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To go beyond the simple model for the fold as two flexible surfaces or faces linked by a crease that
behaves as an elastic hinge, we carefully shape and anneal a crease within a polymer sheet and study
its mechanical response. First, we carry out an experimental study that consists in recording both
the shape of the fold in various loading configurations and the associated force needed to deform
it. Then, an elastic model of the fold is built upon a continuous description of both the faces and
the crease as a thin sheet with a non-flat reference configuration. The comparison between the
model and experiments yields the local fold properties and explains the significant differences we
observe between tensile and compression regimes. Furthermore, an asymptotic study of the fold
deformation enables us to determine the local shape of the crease and identify the origin of its

mechanical behaviour.

The process of folding solves the necessity of reducing
the space occupied by a large slender object while keep-
ing the possibility of recovering its original shape. Ex-
amples of this mechanism are common in nature such as
leaves which grow folded inside buds before blooming [1-
3] or insects that fold their wings inside shells on the
ground and deploy them on flight [4-6]. To add to their
mandatory use, folds allow for shaping on demand three-
dimensional structures starting from a two-dimensional
thin plate [7]. Two extreme examples of such objects are
crumpled paper [8, 9] and origami. The latter is literally
the art of folding paper with a specific pattern into sculp-
tures such as the famous paper crane. While origami can
be pleasing to the eye, the selection of specific folding
patterns generates original properties for the resulting
object such as an apparent negative Poisson ratio [10].
When coupled with the elasticity of the constituent ma-
terial, origami-based metamaterials are able to generate
structures with a wide scope of programmable mechani-
cal properties [11-14] and shapes [15-17]. The apparent
scalability of origami allows for applications that range
from small scales with the folding of DNA strands [18] or
tunable microscopic origami machines [19] to large scales
with biological systems [20, 21] or the transport of de-
ployable structures in space [22].

Before studying origami patterns made of a complex
network of folds, one should first decipher the behaviour
of their most fundamental element: a single fold. Fre-
quently, a fold is defined as two planar surfaces linked
by a hinge-like crease setting an angular discontinuity
in the structure. From there, different assumptions are
made about its properties. If one considers a purely ge-
ometrical approach, the faces are assumed to be rigid
panels while the crease angle is a degree of freedom of
the system. In this case, self-avoidance and kinematic
constraints impose relations between the different crease
angles of a given origami structure [10, 23] that constrain
the corresponding degrees of freedom. While this model
is fine for origami-like systems with rigid structures such

as solar panels or dome constructions [24], it fails to
describe either the deformation of faces in folded mem-
branes [11] or the “snapping” of peculiar bistable origami
systems [12, 25-27]. For that, one should take into ac-
count both the flexibility of the faces and the mechanical
properties of the crease. The former is extensively de-
scribed by the mechanics of thin elastic sheets [28]. For
the latter, experimental work shows a linear response be-
tween the moment generated by the crease and its open-
ing angle [29]. Yet, neither the process by which the
crease is created nor the materials properties have been
linked to the crease rigidity.

In this paper, we will experimentally probe the me-
chanical response of a single elastic fold. We extend a
previous model of the crease acting as a discontinuity
between two flexible faces to a new approach in which
the crease is described within a continuous fold. This
model thoroughly explains the shape of the stressed fold
and gives its local mechanical response. We analyse the
interesting differences between compressive and tensile
loadings of the fold and use the crease reference shape to
characterise its elastic behaviour.

I. EXPERIMENTS

We use rectangular flat Polyethylene terephthalate
(Mylar) sheets and cut them into strips of length 2L =
10cm, width W = 3cm and thickness h = 130pum. We
manually pre-crease a strip at half its length and fold it
under a 10kg weight for 1 hour. The heavy weight and
the plasticity of the material produce the necessary per-
sistent crease of the fold. Then, both free ends of the
sample are clamped vertically in an Instron device. The
bottom clamp is locked while the upper one is mobile and
fixed under a 50N stress gauge which records the vertical
applied force F,. To track the shape of the fold, we place
a high resolution camera 1 meter away from the device
and takes photos of the red coloured side of the fold with



FIG. 1. Schematics (upper panel) and image (lower panel) of
the experimental setup with a zooming of the region around
the crease.

a resolution of 25um/pixel that allows for a fine charac-
terisation of the crease (see Fig. 1). Both the distance
[ between clamps, the speed of applied deformation and
image acquisition are controlled concomitantly.

A crucial experimental task is the conception of folds
with reproducible assigned properties. Our folding pro-
cess leads to irreversible damaging of the material that
induces plastic yielding in the vicinity of the creased re-
gion. To check this, we probe the mechanical response
of a folded sample through an opening and closing cycle.
Inset of Fig. 2 shows that the system is indeed hysteretic.
During the cycle, the local stress at the crease is sufficient
to cross the plasticity threshold, resulting in a change of
the reference configuration [30]. Moreover, the creep in-
herent to the folding process pushes the system at out of
equilibrium: it undergoes continuous relaxation [31, 32].
However, for the present study, it is desirable that the
reference state of the fold does not change during the
probing of the fold as our aim is to decipher the system’s
elastic response only. To take care of both problems, we
anneal the fold in a mould that fixes the crease angle
(here at 7/2) by first putting the sample in an oven for
45 minutes at a temperature of 110°C and then cool-
ing it down at room temperature. Notice that the glass
transition temperature of Mylar is 80°C. This new ex-
perimental protocol allows us to recover a reversible me-
chanical response of the fold (see Fig. 2). Consequently,
the sample can be considered as purely elastic and each
intermediate state of the system is at mechanical equilib-
rium. Alternatively, the results can be reproduced if we
cycle the sample many times to reach a more open rest
angle, however with poor control over its value.

II. FOLD MODELS

The mechanical response of the fold, shown in Fig. 2,
results from the deformation of both the faces through
pure bending and the crease rigidity. To extract the de-
tailed response one should introduce a fold model that
separates the contributions of the panels from the creases.
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FIG. 2. Mechanical response of a folded mylar sheet during
the first unfolding-folding cycle. Here, [ is the distance be-
tween the clamps and F) is the applied force. The main fig-
ure corresponds to an annealed sample while the inset shows
the same sample before annealing. The arrows indicate the
direction of the displacement of the upper clamped edge.

In the following, we expose two possible models

A. Point-like Crease

A simple model consists in assuming the fold shown in
Fig. 1 as two panels of equal length connected by a crease
line [29]. The fold acquires a given equilibrium shape
imposed by the combination of applied displacement be-
tween clamps and boundary conditions at both the crease
and the clamps. The system has a translational sym-
metry along the fold width, so a two-dimensional pro-
file is sufficient to infer the entire shape. The fold is
parametrised by the curvilinear coordinate S and the lo-
cal angle 6(.5) between the tangential vector to the profile
line and the horizontal. Here, we define the crease as an
elastic hinge between two faces that is solely described
by an angular discontinuity ¥ at S = 0:

U=m+0(0")—-00), (1)

with a given energy U(¥) per unit length. To determine
the equilibrium shape of the fold, we start by writing the
Lagrangian of the system

L L
L :ﬂ/ 0'(S)?dsS — FZL/ cos0(S)dS

2 Jr -r

. (2)
_@L/ sin0(S)dS + WU () ,
L

where ¢'(S) = df/dS and B is the bending stiffness of
the sheet. The first term is the bending energy of the
faces. The second and third terms are the works exerted
at the clamps to maintain the imposed distance between
clamps and their alignment. F, and F, are Lagrangian
multipliers associated to the external horizontal and ver-
tical forces applied at the clamps. Finally, the last term



in Eq. (2) is the energy of the crease. In the Appendix, we
show that the minimisation of £ yields the equilibrium
Elastica equation satisfied by the fold

F, F
1 _ T . Yy . —
0" (S) B Sin 0(S) + el 6(S)=0. (3)
In addition, the boundary terms resulting form the min-
imisation read

B (16/(3)80(5))”, + 10/(S)86(S)]:. )

dU
—(66(0") = 860(07)) =0. 4
+ 3 (9007) — 50(07)) = 0 (@
Recall that the fold is clamped at its boundaries, thus the
angles 0(+L) are prescribed. The additional boundary
conditions at S = 0 resulting from Eq. (4) read

1dav . S

o =00 =00). (5)
When the clamps are perfectly aligned one has (+L) =0
which, coupled to the condition §'(07) = §/(07), gives a
solution for A(S) that is mirror symmetric with respect
to s = 0. For this case, Eq. (3) allows us to show that
F, = 0. Finally, we can link U(¥) to the macroscopic
moments in our system. Integrating Eq. (3) from S = 0T
to S = L gives

dU _ Fyh
v~ W

+ BO' (L), (6)

where h = f].? sinf(S)dS > 0. The energy of the crease
balances the moments resulting from the applied force
and the bending moment of the faces. Notice that the
latter was absent in the analysis of Ref. [29], an assump-
tion which is valid for large opening angles of the fold, or
equivalently for large applied forces. Only in this case,
the condition ¢'(L) ~ 0 holds. However, this approxi-
mation is insufficient to describe precisely the case of a
compressed fold where the moment at the clamp becomes
important.

B. Extended Crease

As apparent in Fig. 1, our experimental fold is a contin-
uous mechanical system and the crease has a local exten-
sion. The description of the crease as a line discontinuity
in the local angle might be a reasonable approximation
because of separation of scales between the crease ex-
tension and system size. Nevertheless, during the crease
inception, the system remains continuous and should be
considered as so. By construction, the fold is prestressed
and its rest configuration is not planar. Therefore, prior
to any mechanical testing, one should determine the ref-
erence configuration of the fold 6y(S) that describes the
system in the absence of external loading. Fig. 3 shows

that the reference configuration of the fold is well de-
scribed by

bo(S) = 20 - " tanh <50> , (7)

where S is a characteristic size of the crease region and
Uy is the asymptotic angle of the fold. We can envision
our system as an elastic plate for which the sheet has
a non-Euclidean reference metric g [33]. The sheet is
free of in-plane strains only if its actual metric satisfies
g = g. This solution would correspond to a folded pattern
described by the non-uniform field 6y(S).
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FIG. 3. Experimental and numerical profile of the fold for
three representative configurations. Black and white images
of the coloured side of the fold are shown in the first row.
The second row shows the corresponding evolution of the lo-
cal angle 6 along the curvilinear coordinate S extracted from
experiments (blue points) and computed numerically (solid
black line). The last row shows magnifies the same curves
around the crease. The first column shows the rest state
of the fold. The numerical fitting is made using Eq. (7)
with Ug = 92.4° and Sp = 0.6mm. The second and third
columns are respectively examples of a compressed fold with
F, = —0.127N and | = 24.5mm and a fold under tension
with Fp = 0.094N and [ = 94mm. The computed solutions
are found by solving numerically Eq. (9) with a = —10.5,
6(—1) = 7.1° and 6'(—1) = 4.94 for the compressed fold and
a =4.65, 6(—1) = —1.4° and 0'(—1) = 0.44 for the stretched
fold.

In the presence of external loading, the local elastic
deformation of the fold should be defined with respect
to the local rest state. Inspired by the elastic theory of
non-Euclidean plates [33], we postulate that the elastic

BW
energy density of a folded sheet is given by T(@’ (S) —

04(5))%. This expression obviously satisfies a zero energy
density for a fold at rest and thus can be interpreted as
a bending energy density of a pre-strained elastic plate.
To describe the equilibrium state of the fold, we use the



same formalism as for the point-like crease but without a
separation between the crease region and the panels. We
start with a new Lagrangian:

il 1 (6'(L) — 0,(L))* dL
2 Joo
L L (8)
—F; [L cos@(S)deFyL[L sin 0(S)dS .

As in the case of a point-like crease, the minimisation of
L leads to the equilibrium equation satisfied by the fold
shape

0 (S) — 01(S) — — sin0(S) + = cos0(S) =0, (9)

where o and 3 are dimensionless numbers defined by

| FL?

F,L?
a=—, =
BW

-~ BW '

(10)

The boundary terms resulting from the minimisation are
given by

[(0'(S) — 65(8))30(S)]=, = 0. (11)

For a clamped fold, Eq. (11) is satisfied because the an-
gles @ are fixed at the boundaries. However, for a free
standing fold one should impose 6’ (+L) = 6} (+L) allow-
ing to recover the rest configuration 6(L) = 6y(L) in the
absence of external loading (F, = F, = 0).

This approach has the advantage to provide us with
a continuous description of the fold deformation. In
the sequel, we discuss our experimental results within
this framework and rationalise the characterisation of the
crease.

III. RESULTS

Eq. (9) combined with two prescribed conditions at
S = +£L can be solved using classical numerical meth-
ods. Our experimental setup suffers from unavoidable
slight imperfections which are mainly due to misalign-
ment of the clamps that induces uncertainties on the
boundary conditions. Moreover, image filtering prevents
us from getting access to the exact values of 6(+1). For
compressed configurations of the fold, small variations in
the boundary conditions could yield significantly differ-
ent shapes of the Elastica. To take into account these
experimental limitations, we solve Eq. (9) using an it-
erative scheme in which not only o and f are shooting
parameters but also §(—1) and ¢’'(—1). The four parame-
ters are fixed by fitting the whole shape of the fold to the
experimental one. This is done by minimising the sum of
the distances between the numerical points and the corre-
sponding experimental ones. The existence and unique-
ness of the solution of the Elastica equation ensure that

4

there is a single set of parameters («, 8,6(—1),6'(—1)) for
each experimental profile. The argument in [34] proceeds
from a local continuity argument, which can be imported
into our situation in a straightforward manner. Recall
that if (1) = 0 the profile should be mirror-symmetric
with respect to s = 0 and consequently 8 = F, = 0.
Our numerical scheme quantifies correctly the small de-
viations from perfect alignment of the clamps and gives
0(+1) ~ 0 and |3| << 1 for the whole range of applied
deformations.

Fig. 3 shows a good agreement between theory and ex-
periment regardless of the applied loading. An output of
the resolution is the mechanical response of the fold: the
parameter o = F,,L?/ BW is determined for each loading
test. As a safety test, Fig. 4 shows that the comparison
between theoretical results and experiments allows us to
recover a constant value of the bending modulus B. As
shown in the following, the computed profiles serve two
purposes. They both assess the robustness of the fold
model and contain insights on the local deformation and
mechanical response of the creased region.

-10 -5 0 5

FIG. 4. Dimensionless parameter «, computed numerically,
as function of F,,L? /W, measured experimentally. The value
of B =1.07mJ is inferred from the inverse of the slope of the
linear fit represented by the solid line.

A. Compression and extension of the fold

To analyse the behaviour of the fold in the vicinity of
the crease, we introduce the local angular deformation
AG(S) = 0(S) — 6p(S). We call its derivative A@’(S) the
local apparent curvature and it represents the local dif-
ference between deformed and residual curvature. Fig. 5
shows the evolution of Af(S) and A#'(S) for different
applied forces F, and allows for interesting observations.
First, for F, = 0, the apparent moment, proportional to
the apparent curvature, is constant along the fold. This
behaviour can be retrieved from the equations of the ex-
tended fold model. Plugging @« = 8 = 0 in Eq. (9) and



using the boundary conditions §(+L) = 0 yields
6(S) = 00(S) — S0 (L) . (12)
Using Eq. (7) with Sy < L allows us to write

8(S) = %2_ T [tanh (;) - s] . (13)

This solution agrees quantitatively both with experi-
ments and the numerics. Therefore, the equilibrium
shape given by Eq. (13) can be considered as the physi-
cal reference configuration of the fold constrained by the
experimental situation of Fig. 1. Since no external forces
are applied, the moment imposed by the clamping pro-
cess is completely compensated by the one created by the
crease opening.
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FIG. 5. Local deformation AQ(S) and its derivative A6’(S)
as functions of the curvilinear coordinate S. These curves are
obtained using the profiles computed numerically for different
values of the force F.

Eq. (13) shows that 6’(0) > 0 for F, = 0. Therefore,
the sign of F, is insufficient to clearly define whether the
crease is opening or closing with respect to its machined
residual angle Wy. As both the evolution of F), and the
deformation angle are continuous during the experiment
(see Fig. 5), there exists a negative value of the force for
which ¢'(0) = 0.

The local moment also highlights the differences be-
tween tensile and compressional regimes. In tension, the
kinetic constraints force the faces to be almost flat as it
maximises the length along the x-axis. The stored elastic
energy generated from the work of the external force con-
centrates on the region where the fold is not flat in the
reference state: the crease. Since this region is smaller
than the fold length, the deformation quickly becomes
harder to increase. This explains why the force increases
quickly with [ in the tensile regime. Yet, this does not
happen in compression, as the geometry allows the faces
to bend and store elastic energy. This produces the S-
shape often observed with constrained Elastica [34]. The
external work spreads along the whole fold, reaching lo-
cal extrema for the stress at the crease but also at each

clamp. Consequently, if the stress is large enough to
reach the plasticity threshold, not only the central crease
reference state changes, but a plastic zone can also ap-
pear at the clamped edges.

B. Asymptotic behaviour and crease length

To link the continuous fold model to the point-like
crease, we need to identify the region of the fold that
we call the crease, its spatial extension and mechanical
properties. The profile 8(S) of the continuous fold is gov-
erned by Eq. (9) which contains two source terms 6 (.S)

x

sin#(S). They both depend on the position in
the fold as shown in the inset of Fig. 6.

and
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FIG. 6. Critical length scale L. as defined by Eq. (17) as
a function of the inverse length (|F,|/BW)Y? for different

values of L. Inset: log-lin curve of the absolute value of each
term in Eq. (9) with 8 = 0 near the crease for F,, = —0.092N.

The term () (S) characterises the local evolution of the
residual moment and is crucial to define the extension of
the crease as it does not appear in a point-like descrip-
tion. This term dominates Eq. (9) near the fold centre
and simplifies it in this region to:

0"(S) — 0/(S) = A0"(S) = 0. (14)

Since 60y(S) is a continuous function, the local angular
deformation is simply given by:

AB(S) =TS , (15)

where T is the unique integration constant as the sym-
metry of the system enforces #(0) = 0. One meaningful
consequence of Eq. (15) is that the apparent moment in
the vicinity of the fold center is constant.

Far from this region, the second term which represents
the action of the external force becomes dominant. In
this case, Eq. (9) is simplified into

0"(S) — ;;/ sinf(S) =0. (16)



This is the classical Elastica equation used for the dis-
continuous crease approach to describe bending of the
panels. The cross-over between these asymptotic regimes
occurs near S = L., where L. is a length scale that sat-
isfies the condition

F.

eg(Lc) = |ﬁ‘ Sine(Lc) . (17)
Fig. 6 shows that the dependency on the external con-
straint through o makes L. largely varying with loading.
This confirms that L. is a poor candidate to characterise
the length scale of the crease. The only remaining length
scale in this problem is the characteristic length Sy intro-
duced by the rest shape of the fold. As shown in Fig. 7,
So gives the right order of magnitude for the extension
of the crease. However, it does not separate correctly
the crease from the faces, as it is still in the middle of
a region where the local moment is still highly varying.
To do better, we focus on the physical reference state
of the fold ascribed by the experimental configuration of
Fig. 1. In that case, the system reaches its minimal elas-
tic energy when F, = 0 and the shape of the fold is given
by Eq. (13). We propose to define the extension of the
crease S. such that the moment at its endpoints vanishes
(0'(£S.) = 0). Using Eq. (13) and the assumption that
Sy < L, one finds

So 4L

Eq. (18) shows that S./Sy exhibits a weak logarithmic de-
pendency on L/Sp such that Sy < S. <« L. As the length
of the fold is increased, one has S./L — 0 reaching the
point-like crease model. While S, is defined with respect
to the physical reference configuration, Fig. 7 shows that
its location within the fold is a clear separation point be-
tween two regions with different responses for all loading
configurations.

Using Eq. (1) and the symmetry of our system, it is
legitimate to define the opening angle of the crease ¥ as

U =7+ 20(S.) , (19)

and the crease rest angle as Uy = 7 + 204(S.). As S, >
So, the value of ¥y remains close to the one defined by
Eq. (7). The bending energy stored in the crease is given
by

BW  [5e
Ucrease = T/ Ae/(S)QdS ) (20)
—S.

Fig. 7.(b) shows that Uereqse is indeed quadratic in the
angular crease opening. As S, < L., one can derive an
analytical expression of the bending energy inside the
crease. Using Eq. (15) one shows that

AO(S.) W — W,

/ _
AG'(S) = S 35,

(21)
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FIG. 7. (a) Local curvature 6’(S) near the crease for different
external loadings. The three characteristic lengths Sp, S. and
L. are shown, the shaded area corresponds to the region of
variation of L.. (b) Bending energy of the crease Ucrease, as
defined by Eq. (20), as a function of the crease opening ¥
as defined by Eq. (19). Both quantities are computed from
the numerical fitting of the experimental shape and each blue
point corresponds to one photo. The solid line is a quadratic
fit Uerease = kW (U —=()? /2 with U = 74260 (S.) = 92.9° =
1.62rad and k = B/2S. = 308mJ.m'.rad 2.

Injecting this expression into Eq. (20), one finds the de-
pendency of the crease energy with its angular opening

BW ,
Ucrease - TSC(\II - \IIO) . (22)

Eq. (22) shows that the crease behaves as a torsional
hinge described by a single linear stiffness constant
given by

B
28

K (23)

The comparison between the rigidity of the crease and the
elasticity of the faces brings out a characteristic origami
length scale L* = B/k = 2S5, [29].

IV. DISCUSSION

We propose a detailed description of a single elastic
fold under mechanical solicitations. Experimental pro-



files are compared to the shape predicted by a continu-
ous elastic model. Then, we use the local properties de-
rived from the model to explain the differences between
compression and tension of the fold, the linear relation
between the crease opening and the corresponding ap-
parent moment, but also generate a characteristic length
marking the transition between the crease and flat elastic
faces. In the case of a fold long enough for this length to
be negligible, the extended model is linked to the point-
like one and sets the relation between the crease rigidity,
the characteristics of the fold at rest and the material
elasticity.

As one can expect the rigidity of the crease scales like
the rigidity of the original material. But it also depends
on the inverse of the crease length S, so the sharper the
crease the stiffer it behaves. More surprisingly, the value
of S, itself depends slowly on the global size L of the
fold. This underlines how crucial it is to precisely define
the reference state of the system, especially in the case
where the faces are small. The approximation Sy < L
allows defining the crease rigidity in our model as it forces
L* <« L. As a result, the moment due to the crease
rigidity always bends the long elastic faces.
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FIG. 8. Rest angle ¥y as function of the maximal vertical
force F; reached while stretching the fold. We increase [ until
F; = Fiae and lock it for one minute. Then, we release the
sample and let it relax for one minute before taking a photo
of the rest shape to recover ¥g as done previously.

This elastic model does not provide a simple scheme to
conceive a fold with rigid faces. The only way to soften
the crease without changing neither Sy nor the elastic-
ity of the panels is to consider an elastic material with
heterogeneous elasticity and a softer crease region. Since
B o h? [28], a local reduction of the thickness of the
original sheet gives the desired result. Another solution
is to change the effective width of the crease by perfora-
tion [26]. However in both cases, the tempered region be-
comes plastic for lower stress. It limits the local moment
that can be reached [30]. If this limit is low enough com-
pared to the moment needed to bend the faces, they re-
main straight while the crease deforms, though not elas-

tically. Indeed, crossing the plasticity threshold changes
the reference configuration of our samples as shown by
the evolution of the rest angle ¥y in Fig. 8. in high-stress
situation.

(a) 100

-1001
-75 0 1)
S (mm)

(b)1001

20 0 20 40
S (mm)

FIG. 9. Experimental (blue points) and numerical (black line)
profile of (a) a compressed fold with two symmetric creases
and (b) a compressed asymmetric fold with a single crease.
Inset: Black and white images of the samples side.

This model for a symmetric fold with a single crease
can easily be extended to more complex structures. In
Fig. 9. the numerical solution of Eq. (9) is nicely adjusted
to the deformed profile of both a fold with two creases
and an asymmetric fold. The main difference comes from
the expression of the rest shape 6y, but in the second case
the condition Fy ~ 0 is no longer verified as the fold is
no longer symmetrical.

Finally, we have shown that defining the reference con-
figuration of the fold is crucial to understand its mechan-
ical response. The machining of the fold induces residual
stresses and defines an absolute rest configuration that
can be treated as a non-Euclidian reference metric [33].
However, a fold under loading exhibits a different ref-
erence configuration which is the one that imposes the
crease extension and not the absolute reference configu-
ration. For complex origami structures where the crease
network is interconnected, this underlines the importance
of knowing the physical reference configuration by solv-
ing the problem in absence of external loading in order



to predict the mechanical response of the crease network
and to determine correctly the relevant length scales of
the problem. Indeed kinematic constraints and mechan-
ical response of the panels, through either bending or
stretching, means that the reference configuration of the
origami is not the sum of the reference configurations of
the creases taken independently. Much like with phase-
field models for problems with sharp interfaces [35], we
believe that the approach we propose is useful for nu-
merical implementations of the mechanical behaviour of

complex origami or crumpled structures. Moreover, such
a continuous approach would be also suitable to study
the time-dependent properties of the crease.

V. ACKNOWLEDGMENT

This work was carried out in the framework of the
METAMAT Project No. ANR-14-CE07-0031 funded by
Agence Nationale pour la Recherche.

[1] H. Kobayashi, B. Kresling, and J. F. V. Vincent, Pro-
ceedings of the Royal Society B: Biological Sciences 265,
147 (1998).

[2] G. Grabenweger, P. Kehrli, B. Schlick-Steiner, F. Steiner,
M. Stolz, and S. Bacher, Journal of Applied Entomology
129, 353 (2005).

[3] E. Couturier, S. C. du Pont, and S. Douady, PLoS ONE
4, 7968 (2009).

[4] W. T. M. Forbes, Psyche: A Journal of Entomology 31,
254 (1924).

[5] J. H. Brackenbury, Journal of Zoology 232, 253 (1994).

[6] R. J. Wootton, R. C. Herbert, P. G. Young, and K. E.
Evans, Philosophical Transactions of the Royal Society
B: Biological Sciences 358, 1577 (2003).

[7] M. A. Dias, L. H. Dudte, L. Mahadevan, and
C. D. Santangelo, Physical Review Letters 109 (2012),
10.1103/physrevlett.109.114301.

[8] M. B. Amar and Y. Pomeau, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ences 453, 729 (1997).

[9] O. Gottesman, J. Andrejevic, C. H. Rycroft, and S. M.
Rubinstein, arXiv:1807.00899 (2018).

[10] Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang, and
L. Mahadevan, Physical Review Letters 110 (2013),
10.1103 /physrevlett.110.215501.

[11] A. Papa and S. Pellegrino, Journal of Spacecraft and
Rockets 45, 10 (2008).

[12] J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward,
T. Hull, C. D. Santangelo, and I. Cohen, Science 345,
647 (2014).

[13] H. Yasuda and J. Yang, Physical Review Letters 114
(2015), 10.1103/physrevlett.114.185502.

[14] B. G. ge Chen, B. Liu, A. A. Evans, J. Paulose, I. Cohen,
V. Vitelli, and C. Santangelo, Physical Review Letters
116 (2016), 10.1103/physrevlett.116.135501.

[15] L. H. Dudte, E. Vouga, T. Tachi, and L. Mahadevan,
Nature Materials 15, 583 (2016).

[16] J. T. Overvelde, T. A. de Jong, Y. Shevchenko, S. A.
Becerra, G. M. Whitesides, J. C. Weaver, C. Hober-
man, and K. Bertoldi, Nature Communications 7, 10929
(2016).

[17] M. A. Dias and B. Audoly, Journal of the Mechanics and
Physics of Solids 62, 57 (2014).

[18] D. Han, X. Qi, C. Myhrvold, B. Wang, M. Dai, S. Jiang,
M. Bates, Y. Liu, B. An, F. Zhang, H. Yan, and P. Yin,

J

Science 358, eaa02648 (2017).

[19] M. Z. Miskin, K. J. Dorsey, B. Bircan, Y. Han, D. A.
Muller, P. L. McEuen, and I. Cohen, Proceedings of the
National Academy of Sciences 115, 466 (2018).

[20] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus,
M. Umemoto, T. Ito, and M. Sasaki, Materials Science
and Engineering: A 419, 131 (2006).

[21] L. Mahadevan, Science 307, 1740 (2005).

[22] K. Miura, The Institute of Space and Astronautical Sci-
ence report 618 (1985).

[23] Huffman, IEEE Transactions on Computers C-25, 1010
(1976).

[24] R. Chudoba, J. van der Woerd, M. Schmerl, and J. Heg-
ger, Advances in Engineering Software 72, 119 (2014).

[25] M. G. Walker and K. A. Seffen, Thin-Walled Structures
124, 538 (2018).

[26] A. Reid, F. Lechenault, S. Rica, and M. Adda-
Bedia, Physical Review E 95 (2017), 10.1103/phys-
reve.95.013002.

[27] V. Brunck, F. Lechenault, A. Reid, and M. Adda-
Bedia, Physical Review E 93 (2016), 10.1103/phys-
reve.93.033005.

[28] B. Audoly and Y. Pomeau, Elasticity and geometry: from
hair curls to the non-linear response of shells (Oxford
University Press, 2010).

[29] F. Lechenault, B. Thiria, and M. Adda-Bedia,
Physical Review Letters 112 (2014), 10.1103/phys-
revlett.112.244301.

[30] A. Benusiglio, V. Mansard, A.-L. Biance, and L. Boc-
quet, Soft Matter 8, 3342 (2012).

[31] B. Thiria and M. Adda-Bedia, Physical Review Letters
107 (2011), 10.1103/physrevlett.107.025506.

[32] Y. Lahini, O. Gottesman, A. Amir, and S. M. Rubin-
stein, Physical Review Letters 118 (2017), 10.1103/phys-
revlett.118.085501.

[33] E. Efrati, E. Sharon, and R. Kupferman, Soft Matter 9,
8187 (2013).

[34] A. Pocheau and B. Roman, Physica D: Nonlinear Phe-
nomena 192, 161 (2004).

[35] A. Karma, D. A. Kessler, and H. Levine, Physical Re-
view Letters 87 (2001), 10.1103/physrevlett.87.045501.


http://dx.doi.org/10.1098/rspb.1998.0276
http://dx.doi.org/10.1098/rspb.1998.0276
http://dx.doi.org/10.1098/rspb.1998.0276
http://dx.doi.org/ 10.1111/j.1439-0418.2005.00973.x
http://dx.doi.org/ 10.1111/j.1439-0418.2005.00973.x
http://dx.doi.org/10.1371/journal.pone.0007968
http://dx.doi.org/10.1371/journal.pone.0007968
http://dx.doi.org/10.1155/1924/68247
http://dx.doi.org/10.1155/1924/68247
http://dx.doi.org/10.1111/j.1469-7998.1994.tb01572.x
http://dx.doi.org/10.1098/rstb.2003.1351
http://dx.doi.org/10.1098/rstb.2003.1351
http://dx.doi.org/10.1103/physrevlett.109.114301
http://dx.doi.org/10.1103/physrevlett.109.114301
http://dx.doi.org/10.1098/rspa.1997.0041
http://dx.doi.org/10.1098/rspa.1997.0041
http://dx.doi.org/10.1098/rspa.1997.0041
http://dx.doi.org/ 10.1103/physrevlett.110.215501
http://dx.doi.org/ 10.1103/physrevlett.110.215501
http://dx.doi.org/10.2514/1.18285
http://dx.doi.org/10.2514/1.18285
http://dx.doi.org/ 10.1126/science.1252876
http://dx.doi.org/ 10.1126/science.1252876
http://dx.doi.org/10.1103/physrevlett.114.185502
http://dx.doi.org/10.1103/physrevlett.114.185502
http://dx.doi.org/ 10.1103/physrevlett.116.135501
http://dx.doi.org/ 10.1103/physrevlett.116.135501
http://dx.doi.org/ 10.1038/nmat4540
http://dx.doi.org/ 10.1038/ncomms10929
http://dx.doi.org/ 10.1038/ncomms10929
http://dx.doi.org/10.1016/j.jmps.2013.08.012
http://dx.doi.org/10.1016/j.jmps.2013.08.012
http://dx.doi.org/10.1126/science.aao2648
http://dx.doi.org/ 10.1073/pnas.1712889115
http://dx.doi.org/ 10.1073/pnas.1712889115
http://dx.doi.org/ 10.1016/j.msea.2005.12.016
http://dx.doi.org/ 10.1016/j.msea.2005.12.016
http://dx.doi.org/10.1126/science.1105169
http://dx.doi.org/10.1109/tc.1976.1674542
http://dx.doi.org/10.1109/tc.1976.1674542
http://dx.doi.org/10.1016/j.advengsoft.2013.05.004
http://dx.doi.org/10.1016/j.tws.2017.12.033
http://dx.doi.org/10.1016/j.tws.2017.12.033
http://dx.doi.org/ 10.1103/physreve.95.013002
http://dx.doi.org/ 10.1103/physreve.95.013002
http://dx.doi.org/ 10.1103/physreve.93.033005
http://dx.doi.org/ 10.1103/physreve.93.033005
http://dx.doi.org/10.1103/physrevlett.112.244301
http://dx.doi.org/10.1103/physrevlett.112.244301
http://dx.doi.org/10.1039/c2sm07151g
http://dx.doi.org/10.1103/physrevlett.107.025506
http://dx.doi.org/10.1103/physrevlett.107.025506
http://dx.doi.org/10.1103/physrevlett.118.085501
http://dx.doi.org/10.1103/physrevlett.118.085501
http://dx.doi.org/10.1016/j.physd.2003.12.013
http://dx.doi.org/10.1016/j.physd.2003.12.013
http://dx.doi.org/10.1103/physrevlett.87.045501
http://dx.doi.org/10.1103/physrevlett.87.045501

Appendix A: Derivation of the Elastica

The following deals with detailing the derivation of Egs. (3,4). The Lagrangian £(6,0’) defined in Eq. (2) includes
the bending energy of the system for a given configuration 6(S) and the energy of the crease U(¥). The distance
between the clamps and their alignment are prescribed through the Lagrange multipliers F, and F,. The equilibrium
shape is defined by the extremum of this functional £{6(S)} with respect to variations §6(S) of the fold shape. This

yields
0~ L 0~ L
5L{6(S)} =BW (/ +/ ) 0’60’ dS + F, (/ +/ ) sin(0)60 d.S
L o+ —L o+
- F, </0 +/L> cos(6)d60dS + Wj—g (66(0T) — 50(0*)) , (A1)
—L 0o+

where the identity 6@ = (§0(0%) — 66(07)) was used. Integrating by parts the bending energy term simplifies this
equation into

5L =BW ([9'(5)59(5)]0; + [9’(5)59(5)](@) — BW ( /0 " / f) 0504

+ F; (/ / >sm )60dS — F, (/ / )cos )(59d5—|—VVE11 (66(0%) —66(07)) , (A2)
0+ 0+
_ </ 7 +/ ) (—BW6" + F,sin(§) — F, cos(9)) 56(S) dS
—L ot

+ BW ([6/(5)00(S)]°, + [0'($)00(S)]5 )+W3U (36(0%) —56(07)) (A3)

Imposing §£{6(S)} = 0 turns to impose that both the integral and the boundary terms vanish. This yields identically
Egs. (3,4)). Notice that the same minimisation procedure applies for the continuous crease case and yield Eqgs. (9-11).
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