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Single-channel speech separation has recently made great progress thanks to learned filterbanks as used in ConvTasNet. In parallel, parameterized filterbanks have been proposed for speaker recognition where only center frequencies and bandwidths are learned. In this work, we extend real-valued learned and parameterized filterbanks into complex-valued analytic filterbanks and define a set of corresponding representations and masking strategies. We evaluate these filterbanks on a newly released noisy speech separation dataset (WHAM). The results show that the proposed analytic learned filterbank consistently outperforms the real-valued filterbank of ConvTasNet. Also, we validate the use of parameterized filterbanks and show that complex-valued representations and masks are beneficial in all conditions. Finally, we show that the STFT achieves its best performance for 2 ms windows.

INTRODUCTION

Be it for speech intelligibility or automatic speech recognition, speech processing applications need effective speech separation in clean and noisy recording conditions. Singlechannel speaker-independent speech separation has recently seen great progress in clean recording conditions. A wide variety of deep learning methods have been introduced [1-10] and compared on the wsj0-2mix benchmark introduced in [START_REF] Hershey | Deep clustering: discriminative embeddings for segmentation and separation[END_REF]. All these methods rely on a neural network to estimate the time-frequency mask associated with each source.

Crucially, the time-frequency transform must allow both signal analysis and resynthesis. It can be either fixed, such as the short time Fourier transform (STFT) [START_REF] Hershey | Deep clustering: discriminative embeddings for segmentation and separation[END_REF][START_REF] Yu | Permutation invariant training of deep models for speaker-independent multi-talker speech separation[END_REF][START_REF] Isik | Single-channel multispeaker separation using deep clustering[END_REF][START_REF] Kolbaek | Multitalker speech separation with utterancelevel permutation invariant training of deep recurrent neural networks[END_REF][START_REF] Chen | Deep attractor network for single-microphone speaker separation[END_REF][START_REF] Wang | Alternative objective functions for deep clustering[END_REF] and its inverse and the Mel [START_REF] Weninger | Speech enhancement with LSTM recurrent neural networks and its application to noise-robust ASR[END_REF] or gammatone [START_REF] Necciari | Audlet filter banks: a versatile analysis/synthesis framework using auditory frequency scales[END_REF][START_REF] Ditter | A multi-phase gammatone filterbank for speech separation via tasnet[END_REF] filterbanks, or learned Experiments presented in this paper were partially carried out using the Grid5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).
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The work reported here was started at JSALT 2019, and supported by JHU with gifts from Amazon, Facebook, Google, and Microsoft. jointly with the masking network [START_REF] Luo | Tasnet: Time-domain audio separation network for real-time, single-channel speech separation[END_REF][START_REF] Shi | Deep attention gated dilated temporal convolutional networks with intra-parallel convolutional modules for end-to-end monaural speech separation[END_REF][START_REF] Luo | Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF][START_REF] Yang | Improved speech separation with time-andfrequency cross-domain joint embedding and clustering[END_REF]. While learned representations have been shown to be undeniably superior to the STFT for speech separation in clean recording conditions [START_REF] Luo | Tasnet: Time-domain audio separation network for real-time, single-channel speech separation[END_REF][START_REF] Shi | Deep attention gated dilated temporal convolutional networks with intra-parallel convolutional modules for end-to-end monaural speech separation[END_REF][START_REF] Luo | Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF], their impact in the presence of noise has been lesser studied. In fact, the authors of [START_REF] Wichern | WHAM!: extending speech separation to noisy environments[END_REF] introduce a noisy extension of wsj0-2mix, WHAM, on which initial results indicate that the advantage of learned representations reduces as noise is introduced, suggesting that learning from the raw waveform might be harder in noisy conditions. In parallel, parameterized kernel-based filterbanks have been introduced as a front-end for speech and speaker recognition [START_REF] Ravanelli | Speaker recognition from raw waveform with sincnet[END_REF][START_REF] Loweimi | On Learning Interpretable CNNs with Parametric Modulated Kernel-Based Filters[END_REF]. The underlying idea is to restrict the filters to a certain family of functions and jointly learn their parameters with the network. These filterbanks are meant for signal analysis only, though.

In this paper, we define suitable parameterized filters for analysis-synthesis. Compared with fixed STFT filters, the proposed filters offer more flexibility and diversity thanks to their adaptive center frequency and bandwidth. Conversely, their parameterized form offers fewer parameters to learn and better interpretability compared with their learned counterparts. To do so, we extend the parameterized filters introduced in [START_REF] Ravanelli | Speaker recognition from raw waveform with sincnet[END_REF] to complex-valued analytic filters, thus enabling perfect synthesis via overlap-add and building shift invariance, a desirable property for time-frequency representations. We then propose a similar analytic extension for learned filters. Finally, we evaluate the performance of these analysissynthesis filterbanks in a unified framework, as a function of window size in both clean and noisy scenarios.

We present the general framework for speech separation and the proposed filterbanks in Section 2. We describe the experimental setup in Section 3 and the results in Section 4. We conclude in Section 5.

MODEL

Single-channel speech separation is the task of retrieving individual speech sources from a mixture, optionally in the presence of noise. The observed signal x(t) is described as

x(t) = C i=1 s i (t) + n(t), (1) 
where C is the number of sources, {s i (t)} i=1..C are the individual source signals and n(t) is additive noise. The task is then to produce accurate estimates ŝi (t) of each s i (t).

General framework

Most state-of-the-art speech separation methods can be described using an encoding-masking-decoding framework. An encoder transforms the time-domain signal by convolving every signal frame indexed by k ∈ {0, ..., K-1} with a bank of N analysis filters {u n (t)} n=0..N -1 of length L:

1 X(k, n) = L-1 t=0 x(t + kH)u n (t), n ∈ {0, ..., N -1}, ( 2 
)
where H is the hop size. After an optional non-linearity G, X is then fed to the masking network MN :

MN (G(X)) = [M 1 , ..., M C ]. (3) 
Each estimated mask M i is multiplied with the input to obtain the estimated representation of source i:

Y i = G(X) M i , i ∈ {1, ..., C}, (4) 
with denoting point-wise multiplication. The decoder maps each Y i to the time domain by transposed convolution with a bank of N synthesis filters {v n (t)} n=0..N -1 of length L:

ŝi (t) = K-1 k=0 N -1 n=0 Y i (k, n)v n (t -kH). (5) 
The analysis and synthesis filters fall into three categories: free, parameterized, or fixed. In [START_REF] Luo | Tasnet: Time-domain audio separation network for real-time, single-channel speech separation[END_REF][START_REF] Shi | Deep attention gated dilated temporal convolutional networks with intra-parallel convolutional modules for end-to-end monaural speech separation[END_REF][START_REF] Luo | Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF], the filters are free: all weights {u n (t)} and {v n (t)} are jointly learned with the masking network. Parameterized filters belong to a family of filters, whose parameters are jointly learned with the network instead [START_REF] Ravanelli | Speaker recognition from raw waveform with sincnet[END_REF][START_REF] Loweimi | On Learning Interpretable CNNs with Parametric Modulated Kernel-Based Filters[END_REF]. For instance, the filters in [START_REF] Ravanelli | Speaker recognition from raw waveform with sincnet[END_REF] are defined as the difference between two low-pass filters with cutoff frequencies f 1 and f 2 :

u n (t; θ) = 2f 2 sinc(2πf 2 n) -2f 1 sinc(2πf 1 n) = 2f w sinc(2πf w n) cos(2πf c n), (6) 
where

θ = {f 1 , f 2 }, f w = f 2 -f 1 , and f c = (f 1 + f 2 )/2.
All filters drawn from this family are even functions, thus making it unsuitable for resynthesis. Finally, fixed filters represent handcrafted transforms such as the STFT [START_REF] Hershey | Deep clustering: discriminative embeddings for segmentation and separation[END_REF], gammatone [START_REF] Necciari | Audlet filter banks: a versatile analysis/synthesis framework using auditory frequency scales[END_REF] or Mel [START_REF] Weninger | Speech enhancement with LSTM recurrent neural networks and its application to noise-robust ASR[END_REF] filters. In the case of the STFT:

u n (t) = h a (t)e -2jπn/N and v n (t) = h s (t)e 2jπn/N , (7) 
with h a and h s the analysis and synthesis windows. 1 Mathematically, this is a correlation rather than a convolution.

A desirable property of time-frequency representations is shift invariance, i.e., invariance to small delays in the time domain. Analytic filters [START_REF] Flanagan | Parametric coding of speech spectra[END_REF] have this property. Namely, the modulus of the convolution between a real-valued signal and an analytic filter is the envelope of that signal in the frequency band defined by the filter. The STFT filters [START_REF] Luo | Tasnet: Time-domain audio separation network for real-time, single-channel speech separation[END_REF] are examples of such analytic filters, and the magnitude of the STFT is the corresponding shift-invariant representation. Given any real-valued filter u(t) ∈ R 1×L , a corresponding analytic filter u analytic (t) can be obtained as

u analytic (t) = u(t) + jH[u(t)] (8) 
where H denotes the Hilbert transform which imparts a -π/2 phase shift to each positive frequency component. In the following, we detail the proposed analytic expansion of both parameterized and free filters.

Proposed analytic filterbanks

We define parameterized analytic analysis filters u n as

u n (t; θ) = 2f w sinc(2πf w t)(cos(2πf c t) -j sin(2πf c t)) = 2f w sinc(2πf w t)e -2jπfct . (9) 
This complements the original family of even filters ( 6) with odd ones. The new family {u n } n=1..N can form a complete basis of the signal space, and each filter is analytic so that

(u n (t; θ)) = H[ (u n (t, θ))]. (10) 
The corresponding family of synthesis filters is defined as:

v n (t; φ) = 2g n f w sinc(2πf w t)e 2jπfct , (11) 
where φ = {f 1 , f 2 , g}, and g n is a gain parameter learned to improve resynthesis. Finally, each filter is multiplied by a Hamming window of size L, as in [START_REF] Ravanelli | Speaker recognition from raw waveform with sincnet[END_REF][START_REF] Loweimi | On Learning Interpretable CNNs with Parametric Modulated Kernel-Based Filters[END_REF].

Similarly, in the case of free filters, we propose to ensure that the learned filters are analytic by parameterizing them by their real part and computing the corresponding analytic filter via [START_REF] Shi | Deep attention gated dilated temporal convolutional networks with intra-parallel convolutional modules for end-to-end monaural speech separation[END_REF] during the forward pass of the network. This is applied to both analysis and synthesis filters.

In the following, analytic parameterized and free filterbanks are respectively denoted as param+H and free+H.

Network inputs and output masks

Analytic filterbanks can be viewed either as a set of N complex filters or as 2N real filters. This opens different possibilities for the inputs and outputs of the masking network. We consider three possibilities for the input representation: the modulus of X (Mag), its real and imaginary parts (Re+Im) or a concatenation of both (Mag+Re+Im). The masks can be applied to the modulus of X (Mag) or to its real and imaginary parts using either a complex-valued product with M k ∈ C N (Compl) or a real-valued product with M k ∈ R 2N (Re+Im).

Masking network

The masking network is chosen to be the time-domain Convolutional Network (TCN) in [START_REF] Luo | Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF]. It comprises R convolutional blocks, each consisting of X 1-D dilated convolutional layers with exponentially increasing dilation factor. In [START_REF] Luo | Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF], the best system used R = 3 and X = 8. For most of our experiments, we use a lighter network (Light TCN) with R = 2 and X = 6 to reduce training time. The systems achieving the best performances with the light TCN are then retrained using the larger network (Full TCN). The hop size is set to H = L/2. No non-linearity G is applied to the inputs and the masks are estimated using ReLU as the activation function 2 .

EXPERIMENTAL PROCEDURE

Dataset

The systems are evaluated on clean (wsj0-2mix [START_REF] Hershey | Deep clustering: discriminative embeddings for segmentation and separation[END_REF]) and noisy (WHAM [START_REF] Wichern | WHAM!: extending speech separation to noisy environments[END_REF]) two-speaker mixtures created with the scripts in [START_REF]Scripts to generate the wsj0 hipster ambient mixtures dataset[END_REF]. In the clean condition, a 30 h training set and a 10 h validation set are generated by mixing randomly selected utterances from different speakers in the Wall Street Journal (WSJ) training set si tr s at random signal-to-noise (SNR) ratios between 0 and 5 dB. Noisy datasets are then created by mixing noiseless mixtures with noise samples at SNRs between -3 and 6 dB with respect to the loudest speaker. For both conditions, a 5 h evaluation set is designed similarly with different speakers and noise samples. All Light TCN experiments are conducted with a sampling rate of 8 kHz.

Training and evaluation setup

Training is performed on 4 s segments using the permutationinvariant [START_REF] Yu | Permutation invariant training of deep models for speaker-independent multi-talker speech separation[END_REF][START_REF] Kolbaek | Multitalker speech separation with utterancelevel permutation invariant training of deep recurrent neural networks[END_REF] scale-invarariant source-to-distorsion ratio (SI-SDR) [START_REF] Luo | Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF][START_REF] Roux | Sdr half-baked or well done?[END_REF] as the training objective. For Light TCN, Adam [START_REF] Diederik | Adam: a method for stochastic optimization[END_REF] with an initial learning rate of 1.10 -3 is used as the optimizer. Learning rate halving and early stopping are applied based on validation performance. The best models are retrained with the Full TCN architecture using rectified Adam [START_REF] Liu | On the variance of the adaptive learning rate and beyond[END_REF] with look ahead [START_REF] Michael | Lookahead optimizer: k steps forward, 1 step back[END_REF]. Mean SI-SDR improvement (SI-SDR i ) is reported for all models on their respective test sets.

RESULTS

Light TCN experiments

Analycity of parameterized and free filterbanks: We first evaluate the role of analycity in our parameterized filterbank 2 Our implementation can be found at github.com/mpariente/AsSteroid. [START_REF] Luo | Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF]. We consider N = 512 filters, with Mag+Re+Im input and Mag mask. To compensate for the greater number of filters, we set N = 1536 for the non-analytic filterbank [START_REF] Wang | Alternative objective functions for deep clustering[END_REF]. Table 1 shows that the original filterbank is unsuitable for analysis-synthesis for any window size and that the proposed analytic extension overcomes this issue. The results of a similar experiment for the free filterbanks in both clean and noisy conditions are shown in Fig. 1. While analytic extension of free filters doesn't hurt performance for short windows, we can gain up to 2 dB for larger windows. Also note that tripling the number of free filters doesn't match the gain brought by analycity. Masking strategies: Next, we evaluate the choice of the masking strategy for Mag+Re+Im input. Table 2 shows that this has very little and moderate impact on the free+H and param.+H filterbanks, respectively. For the STFT, the gap between Mag and Re+Im masks suggest that phase modeling is indeed necessary for good separation with small windows. Input representations: Next, we evaluate the impact of the input representation as a function of window size. The re- sults are plotted in Fig. 2 for the Re+Im mask. In the case of free+H, the shift-invariant representation Mag helps only for large windows. For param.+H, the Re+Im representation is sufficient for all window sizes. Finally, for the STFT, the Mag and Re+Im inputs complement each other so that maximum performance is reached with Re+Im input for small windows, when phase modeling is necessary, and with Mag for larger windows when amplitude modeling is sufficient. Filterbank choice: Finally, we compare the original free filterbank and all analytic filterbanks in Fig. 3, in both clean and noisy conditions. We use Mag+Re+Im input and Re+Im masking for all methods based on analytic filters.

The take-away messages of the above experiments are as follows. First, parameterized filters as in [START_REF] Ravanelli | Speaker recognition from raw waveform with sincnet[END_REF] are unsuitable for separation. The proposed analytic extension addresses this issue but performance decreases as the window size increases. Second, analytic extension of learned filters stabilizes performance for large windows. Third, combining complex inputs and masks for small windows brings the best results for all analytic filterbanks. Interestingly, this also holds for the STFT.

Full TCN experiment

We retrained the two best models, i.e., free with L = 16 (a.k.a. Conv-TasNet) and free+H with L = 16, with the full TCN in clean and noisy conditions and for both the 8 kHz min and 16 kHz max versions of the dataset. The results are reported in Table 3 along with the chimera++ [START_REF] Wang | Alternative objective functions for deep clustering[END_REF] results in [START_REF] Wichern | WHAM!: extending speech separation to noisy environments[END_REF]. Compared to Conv-TasNet, the proposed analytic extension improves the results in all tested conditions by up to 0.7 dB, showing that shift-invariant representations can benefit Conv-TasNet's TCN even for small windows. 

CONCLUSION

In this paper, we defined analytic extensions of both parameterized and free filterbanks. The resulting filterbanks are more interpretable, and perform equally well or better than their real-valued counterparts for speech separation in clean or noisy conditions. Final evaluation with the most expressive TCN from [START_REF] Luo | Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation[END_REF] showed that using analytic filterbanks consistently improved separation performances over all conditions. Also, to the best of our knowledge, this is the first time parameterized filterbanks are used in an end-to-end speech separation framework. Although they don't perform as well as free filterbanks, we argue that a better design could bridge this gap. Finally, we showed that complex-valued inputs and masks can be beneficial for separation with short windows for all filterbanks. In particular, the implicit phase modeling capability of TasNet's TCN applies to the STFT, which achieves its best performance for 2 ms windows.
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 1 Fig.1. SI-SDR i as a function of window size for free filterbanks in clean and noisy conditions.

Fig. 2 .

 2 Fig. 2. SI-SDR i for different inputs to the network as a function of window size for a) free+H, b) param.+H and STFT.

Fig. 3 .

 3 Fig.3. SI-SDR i as a function of window size for all filterbanks and for the ideal ratio mask (IRM).

Table 1 .

 1 SI-SDR i (dB) as a function of window size for parametric filterbanks in clean conditions. Bold values represent the best statistically significant results.

	Window size (ms)	2	5	10	25	50
	Param.	2.3	1.0 0.6 -0.8 -2.7
	Param.(3x filters)	2.3	1.2 0.7 -0.7 -2.7
	Param.+H	11.8 11.6 9.1	7.3	4.0

Table 2 .

 2 SI-SDR i (dB) as a function of the mask type for each analytic filterbank in clean and noisy conditions, L = 16.

			Clean			Noisy	
	Filterbank Mag Compl Re+Im	Mag Compl Re+Im
	Free+H	12.7 12.8	12.8	11.0 11.3	11.0
	Param.+H 11.8 12.2	12.5	10.5 10.6	10.1
	STFT	9.8	10.5	10.9	9.4	9.4	9.9

Table 3 .

 3 SI-SDR i (dB) comparison between the proposed analytic free filterbank and previously proposed models. Bold values represent the best statistically significant results.

	Model	Dataset	separate-clean separate-noisy
	chimera++ [6]	8kHz min	11.0	9.9
	Conv-TasNet [9] 3 8kHz min	15.1	12.7
	Free+H	8kHz min	15.8	12.9
	chimera++ [6]	16kHz max	9.6	10.2
	Conv-TasNet [9] 16kHz max	13.6	13.3
	Free+H	16kHz max	14.0	14.0