A4 = {θ3, θ5} 0.1605 MC
4 = ∅ ∞

A5 = {θ1, θ2} 0.1439 1 0.1439

A1 = {θ1} 0.1334 1 0.1334

A6 = {θ2, θ4, θ5} 0.1411 2 0.0705

A7 = {θ2, θ5} 0.1106 2 0.0553

TABLE IX
m̂ICP (·) OBTAINED USING ICP.

Focal Elements Mass Values
A′

1 = {θ1} 0.1491

A′
2 = {θ4, θ5} 0.3237

A′
3 = {θ3, θ5} 0.181

A′
4 = {θ1, θ2} 0.1658

A′
5 = {θ2, θ4, θ5} 0.1804

V. EXPERIMENTS AND ANALYSIS

In this section, we compare all the aforementioned BBA

approximation methods to demonstrate the effectiveness and

interest of our method in terms of three Measures of Perfor-

mance (MoP): 1) closeness, 2) computational efficiency, and

3) decision-making.

A. MoP of Closeness and Computational Efficiency

The smaller the distance between the new approximated

BBA and the original BBA, the less information is lost, which

is preferred. We use dEBI distance [20] to describe the degree

of closeness between two pieces of evidence, which is defined

as

dEBI(m1,m2) =

√√√√Nc ·
2n−1∑
i=1

[dI(BI1(Ai), BI2(Ai))]2 (17)

Here Nc = 1/2n−1 is the normalization factor. BI1(Ai) and

BI2(Ai) are belief intervals of Ai for m1(·) and m2(·), which

are denoted by [Bel1(Ai), P l1(Ai)] and [Bel2(Ai), P l2(Ai)].

TABLE X
ALGORITHM 1: RANDOM GENERATION OF BBA.

Input: Θ: Frame of Discernment;

Nmax: Maximum number of focal elements

Output: m(·): BBA

Generate P(Θ), which is the power set of Θ;

Generate a random permutation of P(Θ) → R(Θ);

Generate an integer between 1 and Nmax → l;

FOReach First k elements of R(Θ) do

Generate a value within [0, 1] → mi, i = 1, 2, ..., l;

END
Normalize the vector m = [m1,m2, ...,ml] → m′;

The strict distance between interval numbers [a1, b1] and

[a2, b2](bi ≥ ai, i = 1, 2) is defined by

dI([a1, b1], [a2, b2]) =√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2 (18)

Our comparative analysis is based on a Monte Carlo sim-

ulation using M = 200 random runs. The cardinality of

the FoD is |Θ| = 5. In the j-th simulation run, a BBA

mj(·) is randomly generated according to Algorithm 1 [21]

of Table X. The number j of remaining focal elements for

all the approaches are set to from 2 to 30 and then the

different approximation results m̂j
i (·) can be obtained using

different methods, where i denotes the i-th approximation

approach. We record the computational time of the original

BBA combination of mj(·)⊕mj(·) with Dempster’s rule and

the computational time of using Dempster’s rule for each

approximated BBA m̂j
i (·) ⊕ m̂j

i (·). The average (over 200
runs) computational time for the original and approximated

combination are shown in Fig.2. The average (over 200 runs)

distance between the original BBAs and the approximated

BBAs obtained using different approaches given different

remaining focal elements’ number are shown in Fig.3.

As we can see in Fig.2, all the BBA approximation ap-

proaches permit to reduce the computational time with respect

to the original computational time due to the removal of

focal elements. Besides, from Fig.3 we observe that, the

approximated BBAs using our new proposed approach are

globally closer to the original one when compared with other

approaches, which represents the least loss of information.

Note that when the number of remaining focal elements is

small, there are no data points for the curve of k − l − x
and rank-level fusion methods because they can not remove

a certain number of focal elements like other methods due

to the constraint that the removed masses are no greater than

x = 0.2.

B. MoP of Decision-making

In this work we use the DSmP Transformation [18] to

make the final decision by selecting the θi with the maxi-
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mum DSmPε(θi) value. The DSmPε(θi) probability of any

elements θi, i = 1, 2, ..., |Θ| of the FoD Θ can be obtained by

DSmPε(θi) =m(θi)+

[m(θi) + ε]
∑

X∈2Θ

X⊃θi
|X|≥2

m(X)∑
Y ∈2Θ

X⊃Y
|Y |=1

m(Y ) + ε · |X| (19)

where ε ≥ 0 is a tuning parameter.

In our simulations, all the approximation approaches are

compared from the aspect of the accuracy of decision-making.

The cardinality of the FoD is |Θ| = 5 and the parameter ε has

been set to 0.001. Firstly, 1000 BBAs are randomly generated

according to Algorithm 1 [21] of Table X. Then, use the DSmP

Transformation to make the final decision for the original

BBAs. After that, 1000 approximated BBAs are generated

and 1000 decisions are made for each approximation method.

Finally, the accuracy of decision-making is counted for each

method and the results with different number of remaining

focal elements are shown in Fig.4.

As we can see in Fig.4, although ICP method is not the best,

it presents a stable and good performance, especially when the

number of remaining focal elements is small, which represents

the less loss of information from our standpoint. It should be

noted that there are no data points for the curve of k − l − x
and rank-level fusion methods due to the constraint mentioned

before, when the number of remaining focal elements is small.
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VI. CONCLUSION

With the increase of cardinality of the FoD, evidence

combination exhibits a large computational cost. In this paper,

a novel BBA approximation approach based on focal element

compatibility is proposed based on a new mass assignment

strategy. This new method offers a good balance between the

computational time and the loss of information. Simulations

and comparative analyses show the interest and efficiency

of our new method. In future, we will consider other BBA

approximation approaches based on the removal of focal

elements to solve the bottleneck of BBA combination for

different rules of combination.

APPENDIX

The proof that m̂(·) which is obtained by the new mass

assignment strategy is a true normalized BBA is as follows.

Proof:
1) m̂(∅) = 0.

2) δ∩(A′
i, Ar) > 0 for any focal element A′

i �= ∅.

δ∩(A′
i, Ar) =m(A′

i)|A′
i|+m(Ar)|Ar|

− [m(A′
i) +m(Ar)]|A′

i ∩Ar|
≥m(A′

i)|A′
i|+m(Ar)|Ar|

− [m(A′
i) +m(Ar)]min {|A′

i|, |Ar|}



Suppose that min {|A′
i|, |Ar|} = |Ar|.

δ∩(A′
i, Ar) ≥m(A′

i)|A′
i|+m(Ar)|Ar|

− [m(A′
i) +m(Ar)]|Ar|

=m(A′
i)(|A′

i| − |Ar|) > 0

3)
∑l−1

i=1 m̂(A′
i) = 1.

l−1∑
i=1

m̂(A′
i) =

l−1∑
i=1

[
m(A′

i) +
m(Ar)

D · δ∩(A′
i, Ar)

]

=
l−1∑
i=1

m(A′
i) +

m(Ar)

D

l−1∑
i=1

1

δ∩(A′
i, Ar)

=

l−1∑
i=1

m(A′
i) +

m(Ar)

D
D

=

l−1∑
i=1

m(A′
i) +m(Ar) = 1
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