N
N

N

HAL

open science

Analysing installation scenarios of Debian packages

Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas,

Mihaela Sighireanu, Ralf Treinen

» To cite this version:

Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu, et al..
Analysing installation scenarios of Debian packages. TACAS 2020 - 26th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Apr 2020, The conference took
place on-line, because it couldn’t be held in Dublin, Ireland. pp.235-253, 10.1007/978-3-030-45237-
7_14 . hal-02355602v2

HAL Id: hal-02355602
https://hal.science/hal-02355602v2
Submitted on 18 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02355602v2
https://hal.archives-ouvertes.fr

Analysing installation scenarios
of Debian packages *

TACAS
Artifact

. . Evaluation
Benedikt Becker! @, Nicolas Jeannerod? @, 2020

Claude Marché! ®, Yann Régis-Gianas?3 @,

Mihaela Sighireanu? @, and Ralf Treinen?

Accepted

L Université Paris-Saclay, Univ. Paris-Sud, CNRS, Inria, LRI, 91405, Orsay, France
2 Université de Paris, IRIF, CNRS, F-75013 Paris, France
3 Inria, F-75013 Paris, France

Abstract. The Debian distribution includes more than 28 thousand
maintainer scripts, almost all of them are written in Posix shell. These
scripts are executed with root privileges at installation, update, and re-
moval of a package, which make them critical for system maintenance.
While Debian policy provides guidance for package maintainers produc-
ing the scripts, few tools exist to check the compliance of a script to it. We
report on the application of a formal verification approach based on sym-
bolic execution to find violations of some non-trivial properties required
by Debian policy in maintainer scripts. We present our methodology
and give an overview of our toolchain. We obtained promising results:
our toolchain is effective in analysing a large set of Debian maintainer
scripts and it pointed out over 150 policy violations that lead to reports
(more than half already fixed) on the Debian Bug Tracking system.

Keywords: Quality Assurance - Safety Properties - Debian - Software
Package Installation - Shell Scripts - High-Level View of File Hierarchies
- Symbolic Execution - Feature Tree Constraints

1 Introduction

The Debian distribution is one of the oldest free software distributions, pro-
viding today 60 000 binary packages built from more than 31 000 software source
packages with an official support for nine different CPU architectures. It is one
of the most used GNU/Linux distributions, and serves as the basis for some
derived distributions like Ubuntu.

A software package of Debian contains an archive of files to be placed on
the target machine when installing the package. The package may come with a
number of so-called maintainer scripts which are executed when installing, up-
grading, or removing the package. A current version* of the Debian distribution
contains 28 814 maintainer scripts in 12592 different packages, 9771 of which

* This work has been partially supported by the ANR project CoLiS, contract number
ANR-15-CE25-0001.

4 sid for amd64, including contrib and non-free, as of October 6, 2019

http://orcid.org/0000-0002-0819-8344
http://orcid.org/0000-0003-1969-1246
http://orcid.org/0000-0003-3035-1269
http://orcid.org/0000-0002-0745-8730
http://orcid.org/0000-0002-1925-089X

2 B. Becker et al.

are completely or partially written by hand. These scripts are used for tasks
like cleaning up, configuration, and repairing mistakes introduced in older ver-
sions of the distribution. Since they may have to perform any action on the tar-
get machine, the scripts are almost exclusively written in some general-purpose
scripting language that allows for invoking any Unix command.

The whole installation process is orchestrated by dpkg, a Debian-specific tool,
which executes the maintainer scripts of each package according to scenarios.
The dpkg tool and the scripts require root privileges. For this reason, the failure
of one of these scripts may lead to effects ranging from mildly annoying (like
spurious warnings) to catastrophic (removal of files belonging to unrelated pack-
ages, as already reported [39]). When an execution error of a maintainer script is
detected, the dpkg tool attempts an error unwind, but the success of this oper-
ation depends again on the correct behaviour of maintainer scripts. There is no
general mechanism to simply undo the unwanted effects of a failed installation
attempt, short of using a file system implementation providing for snapshots.

The Debian policy [4] aims to normalise, in natural language, important tech-
nical aspects of packages. Concerning the maintainer scripts we are interested in,
it states that the standard shell interpreter is POsix shell, with the consequence
that 99% of all maintainer scripts are written in this language. The policy also
sets down the control flow of the different stages of the package installation pro-
cess, including attempts of error recovery, defines how dpkg invokes maintainer
scripts, and states some requirements on the execution behaviour of scripts. One
of these requirements is the idempotency of scripts. Most of these properties are
until today checked on a very basic syntactic level (using tools like lintian [1]),
by automated testing (like the piuparts suite [2]), or simply left until someone
stumbles upon a bug and reports it to Debian.

The goal of our study is to improve the quality of the installation of
software packages in the Debian distribution using a formal and automated ap-
proach. We focus on bug finding for three reasons. Firstly, a real Unix-like oper-
ating system is obviously too complex to be described completely and accurately
by some formal model. Besides, the formal correctness properties may be difficult
to apprehend by Debian maintainers especially when they are expressed on an
abstract model. Finally, when a bug is detected, even on a system abstraction,
one can try to reproduce it on a real system and, if confirmed, report it to the
authors. This has a real and immediate impact on the quality of the software
and helps to promote the usage of formal methods to a community that often is
rather sceptical towards methods and tools coming from academic research.

The bugs in Debian maintainer scripts that we attempt to find may come at
different levels: simple syntax errors (which may go unnoticed due to the unsafe
design of the Posix shell language), non-compliance with the requirements of
the Debian policy, usage of unofficial or undocumented features, or failure of a
script in a situation where it is supposed to succeed.

The challenges are multiple: The Posix shell language is highly dynamic
and recalcitrant to static analysis, both on a syntactic and semantic level. A
Unix file system implementation contains many features that are difficult to

Analysing installation scenarios of Debian packages 3

model, e.g., ownership, permissions, timestamps, symbolic links, and multiple
hard links to regular files. There is an immense variety of Unix commands that
may be invoked from scripts, all of which have to be modelled in order to be
treated by our tools. To address properties of scripts required by the Debian
policy, we need to capture the transformation done by the script on a file system
hierarchy. For this, we need some kind of logic that is expressive enough, and
still allows for automated reasoning methods. A particular challenge is checking
the idempotency property for script execution because it requires relational rea-
soning. For this, we encode the semantics of a script as a logic formula specifying
the relation between the input and the output of the script, and we check that
it is equivalent to its composition with itself. Finally, all these challenges have
to be met at the scale of tens of thousands of scripts.
The contributions of this work for this case study are:

1. A translation of Debian maintainer scripts into a language with formal se-
mantics, and a formalisation of properties required for the execution of these
scripts by the Debian policy.

2. A verification toolchain for maintainer scripts based on an existing symbolic
execution engine [5,6] and a symbolic representation [26]. Some components
of this toolchain have been published independently; we improve them to
cope with this case study. The toolchain is free software available online [35].

3. A formal specification of the transformations done by an important set of
PosiX commands [24] in feature tree constraints [26].

4. A number of bugs found by our method in recent versions of Debian packages.

We start in the next section with an overview of our method illustrated on
a concrete example. Section 3 explains in greater detail the elements of our
toolchain, the particular challenges, the hypotheses that we could make for the
specific Debian use case at hand, and the solution that we have found. Section 4
presents the results we have found so far on the Debian packages, and the lessons
learnt. We conclude in Section 5 by discussing additional outcomes of this study,
the related and future work.

2 Overview of the case study and analysis methodology

2.1 Debian packages

Three components of a Debian binary package play an important role in the
installation process: the static content, i.e., the archive of files to be placed on
the target machine when installing the package; the lists of dependencies and pre-
dependencies, which tell us which packages can be assumed present at different
moments; and the maintainer scripts, i.e., a possibly empty subset of four scripts
called preinst, postinst, prerm, and postrm. We found (Section 4.2) that 99%
of the maintainer scripts in Debian are written in Posix shell [22].

Our running example is the binary package rancid-cgi [31]. It comes with
only two maintainer scripts: preinst and postinst. The preinst script is in-
cluded in Fig. 1. If the symbolic link /etc/rancid/lg.conf exists then it is

4 B. Becker et al.

if [-h /etc/rancid/lg.conf]; then

: rm /etc/rancid/1lg.conf

s| £1

if [-e /etc/rancid/apache.conf]; then
rm /etc/rancid/apache.conf

Fig. 1. preinst script of the rancid-cgi package

removed; if the file /etc/rancid/apache.conf exists, no matter its type, it is
also removed. Both removal operations use the POSIX command rm which, with-
out options, cannot remove directories. Hence, if /etc/rancid/apache.conf is
a directory, this script fails while trying to remove it.

We did a statistical analysis of maintainer scripts in Debian to help us de-
sign our intermediate language, see Section 4.2 for details. We found that, for
instance, most variables in these scripts can be expanded statically and hence are
used like constants; most while loops can be translated into for loops; recursive
functions are not used at all; redirections are almost always used to discard the
standard output of commands.

2.2 Managing package installation

The maintainer scripts are invoked by the dpkg utility when installing, removing
or upgrading packages. Roughly speaking, for installation dpkg calls the preinst
before the package static content is unpacked, and calls the postinst afterwards.
For deinstallation, it calls the prerm before the static content is removed and calls
the postrm afterwards. The precise sequence of script invocations and the actual
script parameters are defined by informal flowcharts in the Debian policy [4,
Appendix 9]. Fig. 2 shows the flowchart for the package installation. dpkg may
be asked to: install a package that was not previously installed (Fig. 2), install a
package that was previously removed but not purged, upgrade a package, remove
a package, purge a package previously removed, remove and purge a package.
These tasks include 39 possible execution paths, 4 of them presented in Fig. 2.
The Debian policy contains [4, Chapters 6 and 10] several requirements on
maintainer scripts. This case study targets checking the requirements regarding
the execution of scripts, and considers out of scope some other kinds of re-
quirements, e.g., the permissions of script files. The requirements of interest are
checked by different tools of our toolchain presented in Section 3. For example,
the different ways to invoke a maintainer script are handled by the analysis of
scenarios (Section 3.5) calling the scripts. Different requirements on the usage
of the shell language are checked by the syntactic analysis (Section 3.1), like
the usage of -e mode or of authorised shell features that are optional in the
Posix standard. Some of the usage requirements can be detected by a semantic
analysis; this is done in our toolchain by a translation into a formally defined
language, called CoLiS (Section 3.1). Finally, requirements concerning the be-

Analysing installation scenarios of Debian packages 5

FAILED
@—»{postrm abort-install \FAILED
OK

OK

Files are unpacked
\ 4

postinst configure \FAILED

OK

“Installed” “Failed-Config” “Not Installed” “Half Installed”

v
Exit with error mesage

Fig. 2. Debian flowchart for installing a package [4, Appendix 9] (The states represent
calls to maintainer scripts with their arguments and the status returned by dpkg at
the end of the process is in bold.)

haviour of scripts include the usage of exit codes and the idempotency of scripts.
The last property is difficult to formalise since it refers to possible unforeseen
failures (see discussion in Section 4.4). Checking behavioural properties requires
to reason about their semantics, which is done by a symbolic execution in our
toolchain (Section 3.4). We also check some requirements that are simply com-
mon sense and that are not stated in the policy, e.g., invoking Unix commands
with correct options. This is done by the semantic analysis (Section 3.1).

2.3 Principles and workflow of the analysis method

Our goal is to check the above properties of maintainer scripts in a formal way,
by analysing each script and the composition of scripts in the execution paths
exhibited by the flowcharts of dpkg. We call scenario either an execution path
of dpkg, a single execution of a script, or a double execution of a script with the
same parameters (to check idempotency); refer to Section 3.5 for more details.

The analysis should consider a variety of states for the system on which the
execution takes place. Yet we assume the following hypotheses: the scripts are
executed in a root process without concurrency with other user or root processes,
the static content of the package is successfully unpacked, the dependencies de-
fined by the package are present (fact checked by dpkg), and the /bin/sh com-
mand implements the standard Posix.1-2017 Shell Command Language with
the additional features described in the Debian policy [4, Chapter 10].

The components of our toolchain for the analysis of a scenario are summarised
on Fig. 3 and detailed in Section 3. Given a package and one scenario, the scenario
player extracts the static content and the maintainer scripts, prepares the initial
symbolic state of the scenario, symbolically executes the steps of the scenario to

6 B. Becker et al.

p
Scenario Player

Static
Contents

Symbolic
Relations

(. J

Fig. 3. Toolchain for analysis of a scenario on a given package (see Section 2.3)

compute a symbolic relation between the input and the output states of the file
system for each outcome of the scenario, and produces a diagnosis.
2.4 Presentation of results

The results computed by the sce-
nario player are presented in a set ~{etc}

of web pages, one per scenario, otc otc
and a summary page for the pack- ~ {rancid}
. ranci
age [34]. Each scenario may have
several computed exit codes; for an rancid -~ rancid
{1g.conf}.

error code, the associated symbolic ‘ .
relation is translated automatically lg.conf / apache. conf ‘\tgeont

into a diagnosis message. (symlink) (dir) ' N

For example, consider the sim-
ple scenario of a call to the script
preinst given in Fig. 1. The result
web page includes the diagram in
Fig. 4, which is obtained by the interpretation of the symbolic relation com-
puted by the scenario player for the error exit code. The diagram represents an
abstraction of the initial file system on the left, an abstraction of the file system
at the end of the script’s execution on the right, and the relation between these
abstractions (dotted lines). In this diagram, a plain edge represents the parent
relation in the file hierarchy. A dotted edge describes a similarity relation, e.g.,
the trees rooted at /etc coincide except on the child named rancid. | denotes
the absence of a node. Finally, a leaf can be annotated by a property, e.g., the an-
notation dir rooted at /etc/rancid/apache. conf. The diagram shows that the
preinst script leads to an error state when the file /etc/rancid/apache.conf
is a directory since the rm command cannot remove directories.

Fig. 4. Example of diagnosis: error case for
preinst call in the package rancid-cgi

Analysing installation scenarios of Debian packages 7

Finally, another set of generated web pages provides statistics on the coverage
and the errors found for the full set of scenarios of the Debian distribution.

3 Design and implementation of the tool chain

The toolchain, as described in Fig. 3, hinges on a symbolic execution engine
which computes the overall effect of a script on the file system as a symbolic
relation between the input and the output file system. This section details this
execution engine, which is composed of (i) a front-end that parses the script
and translates it into a script in a formally defined intermediate language called
CoLiS, and (ii) a back-end that symbolically executes the CoLiS scripts to get, for
each outcome of the script, the relation between input and output file systems
encoded by a tree constraint.

3.1 Front-end

Shell parser. The syntax of the P0OsIX shell language is unconventional in many
aspects. For this reason, the implementation of a parser for Posix shell cannot
simply reuse the standard techniques solely based on code generators. Most of
the shell implementations falls back to manually written character-level parsers,
which are difficult to maintain and to trust. morbig [30] is a parser that tries to
use code generators as much as possible to keep the parser implementation at a
high level of abstraction, simplifying maintenance and improving our ability to
check if it complies with the P0OSIX standard.

The ColLiS language. Tt was first presented in 2017 [23]. Its design aims to avoid
some pitfalls of the shell, and to make explicit the dangerous constructions we
cannot eliminate. It has a clear syntax and a formally defined semantics. We
provide an automated and direct translation from PoOSIX shell. The correctness
of the translation from shell to CoLiS cannot be proven formally but must be
trusted based on manual review of translations and tests.

For this case study, we improved the language proposed formerly [23] to
increase the number of analysed Debian maintainer scripts. First, we added a
number of constructs to the language. Second, we provide a formal semantics for
the new constructs and we align the previous semantics [23] to the one of the
Posix shell for a few other constructs. These changes and a complete description
of the current CoLiS language are described in a technical report [6]. Fig. 5
shows the CoLiS version of the preinst script of the rancid-cgi package, shown
previously in Fig. 1. Notice the syntax for string arguments and for lists of
arguments that requires mandatory usage of delimiters. Generally speaking, the
syntax of CoLiS is designed so as to remove potential ambiguities [6].

The toolchain for analysing CoLiS scripts is designed with formal verification
in mind: the syntax, semantics, and interpreters of CoLiS are implemented using
the Why3 environment [7] for formal verification. More precisely, the syntax
of CoLiS is defined abstractly (as abstract syntax trees, AST for short) by an

8 B. Becker et al.

if test [?-h’; ’/etc/rancid/lg.conf’] then
rm [’/etc/rancid/1lg.conf’]

fi

if test [’-e’; ’/etc/rancid/apache.conf’] then
rm [’/etc/rancid/apache.conf’]

fi

Fig. 5. preinst script of the rancid-cgi package in CoLiS

algebraic datatype in Why3. Then CoLiS semantics is defined by a set of inductive
predicates [6] that encodes a chiefly standard, big-step operational semantics.
The semantic rules cover the contents of variables and input/output buffers used
during the evaluation of a CoLiS script, but they do not specify the contents of
the file system and the behaviour of POSIX commands. The judgements and rules
are parameterised by bounds on the number of loop iterations and the number
of (recursively) nested function calls to allow for formalising the correctness of
the symbolic interpreter. The bounds are either a non-negative integer, or oo for
unbounded execution, and keep constant throughout the evaluation of a CoLiS
instruction. We refer to [6] for the details.

A concrete interpreter for the CoLiS language is implemented in Why3. Its
formal specifications (preconditions and post-conditions) state the soundness of
the interpreter, i.e., that any result corresponds to the formal semantics with
unbounded number of loop iterations and unbounded nested function calls. The
specifications are checked using automated theorem provers [23].

Translation from shell to CoLiS. This is done automatically, but it is not formally
proven. Indeed, a formal semantics of shell was missing until very recently [21].
For the control flow constructs, the AST of the shell script is translated into the
AST of ColLiS. For the strings (words in shell), the translation generates either a
string CoLiS expression or a list of CoLiS expressions depending on the content of
the shell string. This translation makes explicit the string evaluation in shell, in
particular the implicit string splitting. At the present time, the translator rejects
23% of shell scripts because it does not cover the full constructs of the shell, e.g.,
usage of globs, variables with parameters, and advanced uses of redirections.

The conformance of the CoLiS script with the original shell script is not
proven formally but tested by manual review and some automatic tests. For the
latter, we developed a tool that automatically compares the results of the CoLiS
interpreter on the CoLiS script with the results of the Debian default shell (dash)
on the original shell script. This tool uses a test suite of shell scripts built to
cover the whole constructs of the CoLiS language. The test suite allowed us to fix
the translator and the formal semantics of CoLiS and, as an additional outcome,
it revealed a lack of conformance between the Debian default shell and Posix®.

® https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html

https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html

Analysing installation scenarios of Debian packages 9

lib/ \share .
t3:
dir dir 3 etc/ \mr
: rancic/ lib/ \&hare
bin/ \153: : dir dir
di : apache. conf/ \Lg .conf

r
lib/ \share reg symlink
dir

dir

tlt

to:

Fig. 6. Examples of feature trees showing directories (¢1), sub-directories (¢2), a regular
file and a symbolic link (¢3).

8
8

f T T T ~F Y \f

(reg) (dir) [

x
I

2
EA
Y

<
—

Fig. 7. Basic constraints, from left to right: a feature, a regular file node, a directory
node, a tree similarity, a feature absence, a maybe

3.2 Feature trees and constraints

We employ models and logics to describe transformations of UNIX file systems.
Feature trees [32,3,33] turn out to be suitable models for this case study. We have
proposed a logic suitable to express file system transformations by extending
previously existing logics. For the sake of space, we provide a concise overview
of the model and logic used in this case study.

Feature trees. The models we consider here are trees with features (taken from F,
an infinite set of legal file names) on the edges, the dir kind on the nodes and
any kind (dir, reg or symlink) on the leaves. Examples are given in Fig. 6.

Constraints. To specify properties of feature tree models, we modify our first
order logic [26] to suit this case study’s needs. For the sake of presentation, we
use a graphical representation of quantifier-free conjunctive clauses of this logic.
See the technical report [24] for a detailed presentation.

The core basic constraints are presented in Fig. 7. The feature constraint
expresses that y is a subtree of x accessible from the root of x wvia feature f.
The kind constraints express that the root of a tree has the given kind (dir, reg
or symlink). The similarity constraint expresses that x and y have the same
children with the same names except for the children whose names are in F', a
finite set of features, where they may differ.

10 B. Becker et al.

For performance reasons, we added two more Y ™~ {binetc}

constraints; these do not increase the expres- RN H
sive power but help to prevent combinatorial ex- bin?| \\‘%tc'? ust
plosion of formulas. The absence constraint ex- v w L
presses that either z is not a directory or z does (@) (xe8) | ete
not have a feature f at its root. The maybe con- 1

straint expresses that either x is not a directory,
or it does not have a feature f at its root, or it Fig.8. A conjunctive clause
has one that leads to y.

A model of a formula is a valuation that maps variables to feature trees.
For instance, consider the valuation that associates ¢; to z, to to y and ¢3 to z,
where 1, to and t3 are the trees defined in Fig. 6; it satisfies the formula in Fig. 8

Satisfiability. We designed a set of transformation rules [26] that turns any Y-
formula into an irreducible form that is either false or a satisfiable formula.
This is convenient in our setting because we can detect unsatisfiable formulas as
soon as possible and keep the irreducible form instead of the original formula,
speeding up further computations. Our toolchain includes an implementation
of this system, using an efficient representation of irreducible X;-formulas as
trees themselves. Finally, the system of rules is also extended to a quantifier
elimination procedure, showing that the whole first-order logic is decidable.

3.3 Specifications of UNIX commands

The specification of the UNIX commands uses our feature tree logic to express
their effect on the file system. The specification formalises the description given
in natural language in the Posix standard [22, Chapter Utilities] and, for some
commands, in GNU manual pages. We only specified (most of) the UNIX com-
mands called by the maintainer scripts.

The full specification is available in a separate technical report [24]. We
present here its main ingredients. A UNIX command has the form: “cmd options
paths”, where “cmd” is a command name, “options” is a list of options, and
“paths” is one or more absolute or relative paths (i.e., sequence of file names
and symbols “.” and “. .”). For each combination of command name and option,
we provide a list of formulas specifying the success and failure cases. A success or
failure case formula has two free variables r and 7/, which represent the root of
the file system before and after the command execution. For some combinations
of command names and options, the specification is not provided, but computed
by the symbolic execution of a CoLiS script. This script captures the command
behaviour by calling other (primitive) commands.

Path resolution. An important ingredient in command specification is the con-
straint encoding the resolution of a path in the file system. For this, we define
a predicate resolve(r, cwd, p, z) stating that “when the root of the file system
is 7 and the current working directory is the sequence of features cwd, the path
p resolves and goes to variable z”. The constraint defining this predicate is a Xy

Analysing installation scenarios of Debian packages 11

/
r
etc ‘etc
X - ~{rancid} ./,U/
rancid ‘ ‘ rancid
Y - M{1lg:conf} y/
lg.conf ‘ :
: ig-eonf
z 1

(~dir)

Fig. 9. Specification of success case for rm /etc/rancid/1g.conf

r=r r=r r=r r=r r=r
e%ei etc etc etc etc?i
1 x T x x
f&nﬁdi rancid ‘ rancid ‘ 'ra,ncid?:
1 Yy Yy Yy
]g.smf: lg.conf‘ lg.conf?,
|
L (;i) (Ji)

Fig. 10. Specification of error cases of rm /etc/rancid/lg.conf: explicit cases on the
left, compact specification on the right

conjunction of basic constraints; it does not deal with symbolic link files on the
path. For example, the constraint resolve(r,cwd, /etc/rancid/1lg.conf, z) is
represented by the path starting from r and ending in z in Fig. 9.

For some commands, a failure of path resolution may cause the failure of
the command. To specify these failure cases, we have to use the negation of the
predicate resolve, which generates a number of clauses which is linear in the
length of the resolved path. Fig. 10 shows, in the three left-most constraints,
the error cases for the resolution of the path to /etc/rancid/1lg.conf. Because
the internal representation of formulas keeps only conjunctive clauses, this may
produce a state explosion of constraints when the command uses several paths.
To obtain a compact internal representation of these error cases, we employ the
maybe shorthand, as shown on the right of Fig. 10.

Let us consider the command rm /etc/rancid/lg.conf. Its specifica-
tion includes one success case, given on Fig. 9: the resolution of the path
/etc/rancid/lg.conf succeeded in the initial file system denoted by r, and
the resulting file system, denoted by 7’ is similar to r except for the absence
of the feature 1g.conf. The specification also includes one error case given on
Fig. 10, where the path cannot be resolved to a regular path, and therefore the
initial and final file systems are the same.

It is important to notice that specifications of commands are parameterised
by their path(s) argument(s): for each concrete value of such paths, an appropri-

12 B. Becker et al.

ate constraint is produced. This fact is essential for using our symbolic engine,
because the variables of a constraint denote nodes of the file system, but there
is no notion of variable denoting file names or paths.

3.4 Analysis by symbolic execution

With a similar approach as for the concrete interpreter (Section 3.1), we designed
and implemented a symbolic interpreter for the CoLiS language in Why3. Guided
by a proof-of-concept symbolic interpreter for a simple IMP language [5], the
main design choices for the symbolic interpreter for CoLiS are:

— Variables are not interpreted abstractly: when executing an installation
script, the concrete values of the variables are known. On the other hand,
the state of the file system is not known precisely, and it is represented
symbolically using a feature tree constraint.

— The symbolic engine is generic with respect to the utilities: their specifica-
tions in terms of symbolic input/output relations are taken as parameters.

— The number of loop iterations and the number of (recursively) nested func-
tion calls [6]) is bounded a priori, the bound is given by a global parameter
set at the interpreter call.

The Why3 code for the symbolic interpreter is annotated with post-conditions to
express that it computes an over-approzimation [5] of the concrete states that are
reachable without exceeding the given bound on loop iterations. This property
is formally proven using automated provers. The OCaml code is automatically
extracted from Why3, and provides an executable symbolic interpreter with
strong guarantees of soundness with respect to the concrete formal semantics.

Notice that our symbolic engine neither supports parallel executions, nor file
permissions or file timestamps. This is another source of over-approximation,
but also under-approximation, meaning that our approach can miss bugs whose
triggering relies on the former features.

The symbolic interpreter provides a symbolic semantics for the given script:
given an initial symbolic state that represents the possible initial shape of the file
system, it returns a triple of sets of symbolic input/output relations, respectively
for normal result, error result (corresponding to non-zero exit code) and result
when a loop limit is reached. Error results are unexpected for Debian maintainer
scripts, and these cases have to be inspected manually. To help this inspection, a
visualisation of symbolic relations was designed, as already described in Fig. 4.

3.5 Scenarios

So far, we have presented how we analyse individual maintainer scripts. In reality,
the Debian policy specifies in natural language in which order and with which
arguments these scripts are invoked during package installation, upgrade, or
removal (see, for instance, Fig. 2). We have specified these scenarios in a loop-
free custom language. These scenarios define what happens after the success or

Analysing installation scenarios of Debian packages 13

the failure of a script execution. They also specify when the static content is
unpacked. Furthermore, our toolchain allows to define the assumptions that can
be made on an initial filesystem before executing a scenario, for instance the
File System Hierarchy Standard [38]. Our toolchain reports on packages that
may remain in an unexpected state after the execution of one of these scenarios.

For instance, the installation scenario of the package rancid-cgi may leave
that package in the state not-installed, which is reported by our toolchain using
the diagram in Fig. 4.

4 Results and impact

4.1 Coverage of the case study

The tools used and the datasets analyzed during the current study are available
in the Zenodo repository [36].

We execute the analysis on a machine equipped with 40 hyperthreaded Intel
Xeon CPU @ 2.20GHz, and 750GB of RAM. To obtain a reasonable execution
time, we limit the processing of one script to 60 seconds and 8GB of RAM.
The time limit might seem low, but the experience shows that the few scripts
(in 30 packages) that exceed this limit actually require hours of processing be-
cause they make a heavy use of dpkg-maintscript-helper. On our corpus of
12592 packages with 28 814 scripts, the analysis runs in about half an hour.

All of those scripts that are syntactically correct with respect to the Posix
standard (99.9%) are parsed successfully by our parser. The translation of the
parsed scripts into our intermediary language CoLiS succeeds for 77% of them;
the translation fails mainly because of the use of globs, variables with parameters
and advanced uses of redirections.

Our toolchain then attempts to run 113 328 scenarios (12592 packages with
scripts, 9 scenarios per package). Out of those, 45456 scenarios (40%) are run
completely and 13149 (12%) partially. This is because scenarios have several
branches and although a branch might encounter failure, we try to get some
information on execution of other branches. For the same reason, one scenario
might encounter several failures. In total, we encounter 67 873 failures. The ori-
gins of failures are multiple, but the two main ones are (i) trying to execute
a scenario that includes a script that we cannot convert (28% of failures), or
(ii) the scripts might use commands unsupported by our tools, or unsupported
features of supported commands (71% of failures).

Among the scenarios that we manage to execute at least partially, 19 reach
an unexpected end state. These are potential bugs. We have examined them
manually to remove false positives due to approximations done by our method-
ology or the toolchain. We discuss in Section 4.3 the main classes of true bugs
revealed by this process.

4.2 Corpus mining

The latest version of the Debian sid distribution on which we ran our tools dates
from October 6, 2019. It contains 60000 packages, 12592 of which contain at

14 B. Becker et al.

Table 1. Bugs found between 2016 and 2019 in Debian sid distributions

Bugs Closed Detected by Reports Ezamples

95 56 parser [9] not using -e mode
6 4 parser & manual [15] unsafe or non-PosIX constructs

34 24 corpus mining [8,10] wrong options, mixed redirections
9 7 translation [11] wrong test expressions
5 2 symbolic execution [13,17,15] try to remove a directory with rm
3 3 formalisation [12] bug in dpkg-maintscript-helper

152 96

least one maintainer script, which leads to 28 814 scripts. In total, these scripts
contain 442 364 source lines of code, 15 lines on average, and up to 1138 for the
largest script. Among them we find 220 bash scripts, 2 dash scripts, 14 perl
scripts, and one ELF executable — the rest are Posix shell scripts.

In the process of designing our tools, and in order to validate our hypotheses,
we ran statistical analysis on this corpus of scripts. The construction of our tool
for statistical analysis is described in a technical report [25] where we also detail
a few of our findings. To summarize, analysing the corpus revealed that:

— Most variables in scripts were used as constants: only 3008 scripts contain
variables whose value actually changes.

— There are no recursive functions in the whole corpus.

— There are 2300 scripts that include a while loop. 93% of the while loops
occur in a pipe reading the output of dpkg -L and are an idiosyncrasy that
is proper to some shell languages. They can be translated to “foreach” loops
in a properly typed language.

— The huge majority of redirections are used to hide the standard output or
merge it into the error output.

This analysis had an important impact on the project by guiding the design
choices of CoLiS, which Unix commands we should specify and in which or-
der, etc. This also helped us to discover a few bugs, e.g., scripts invoking Unix
commands with invalid options.

4.3 Bugs found

We ran our toolchain on several snapshots of the Debian sid distribution taken
between 2016 and 2019, the latest one being October 6, 2019. We reported over
this period a total of 152 bugs to the Debian Bug Tracking System [37]. Some of
them have immediately been confirmed by the package maintainer (for instance,
[16]), and 96 of them have already been resolved.

Table 1 summarizes the main categories of bugs we reported. Simple lexical
analysis already detects 95 violations of the Debian Policy, for instance scripts
that do not specify the interpreter to be used, or that do not use the -e mode [9].
The shell parser (Section 3.1) detects 3 scripts that use shell constructs not
allowed by the Posix standard, or in a context where the POSiX standard states

Analysing installation scenarios of Debian packages 15

that the behaviour is undefined [15]. There are also 3 miscellaneous bugs, like
using unsafe shell constructs. The mining tool (Section 4.2) detects 5 scripts that
invoke Unix commands with wrong options and 29 scripts that mix up redirection
of standard-output and standard-error. The translation from the shell to the
CoLiS language (Section 3.1) detects 9 scripts with wrong test expressions [11].
These may stay unnoticed during superficial testing since the shell confuses, when
evaluating the condition of an if-then-else, an error exception with the Boolean
value False. Inspection of the symbolic semantics extracted by the symbolic
execution (Section 3.4) finds 5 scripts with semantic errors. Among these is the
bug [16] of the package rancid-cgi already explained in Section 2.4. During the
formalisation of Debian tools (see Section 3.3), we found 3 bugs. These include in
particular a bug [12] in the dpkg-maintscript-helper command which is used
10306 times in our corpus of maintainer scripts, and was fixed in the meantime.

4.4 Lessons learnt

One basic problem when trying to analyse maintainer scripts is to understand
precisely the meaning of the policy document. For instance, one of the more
intriguing requirements is that maintainer scripts have to be idempotent (Sec-
tion 6.2 in [4]). While it is common knowledge that a mathematical function f
is idempotent when f(f(z)) = f(x) for any z, the meaning is much less clear
in the context of Debian maintainer scripts as the policy goes on to explain “If
the first call failed, or aborted half way through for some reason, the second
call should merely do the things that were left undone the first time, if any, and
exit with a success status if everything is OK.” We suppose that this refers to
causes of error external to the script itself (power failure, full disk, etc.), and
that there might be an intervention by the system administrator between the
two invocations. Since we cannot even explain in natural language what precisely
that means, let alone formalise it, we decided to model at the moment only a
rough under-approximation of that property that only compares executions by
their exit code. This allowed us to detect a bug [14].

We found that identifying bugs in maintainer scripts always requires human
examination. Automated tools allow to point out potential problems in a large
corpus, but deciding whether such a problem actually deserves a bug report,
and of what severity level, requires some experience with the Debian processes.
This is most visible with semantic bugs in scripts, since an error exit code does
not imply that there is a bug. Indeed, if a script detects a situation it cannot
handle then it must signal an error and produce a useful error message. Deciding
whether a detected error case is justified or accidental requires human judgement.

Filing bug reports demands some caution, and observance of rules and com-
mon practices in the community. For instance, the Debian Developers Refer-
ence [18] requires approval by the community before so-called mass bug filing.
Consequently, we always sought for advice before sending batches of bugs, either
on the Debian developers mailing list, or during Debian conferences.

16 B. Becker et al.

5 Conclusion

The corpus of Debian maintainer scripts is an interesting case study for analysis
due to its size, the challenging features of the scripting language, and the re-
lational properties it requires to analyse. The results are very promising. First,
we reported 152 bugs [37] to the Debian Bug Tracking system, 96 of which have
already been resolved by Debian maintainers. Second, the toolchain performs
the analysis of a package in seconds and of the full distribution in less than a
hour, which makes it fit for integration in the workflow of Debian maintainers
or for quality assurance at the the level of the whole distribution. Integration of
our toolchain in the lintian tool will not be possible since it would add a lot of
external dependencies to that tool, and since the reports generated by our tool
still require human evaluation (see Section 4.4).

This study had several additional outcomes. The toolchain includes tools for
parsing and light static analysis of shell scripts [30], an engine for the symbolic
execution of imperative languages based on first-order logics representation of
program configurations [5], and an efficient decision procedure for feature tree
logics. We also provide a formal specification of P0OSIX commands used in Debian
scripts in terms of a first-order logic [24].

We are not aware of a project dealing with this kind of problem or obtaining
comparable results. To our knowledge, the only existing attempt to analyse a
complete corpus of package maintainer scripts was done in the context of the
Mancoosi project [19]. In this work, the analysis, mainly syntactic, resulted in a
set of building blocks used in maintainer scripts that may be used in a DSL. In a
series of papers [20,28,29], Ntzik et al. consider the formal reasoning on the P0six
scripts manipulating the file system based on (concurrent) separation logic. Not
only do they employ a different logic (a second-order logic), but they also focus
on (manual) proof techniques for correctness and not on automatic techniques for
finding bugs. Moreover, they consider general scripts and properties that are not
relational (like idempotency). There have been few attempts to formalise the
shell. Greenberg [21] recently offers an executable formal semantics of P0SIx
shell that will serve as a foundation for shell analysis tools. Abash [27] contains
a formalisation of parts of the bash language and an abstract interpretation tool
for the analysis of arguments passed by scripts to Unix commands; this work
focused on identifying security vulnerabilities.

The successful outcome of this case study revealed new challenges that we
aim to address in future work. In order to increase the coverage of our analysis
and the acceptance by Debian maintainers, the translation from shell should
cover more features, additional Unix commands should be formally specified,
and the model should capture more features of the file system, e.g., permissions,
or symbolic links. The efficiency of the analysis can still be improved by using a
more compact representation of disjunctive constraints in feature tree logics or by
exploiting the genericity of the symbolic execution engine to include other logic
based symbolic representations that may be more efficient and precise. Finally,
we want to use the computed constraints on scenarios to check new properties
of scripts like equivalence of behaviours.

Analysing installation scenarios of Debian packages 17

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Lintian. https://lintian.debian.org

. Piuparts. https://piuparts.debian.org/

Ait-Kaci, H., Podelski, A., Smolka, G.: A feature-based constraint system for logic
programming with entailment. Theor. Comput. Sci. 122(1-2), 263-283 (Jan 1994)
Allbery, R., Whitton, S.: Debian policy manual (Oct 2019), https://www.debian.
org/doc/debian-policy/

Becker, B., Marché, C.: Ghost Code in Action: Automated Verification of a
Symbolic Interpreter. In: Chakraborty, S., A.Navas, J. (eds.) Verified Software:
Tools, Techniques and Experiments. Lecture Notes in Computer Science (2019),
https://hal.inria.fr/hal-02276257

Becker, B., Marché, C., Jeannerod, N., Treinen, R.: Revision 2 of CoLiS language:
formal syntax, semantics, concrete and symbolic interpreters. Technical report,
HAL Archives Ouvertes (Oct 2019), https://hal.inria.fr /hal-02321743

Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
International Journal on Software Tools for Technology Transfer (STTT) 17(6),
709-727 (2015). https://doi.org/10.1007/s10009-014-0314-5, http://hal.inria.fr/
hal-00967132/en, see also http://toccata.lri.fr/gallery /fm2012comp.en.html
Debian Bug Tracker: dibbler-server: postinst contains invalid command. Debian
Bug Reports 841934 (Oct 2016), https://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=841934

Debian Bug Tracker: authbind: maintainer script(s) not using strict mode. De-
bian Bug Report 866249 (Jun 2017), https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=866249

Debian Bug Tracker: dict-freedict-all: postinst script has a wrong redirection. De-
bian Bug Report 908189 (Sep 2018), https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=908189

Debian Bug Tracker: python3-neutron-fwaas-dashboard: incorrect test in postrm.
Debian Bug Report 900493 (May 2018), https://bugs.debian.org/cgi-bin/
bugreport.cgi?bug=900493

Debian Bug Tracker: [dpkg-maintscript-helper| bug in finish _dir _to_symlink. De-
bian Bug Report 922799 (Feb 2019), https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=922799

Debian Bug Tracker: ndiswrapper: when "postrm purge" fails it may have deleted
some config files. Debian Bug Report 942392 (Oct 2019), https://bugs.debian.org/
cgi-bin/bugreport.cgi?bug=942392

Debian Bug Tracker: oz: non-idempotent postrm script. Debian Bug Report 942395
(Oct 2019), https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942395

Debian Bug Tracker: preinst script not posix compliant. Debian Bug Report 925006
(Mar 2019), https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=925006

Debian Bug Tracker: rancid-cgi: preinst may fail and not rollback a change. De-
bian Bug Report 942388 (Oct 2019), https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=942388

Debian Bug Tracker: sgml-base: preinst may fail *silently*. Debian Bug Report
929706 (May 2019), https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=929706
Developer’s Reference Team: Debian developers reference (Oct 2019), https://
www.debian.org/doc/manuals/developers-reference/

https://lintian.debian.org
https://piuparts.debian.org/
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
https://hal.inria.fr/hal-02276257
https://hal.inria.fr/hal-02321743
https://doi.org/10.1007/s10009-014-0314-5
http://hal.inria.fr/hal-00967132/en
http://hal.inria.fr/hal-00967132/en
http://toccata.lri.fr/gallery/fm2012comp.en.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841934
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841934
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=866249
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=866249
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=908189
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=908189
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900493
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900493
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=922799
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=922799
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942392
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942392
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942395
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=925006
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942388
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942388
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=929706
https://www.debian.org/doc/manuals/developers-reference/
https://www.debian.org/doc/manuals/developers-reference/

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

B. Becker et al.

Di Cosmo, R., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchi-
roli, S.: Supporting software evolution in component-based FOSS sys-
tems. Science of Computer Programming 76(12), 1144-1160 (2011).
https://doi.org/10.1016/j.scico.2010.11.001

Gardner, P., Ntzik, G., Wright, A.: Local reasoning for the POSIX file system.
In: European Symposium On Programming. Lecture Notes in Computer Science,
vol. 8410, pp. 169-188. Springer (2014). https://doi.org/10.1007/978-3-642-54833-
8 10

Greenberg, M., Blatt, A.J.: Executable formal semantics for the POSIX shell.
CoRR abs/1907.05308 (2019), http://arxiv.org/abs/1907.05308

IEEE, The Open Group: The open group base specifications issue 7. http://pubs.
opengroup.org/onlinepubs/9699919799/ (2018)

Jeannerod, N., Marché, C., Treinen, R.: A Formally Verified Interpreter for a Shell-
like Programming Language. In: 9th Working Conference on Verified Software:
Theories, Tools, and Experiments. Lecture Notes in Computer Science, vol. 10712
(2017), https://hal.archives-ouvertes.fr /hal-01534747

Jeannerod, N., Régis-Gianas, Y., Marché, C., Sighireanu, M., Treinen, R.: Speci-
fication of UNIX utilities. Technical report, HAL Archives Ouvertes (Oct 2019),
https://hal.inria.fr /hal-02321691

Jeannerod, N., Reégis-Gianas, Y., Treinen, R.: Having fun with 31.521 shell
scripts. Tech. rep., HAL Archives Ouvertes (2017), https://hal.archives-ouvertes.
fr/hal-01513750

Jeannerod, N., Treinen, R.: Deciding the first-order theory of an algebra of
feature trees with updates. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
9th International Joint Conference on Automated Reasoning. Lecture Notes in
Computer Science, vol. 10900, pp. 439-454. Springer, Oxford, UK (Jul 2018),
https://hal.archives-ouvertes.fr /hal-01807474

Mazurak, K., Zdancewic, S.: ABASH: finding bugs in bash scripts. In: Workshop
on Programming Languages and Analysis for Security. pp. 105-114 (2007)

Ntzik, G., Gardner, P.: Reasoning about the POSIX file system: local update and
global pathnames. In: Object-Oriented Programming, Systems, Languages and Ap-
plications. pp. 201-220. ACM (2015). https://doi.org/10.1145/2814270.2814306
Ntzik, G., da Rocha Pinto, P., Sutherland, J., Gardner, P.: A concurrent specifi-
cation of POSIX file systems. In: European Conference on Object-Oriented Pro-
gramming. LIPIcs, vol. 109, pp. 4:1-4:28. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2018). https://doi.org/10.4230/LIPIcs. ECOOP.2018.4

Régis-Gianas, Y., Jeannerod, N., Treinen, R.: Morbig: A static parser for POSIX
shell. In: Pearce, D., Mayerhofer, T., Steimann, F. (eds.) ACM SIGPLAN In-
ternational Conference on Software Language Engineering. pp. 29-41. Boston,
MA, USA (Nov 2018). https://doi.org/10.1145/3276604.3276615, https://hal.
archives-ouvertes.fr /hal-01890044

Rosenfeld, R.: Package rancid-cgi: looking glass cgi based on rancid tools (2019),
https://packages.debian.org/en/sid /rancid-cgi

Smolka, G.: Feature constraint logics for unification grammars. Journal of Logic
Programming 12, 51-87 (1992)

Smolka, G., Treinen, R.: Records for logic programming. Journal of Logic Pro-
gramming 18(3), 229-258 (Apr 1994)

The CoLiS project: The CoLiS bench. http://ginette.informatique.
univ-paris-diderot.fr/ niols/colis-batch/

The CoLiS project: The CoLiS toolchain. https://github.com/colis-anr

https://doi.org/10.1016/j.scico.2010.11.001
https://doi.org/10.1007/978-3-642-54833-8_10
https://doi.org/10.1007/978-3-642-54833-8_10
http://arxiv.org/abs/1907.05308
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://hal.archives-ouvertes.fr/hal-01534747
https://hal.inria.fr/hal-02321691
https://hal.archives-ouvertes.fr/hal-01513750
https://hal.archives-ouvertes.fr/hal-01513750
https://hal.archives-ouvertes.fr/hal-01807474
https://doi.org/10.1145/2814270.2814306
https://doi.org/10.4230/LIPIcs.ECOOP.2018.4
https://doi.org/10.1145/3276604.3276615
https://hal.archives-ouvertes.fr/hal-01890044
https://hal.archives-ouvertes.fr/hal-01890044
https://packages.debian.org/en/sid/rancid-cgi
http://ginette.informatique.univ-paris-diderot.fr/~niols/colis-batch/
http://ginette.informatique.univ-paris-diderot.fr/~niols/colis-batch/
https://github.com/colis-anr

36.

37.

38.

39.

Analysing installation scenarios of Debian packages 19

The CoLiS project: Artifact for Analysing installation scenarios of Debian Pack-
ages. Zenodo Repository (Feb 2020). https://doi.org/10.5281/zenodo.3678390
The Debian Project: Bugs tagged colis, https://bugs.debian.org/cgi-bin/
pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org

The Linux Foundation: Filesystem hierarchy standard, version 3.0 (Mar 2015),
https://refspecs.linuxfoundation.org

Ucko, A.M.: cmigrep: broken emacsen-install script. Debian Bug Report 431131
(Jun 2007), https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431131

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.3678390
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://refspecs.linuxfoundation.org
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431131
http://creativecommons.org/licenses/by/4.0/

	Analysing installation scenariosof Debian packages

