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Knitting is not only a mere art and craft hobby but also a thousand-year-old technology. Unlike weaving,
it can produce loose yet extremely stretchable fabrics with almost vanishing rigidity, a desirable property
exhibited by hardly any bulk material. It also enables the engineering of arbitrarily shaped two- and three-
dimensional objects with tunable mechanical response. In contrast with the extensive body of related
empirical knowledge and despite a growing industrial interest, the physical ingredients underlying these
intriguing mechanical properties remain poorly understood. To make some progress in this direction, we
study a model tricot made of a single elastic thread knitted into a common pattern called stockinette. On the
one hand, we experimentally investigate its tensile response and measure local displacements of the stitches
during deformation. On the other hand, we derive a first-principle mechanical model for the displacement
field based on the yarn-bending energy, the conservation of its total length, and the topological constraints
on the constitutive stitches. Our model solves both the shape and mechanical response of the knit and
agrees quantitatively with our measurements. This study thus provides a fundamental framework for the
understanding of knitted fabrics, paving the way to thread-based smart materials.

DOI: 10.1103/PhysRevX.8.021075 Subject Areas: Materials Science, Mechanics,
Soft Matter

I. INTRODUCTION

Because of the wide range of applications, the advance-
ment in knitting technology, and the availability of high-
performance fibers, knitted materials are commonly
employed in various innovative areas. For instance, they
are intensively utilized in the textile industry [1], advanced
engineering [2], and biomedical and biomimetic applications
[3,4]. A basic knit consists in a single yarn that is
topologically constrained to form intertwined loops, or
stitches, from which its effective dimensionality originates.
While the topological properties of a knitted fabric are
usually unaltered, the stitches can undergo large deforma-
tions due to their curved nature and the fact that the yarn
can slide from one stitch into the neighboring ones. Those
properties also manifest in the outstanding drapability of the
resultant knitted fabrics, allowing for the shaping of complex
curved composite components. Moreover, while the con-
stituent yarn shows significant resistance to elongation, a

knitted fabric can endure large strains in response to small
applied tractions. Pulling on a typical scarf can easily
produce deformations of the order of 100%, while the same
force applied on the yarn itself would only deform it by a few
percent. A stretched knit also exhibits a characteristic
catenary shape, similarly to incompressible bulk materials.
Although most of the efforts have focused on woven

fabrics, the peculiar properties of knitted materials have
induced increasing interest in modeling their mechanical
behavior. Several early studies have addressed the fact that
a knit is comprised of a discrete network of repetitive
stitches characterized by a given topology. On the one
hand, geometrical models have focused on the geometry of
the loops formed by a stitch and the resulting dimensional
properties of the fabric [5–9]. They consist in deriving a set
of parameters and equations for modeling the crossing of
yarns in a stitch as a set of inextensible curves. On the
other hand, mechanical models that take into account both
the elasticity of the yarn and the topology of the stitch
have been proposed. To assess the equilibrium shape of a
stitch and its mechanical properties, many variations of
Euler-Bernoulli beam theory or beam and truss models
have been proposed over the past years [10–17]. Although
those studies allow for modeling local equilibrium con-
figurations and mechanical properties of a single stitch,
they do not describe the mechanics of a whole fabric unless
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homogeneous deformations are assumed. Recently, new
approaches emerged that describe the fabric as a grid where
stitches are base units [18–20]. Each stitch is subdivided
into constituent elements; each element represents a
mechanical equivalent of yarn when it undergoes deforma-
tions and length redistribution during the fabric extension.
The deformation of the whole fabric is determined by
imposing boundary conditions and kinematic relationships
between adjacent cells. Finally, robust and efficient cloth
simulation has long been a research focus in the computer
graphics community. Progress in numerical modeling
allowed for the development of yarn-based simulation
techniques for realistic and efficient dynamic simulation
of knitted clothing and their mechanical modeling [21,22].
However, producing the required yarn-level models
remains a challenge for this type of approach.
Despite a long history of domestic use and intensive

industrial applications, few approaches have focused on
deriving the mechanical properties of knits and their
morphology from fundamental principles. To this purpose,
we crafted a fabric using a model elastic yarn knitted into
a stockinette stitch pattern [23]. Then, we implemented
tensile test experiments under different loading configura-
tions to measure the mechanical response of the fabric,
while monitoring its shape using high-precision imaging.
Furthermore, we developed a two-dimensional model
relying on a description of the stitch field from which
we derived the mechanical properties of the whole fabric.
Our approach is based on the regular structure of the
stitches that imposes topological constraints during the
deformation of the fabric. The model invokes scale sepa-
ration between the yarn diameter and the stitch extension
and neglects the stretching and twisting of the yarn. These
assumptions allow us to focus on the bending energy of the
yarn, which, combined with conservation of its total length
and kinematic conditions on neighboring stitches, yields
general equations for the mechanics of the fabric. The
equations of the model are solved for the corresponding
experimental situations, and the predicted deformation
field is found to be in agreement with experimental data.
Although our model is specifically applied to the stocki-
nette stitch pattern, it provides a general framework for the
study of a large class of knits.

II. EXPERIMENTAL STUDY

As a model experiment, we use a thin nylon thread and a
mechanical knitting machine to manufacture a 51 × 51
stitch fabric in the topologically simplest knit pattern
known as stockinette, or “point Jersey” [see Fig. 1(a)].
In the plane of the fabric, stitches are organized along rows
and columns, and the corresponding directions are usually
called “course” and “wale,” respectively. During mechani-
cal tests, the fabric is stretched along the wale direction
while clamped along the course direction using two parallel
rows of 51 equidistant nails with the same spacing as the

one between the needles of the knitting machine. In this
configuration, the upper and lower rows have a fixed length
L0
c ¼ 227 mm, and the size Lw in the wale direction is

varied during the experiment (see Sec. VI). A sample is
cyclically stretched uniaxially up to a maximum extension
and then released back to its initial state. As shown in
Fig. 1(b), the mechanical response of the fabric can be
separated into two regions: the first with large variability
over the cycles and almost vanishing stiffness, and a second
one, starting at Lw ≡ L0

w ¼ 125 mm, showing a stiffening
behavior, together with a large hysteresis between loading
and unloading phases.

2 cm

(a)  

(b)  

5 mm

Lw

Lc

Fexp

FIG. 1. A knitted fabric is stretched along the wale direction.
Clamps hold the upper and lower rows, preventing any displace-
ment of the corresponding stitches. The mechanical response is
probed using a traction bench equipped with a dynamometer, and
the stitch pattern is imaged through a digital camera (see Sec. VI
and Movie S1 in Supplemental Material Ref. [24]). (a) Picture of
the deformed stockinette-knit fabric showing the topology of the
stitches and their layout in the typical catenary shape. The global
dimensions of the fabric Lc and Lw as well as the direction of the
pulling force are shown. (b) Mechanical response of the fabric
over 5 loading-unloading cycles, each cycle labeled by a different
color. The strain is defined by ε ¼ ðLw − L0

wÞ=L0
w such that the

origin ε ¼ 0 corresponds to the extension above which the force
signal is reproducible over the cycles. The inset zooms in on the
force curves close to ε ¼ 0 and for different cycles during the
loading phase.
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Figure 1(b) also shows that the work performed to return
to the initial state is nearly half that needed to stretch the
fabric, yet the response is consistently elastic and repeat-
able over the cycles, as the fabric always retrieves its initial
shape. This dissipative behavior results from self-friction of
the yarn, which contributes oppositely in the loading and
unloading phases [25]: When one stretches the fabric, the
frictional part of the force points down, thus adding to the
elastic load, but when one unloads the sample, this force
points upwards, thus subtracting from the elastic part of the
load. This effect yields different stiffening behavior upon
loading and unloading of the fabric. Finally, as far as plastic
deformation goes, we have checked that during deforma-
tion of the knit, the thread does not undergo irreversible
deformation; it remains straight upon unknitting the fabric
after the deformation cycles.
Together with force measurements, the morphology of

the fabric is recorded with a high-resolution camera. After
image segmentation, the geometric center of each stitch is
tracked individually during the stretching and unloading
phases of the cycles. As shown in Fig. 2(a), a striking
feature during the deformation of the fabric is that all the
stitch centroids follow quite straight trajectories as long as
ε ≥ 0, where ε ¼ ðLw − L0

wÞ=L0
w is the global stretching of

the fabric. This allows us to write the individual positions of
the stitches as u⃗ðj; iÞ ¼ u⃗0ðj; iÞ þ εu⃗1ðj; iÞ, where the
indices ðj; iÞ designate the stitch position along the course
and wale directions, respectively, and the vector field u⃗ is
defined with respect to a common reference point in the
ðx; yÞ plane of the fabric. For ε > 0 and within the whole
range of applied stretching, the displacement field of the
stitches is described by a strain-independent vector field u⃗1
whose components ða1; b1Þ can be retrieved experimentally
[see Fig. 2(b)]. The same affine behavior of the displace-
ment field is observed during the unloading phase (see
Movie S2 in Supplemental Material Ref. [24]). This
confirms that the hysteretic behavior in the elastic response
of the fabric originates from interyarn friction and could
therefore be included in a global stiffness constant while
maintaining the same local displacement field of the
stitches in loading and unloading phases.
The vector field u⃗0 describes a reference state of the

system for which Lw ¼ L0
w. In this configuration, the fabric

is already deformed, deviating from a homogeneous state,
thus indicating the presence of nonuniform internal
stresses. In fact, the observation that the free edges of
the fabric spontaneously depart out of the ðx; yÞ plane by
winding is a signature of an in-built prestress. Moreover,
for Lw < L0

w the interyarn contacts are not established
everywhere; thus, stitches can slide without further defor-
mation, providing the fabric with very low stiffness. Thanks
to the affine behavior, the prestressed state associated with
the vector field u⃗0 can be interpreted as the result of an
elongation of the fabric from an absolute, homogeneous,
reference configuration for which Lw ≡ L�

w < L0
w and

Lc ≡ L�
c < L0

c, where all the stitches have the same size.
This allows us to describe the position field of the stitches u⃗
as lateral and longitudinal displacements from this homo-
geneous state. Assuming that the size of a stitch is very
small compared to the size of the fabric, the displacement
field can be written as a function of continuous space
variables ðx; yÞ:

u⃗ðx; yÞ ¼
���� xþ a0ðx; yÞ þ εa1ðx; yÞ
yþ b0ðx; yÞ þ εb1ðx; yÞ;

ð1Þ

where ða0; b0Þ is an inhomogeneous displacement field
that quantifies the deviation from the absolute reference
configuration jxj ≤ ðL�

c=2Þ and jyj ≤ ðL�
w=2Þ. The affine

trajectories of the stitches for ε > 0 motivate the decom-
position of the displacement field as an embedded

(b)

b1

a1

(a)

y

z x

1 cm

FIG. 2. The trajectories of the stitches are tracked while the
fabric is stretched. (a) Picture of the upper-right part of the fabric
for ε ¼ 18%, referred to as the actual configuration. Red dots
represent the paths of a selection of stitch centroids when the
strain ε is varied from 0 to 18% during the stretching phase of
the 5 cycles (Movie S2 in Supplemental Material Ref. [24]
shows the corresponding trajectories). Black circles show the
corresponding positions in the actual configuration. (b) Plot of
the projections of the change in position of the stitch’s centroid
next to the black arrow along the x (wale) and y (course)
directions as a function of the applied strain during the
stretching phases. Black solid lines represent the best linear
fit, whose slopes are measures of a1 and b1.
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deformation induced by the knitting process on top of a
linear response to the applied strain. Moreover, the exper-
imental results show that all the fields involved in Eq. (1)
are slowly varying functions in space, so the components of
their spatial gradients are small compared to 1.

III. STITCH-BASED MODEL

A. Kinematics

A knit is made of a single yarn that follows a complex
constrained path. As the yarn runs along a given row, it
alternatively intertwines with the top and bottom adjacent
rows. To derive the morphological and mechanical proper-
ties of the whole fabric, we do not base our model on the
yarn itself but rather on the periodic geometry of the knit.
The fabric can be seen as a network of repetitive unit cells
characterized by the yarn self-crossing topology. The
stockinette pattern shows the advantage of having a single
topology such that each stitch can be associated to a unit
cell (see Fig. 3). We describe each cell by two vectors, c⃗
and w⃗, whose orientations prescribe the course and wale
directions, while their norms c ¼ kc⃗k and w ¼ kw⃗k impose
the local dimensions of the cell. Notice that the yarn is not
attached to these topological units and is allowed to slide
from one stitch to another.
We can now write the constraints on the fabric that

account for the permanence of the stitch topology.
Indeed, whatever deformation we impose on the fabric,
the crossing points cannot interchange. Therefore, the
stitch grid cannot lose or exchange cells, and every stitch
always keeps the same neighbors. This property imposes
the following kinematic condition: w⃗ðj; iÞ þ c⃗ðj; iþ 1Þ ¼
w⃗ðjþ 1; iÞ þ c⃗ðj; iÞ. It simply states that, to go from one
stitch to another, traveling along the rows and then the
columns is equivalent to traveling along the columns and

then the rows. Within a continuous representation, this
constraint can be stated as

1

w�
∂w⃗
∂x ðx; yÞ ¼

1

c�
∂c⃗
∂y ðx; yÞ; ð2Þ

where c� and w� are the norms of the corresponding vectors
in the absolute reference state of the fabric in which all the
stitches have the same size [see Fig. 3(a)]. Interestingly,
Eq. (2) can be seen as a component-wise vanishing diver-
gence, which ensures the existence of a vector potential u⃗
defined by

c⃗ ¼ c�
∂u⃗
∂x and w⃗ ¼ w� ∂u⃗

∂y : ð3Þ

For a given x (column) and y (row), u⃗ðx; yÞ simply gives the
position of the corresponding stitch, so this potential is
identical to the position field introduced experimentally in
Eq. (1). We can thus directly relate the vector fields c⃗ and w⃗
to the displacement fields ða0; b0Þ and ða1; b1Þ.

B. Energy

Our mechanical model proceeds from first-principle
energy minimization under the constraint of fixed yarn
length and a steady topology. Within the framework of our
grid-based model, we should express both elastic energy
and the constraints as functions of c⃗ and w⃗. In the general
case, the yarn would undergo stretching, bending and
twisting. However, these deformation modes do not con-
tribute equally to the energy of the fabric. First, the
assumption of a scale separation between the size of a
stitch and the diameter of the yarn, which corresponds to a
rather loose knit, allows us to invoke a slender-body
approximation in which the energy cost of stretching is
very large compared to that of bending. Moreover, the twist
in the yarn does not change upon deformation of the stitch
in the ðx; yÞ plane and thus will not produce any work.
Therefore, the main contribution to elastic energy is
provided by bending of the yarn and can be estimated
using simple geometric arguments.
In the ðx; yÞ plane of a given stitch, we can distinguish

two characteristic radii of curvature Rc and Rw along the
wale and course directions [see Fig. 4(a)]. Those curvatures
are geometrically correlated to the dimensions c and w of
the stitch. If we assume simple proportionality relations
Rc ∼ c and Rw ∼ w, the bending energies associated with
deformations along the course (resp. wale) direction scale
as Ec ∼ B=c (resp. Ew ∼ B=w), where B is the bending
modulus of the yarn. Orthogonally to the ðx; yÞ plane, the
yarn is also bent with two characteristic radii of curvature
R0
c and R0

w (see Fig. 4). The thickness of the fabric scales
with the diameter of the yarn d; thus, one has R0

c ∼ R2
c=d

and R0
w ∼ R2

w=d. We consider here a slender yarn in a loose
fabric, so Rc ≪ R0

c and Rw ≪ R0
w, with the result that

(a) (b)

FIG. 3. Schematic representation of the absolute reference
configuration and a deformed state of the fabric. A geometrical
representation of the stockinette stitch network consists in joining
the geometric centers of neighboring stitches along the wale and
course directions. This defines a four-degree planar graph (light
gray lines) that is uniquely determined by the edge vectors along
the course and wale directions. (a) Absolute reference state of the
fabric: The vectors c⃗� and w⃗� are orthogonal and identical for all
cells. (b) Deformed state of the fabric: Directions and norms of
the vector fields c⃗ and w⃗ vary across the fabric.
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bending energy carried in the orthogonal planes is negli-
gible compared to that within the fabric plane.
Nevertheless, R0

c and R0
w are responsible for the three-

dimensional shape that naturally occurs in an unloaded
knitted fabric, in particular, for the curling of the free
edges of a stockinette sample. These out-of-plane effects do
not directly impact the mechanical response of a clamped
fabric but play a significant role in building up internal
stresses. In our two-dimensional setting, the elastic energy
of the stitch can thus be approximated by

Es ≈ Ec þ Ew ¼ B̃

�
1

c
þ β

w

�
; ð4Þ

where B̃ is an effective bending modulus and β is a
dimensionless factor that quantifies the asymmetry between
bending energies carried along the course and wale
directions.

C. Conservation of yarn length

Unlike a weaved fabric which can modeled by a
Chebyshev net for which all the edges retain fixed lengths
[26], the deformation of a knitted fabric allows for sliding of
the yarn from one stitch into the adjacent ones. Nevertheless,
the assumption that the yarn experiences only bending
deformations imposes that its total length in the fabric is
conserved. The length of the yarn is correlated with the
cumulated lengths of the edges of the associated network
defined by the vectors ðc⃗; w⃗Þ. In each cell, the yarn length
should be proportional to l ¼ cþ δw, with δ a constant that
embodies the complex geometry of the yarn in the stitch.
We assume beforehand that δ is a spatially uniform

material parameter that is solely imposed by the machining
process of the fabric. Therefore, the constraint on yarn
length amounts to requiring that the average effective
length over all stitches hli ¼ hci þ δhwi remains constant
upon deformation. Using Eq. (3), the average sizes hci and
hwi can be determined from the experimentally measured
deformation fields u⃗ði; jÞ. Figure 5 shows that both hci and
hwi are affine functions of ε for all ε > 0. Therefore, one
can tune the parameter δ to prescribe a constant effective
length hli ¼ l�. For our fabric, one finds δ ¼ 0.86, which
yields l� ¼ 5.86 mm. This result justifies a posteriori our
assumption that δ is a material parameter that characterizes
the fabric geometry independently of the applied strain.
In the absolute reference state, the homogeneous rec-

tangular configuration as defined by c� and w� should also
satisfy the yarn-length constraint, that is, c� þ δw� ¼ l�. A
second equation relating c� to w� can be deduced by using
the affine behavior of the vector field u⃗ as a function of ε

RC

(a)

RW

(a)

y

z
x

R'W

2d

y

z

x
y

z x

(b)

R'C

2d

y

z
x

y

z

x

(c)

FIG. 4. The main characteristic curvatures of the yarn that can
be extracted from the geometry of a stockinette stitch. Panels
(a) to (c) show the three different orthogonal planes.

FIG. 5. The average stitch size as a function of the applied strain
ε > 0 of the fabric used in Fig. 1. It is shown that hci (resp. hwi)
follows a negative (resp. positive) linear trend; thus, we can
define a parameter δ ¼ 0.86 such that hci þ δhwi is constant for
all ε > 0. Each data point is the average over 5 images at a given
strain, and the error bars are twice their standard deviation.

GEOMETRY AND ELASTICITY OF A KNITTED FABRIC PHYS. REV. X 8, 021075 (2018)

021075-5



(see Fig. 2) and by assuming slowly varying deformation
fields (see Appendix A). We find that the absolute reference
state of the fabric used in Fig. 1 is given by c� ¼ 3.93 mm
and w� ¼ 2.08 mm. It is noteworthy that the conservation
of yarn length, combined with the experimental charac-
terization of the local deformation field of the stitches,
allows us to determine both the geometric parameter δ
and the absolute reference state. Moreover, using these
quantities, we can estimate the coupling of deformations
in orthogonal directions by defining a geometric Poisson
ratio ν≡ ½ðc�−hciÞ=c��½w�=ðhwi−w�Þ�¼ δðw�=c�Þ¼0.46.
Quite unexpectedly, even though the knitted fabric is very
hollow, it behaves like an incompressible elastic bulk
material with a conserved effective area.

IV. ELASTIC RESPONSE OF THE FABRIC

A. Homogeneous deformations

Let us first investigate the case of a knit that is uniformly
deformed from its absolute reference configuration.
Stretching the fabric in the wale direction by an amount
εh results in a deformation of each stitch given by
w ¼ w�ð1þ εhÞ. Using the conservation of yarn length,
the deformation in the course direction should read
c ¼ c�½1 − δðw�=c�Þεh�. Therefore, the bending energy
of the fabric is simply given by

Eh ¼ B̃NcNw

�
1

c�ð1 − δ w�
c� εhÞ

þ β

w�ð1þ εhÞ
�
; ð5Þ

where Nc and Nw are the number of stitches in the course
and wale directions. Notice that the asymmetry of bending
energies between the course and wale directions results
both from the fact that the reference state is rectangular
(c� ≠ w�) and that the two directions of the stitch contribute
to the yarn length in different proportions of its size.
Equation (5) shows that the stiffening behavior observed
in the experiment is directly recovered: The elastic
energy diverges as εh → ðc�=δw�Þ. More importantly, this
energy should reach equilibrium at the absolute reference
state εh ¼ 0. This condition allows us to prescribe
β ¼ δðw�=c�Þ2 ≈ 0.24. Similarly to δ, the asymmetry
parameter β should be spatially homogeneous and margin-
ally dependent on the applied deformation. Thus, β can also
be considered as a characteristic of the stitch.
To test the relevance of Eq. (5), we have performed

tensile tests using a loading configuration in which the
knitted fabric is submitted to a quasihomogeneous defor-
mation. To this purpose, a knit made of Nc × Nw ¼
20 × 30 stitches is held by almost frictionless bars at its
lower and upper rows such that the stitches can slide
laterally. Movie S3 in Supplemental Material Ref. [24] and
the inset of Fig. 6 show that the resulting catenary shape
of the fabric is much less pronounced than in the case
of clamped boundary conditions, confirming that the fabric

deforms almost homogeneously for a large range of applied
strains. For this case, one can define the deformation of the
fabric with respect to the absolute reference configuration.
Moreover, using Eq. (5), one can explicitly derive the
elastic response of the fabric,

FðεhÞ ¼ −
∂Eh

∂Lw
¼ ỸNcδ

w�

c�

�
1

ð1þ εhÞ2
−

1

ð1 − δ w�
c� εhÞ2

�
;

ð6Þ

where the identities β¼δðw�=c�Þ2 and Lw¼Nww�ð1þεhÞ
have been used. The parameter Ỹ ¼ B̃=ðc�w�Þ is an
effective stretching modulus that should be determined
experimentally from the mechanical response of the fabric.
Notice that Ỹ is a line tension (of dimension J:m−1), which
emphasizes that the mechanical response of the fabric
originates from the tensions exerted on the entangled yarn.
The parameters δ, w�, and c� should be determined from the
conservation of total yarn length. Using the procedure
described in Sec. III C, we find δ ¼ 0.71, w� ¼ 2.1 mm,
and c� ¼ 2.7 mm. Figure 6 shows the experimental
mechanical response compared to the one given by
Eq. (6). Fits to the linear regimes (εh ≪ 1) in the loading
(↑) and unloading (↓) phases yield Ỹ↑ ¼ 3.8 × 10−2 J:m−1
and Ỹ↓ ¼ 0.8 × 10−2 J:m−1:
Finally, Fig. 6 also shows that in this favorable loading

configuration, the model allows us to keep track of the
mechanical response up to more than 100% deformations.
However, the sharp rise of the predicted force occurs at

F FFexp

FIG. 6. A 20 × 30 stitch fabric is attached by its lower and
upper rows to almost frictionless bars such that the stitches can
slide laterally. The experimental pulling force Fexp is averaged
over 5 cycles. The absolute reference state Fexpðεh ¼ 0Þ ¼ 0 is
determined by the position where loading and unloading curves
coincide. The mechanical response FðεhÞ is computed using
Eq. (5), with Ỹ as the only fitting parameter to the experimental
results. Because of friction within the knitted fabric, loading and
unloading phases have different effective stretching moduli:
Ỹ↑ ¼ 3.8 × 10−2 J:m−1 and Ỹ↓ ¼ 0.8 × 10−2 J:m−1:
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deformations εh ∼ c�=ðδw�Þ, which is larger than the
experimental ones. Obviously, at this range of deforma-
tions, one cannot invoke scale separation between the size
of a stitch and the diameter of the yarn, a necessary
condition to approximate the elastic energy of the stitch
by Eq. (4).

B. Inhomogeneous deformations

Before moving on to the inhomogeneous spatial defor-
mation problem, let us summarize the parameters intro-
duced in the model. There are mainly four internal
geometrical parameters—w�, c�, β, and δ—and one param-
eter related to the mechanics, the effective stretching
modulus Ỹ. As far as geometry is concerned, w� and c�
are the extensions of the stitch at rest and thus specify the
length scales of the microstructure and can be viewed as
inputs. Here, β, which represents the curvature asymmetry
of the loops in the stitch, is determined from the mechanical
equilibrium of the stitch at rest; δ, which accounts for the
asymmetry of thread length contributions to the stitch
extensions in the course and wale directions, is recovered
from thread length conservation. So at this point, there
are no adjustable parameters other than a global stiffness
scale Ỹ.
Now, we have all the ingredients to study the mechanical

response of the knit for any loading conditions. Within the
experimental configuration of Fig. 1 and using a continuous
representation, the Lagrangian Lfc⃗; w⃗g of the fabric reads

L ¼ Ỹ
ZZ
x;y

dxdy
�
1

c
þ β

w

�
þ α

ZZ
x;y

dxdyðcþ δwÞ

−
ZZ
x;y

dxdyT⃗ðx; yÞ:
�
1

c�
∂c⃗
∂y −

1

w�
∂w⃗
∂x

�

−
ZZ
x;y

dxdyT ðxÞe⃗y:w⃗: ð7Þ

The first term in Eq. (7) is the elastic energy of the
whole fabric, the second one ensures yarn-length con-
servation, the third one enforces the local topological
constraint, and the last one is the work of the tractions
exerted by external loads at the boundaries y ¼ �L�

w=2,
with α, T⃗ðx; yÞ, and T ðxÞ being the corresponding
Lagrange multipliers. One can interpret α as a global
scaling for the tension in the fabric (see Appendix B),
while T⃗ðx; yÞ is a local tension and T ðxÞ is the applied
traction along the clamped edges.
In Appendix B, we show that the minimization of the

Lagrangian with respect to the two vector fields c⃗ and w⃗,
combined with the local topological constraint, yields two
Euler-Lagrange equations, which can be expressed in terms
of the displacement fields a0, b0, a1, and b1. Since these

fields are slowly varying functions in space, only terms that
are linear in their first spatial derivatives are retained.
Then, the problem is solved in the limit of small strains, and
the corresponding displacement fields are computed.
Figure 7(a) shows the resulting shape of the fabric
compared to the experimental one. It is worth underlining
that the prediction of the morphology of the fabric is
parameter-free once the geometrical material parameters δ,
β, c�, w� and the Lagrange multiplier α are determined.
Moreover, although we assume a small strain approxima-
tion, a fairly good quantitative agreement is found between
the results of our model and experiments for stretching up
to ε ¼ 15%.
Once the morphology of the fabric is computed, the force

applied at y ¼ �L�
w=2 can be determined up to a scaling

constant, using either the Lagrange multipliers T⃗ðx; yÞ and
T ðxÞ, or the elastic energy of the fabric (Appendix C).

(b)  

y

z x

(a)  

FIG. 7. Predicted and experimental deformations of a
stretched fabric in the y-direction and its mechanical response.
(a) The measured displacement field u⃗ðx; yÞ is displayed along
7 course (red line) and 7 wale (blue line) directions, while the
black curves (black line) are their corresponding predictions
without adjustable parameters. The applied strain in the picture
is ε ¼ 11% and the scale bar in the panels indicates 2 cm.
(b) Red curves reproduce the experimental results of Fig. 1(b).
The grey area represents 2 times the standard deviation of the
force signals over the 5 cycles. The forces FE (dashed line) and
FT (dot and dashed line) are calculated respectively from the
variation of bending energy and the Lagrange multiplier T ðxÞ
(see Appendix C).
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The former (FT) yields the affine behavior of the force at
small strains, and the latter (FE) includes nonlinearities in
the strain as the elastic energy is a nonlinear function of c
and w. The comparison with the measured force at small
strains allows for the estimation of the effective stretching
modulus Ỹ. For the fabric used in Fig. 1, we find
Ỹ↑ ≈ 1.5 × 10−2 J:m−1 ≈ 10−2B=d2 for loading and Ỹ↓ ≈
1.5 × 10−3 J:m−1 ≈ 10−3B=d2 for unloading phases (B is
the bending modulus of the yarn and d its diameter),
showing that the fabric is very stretchable compared to its
constituent yarn. Figure 7(b) shows that, though linearized,
our model allows for a reasonable prediction of the
mechanical response, up to 5% deformation. Notice that
for a clamped fabric, the applied strain ε is defined with
respect to an intermediate prestressed state described by the
deformation field u⃗0, in contrast to the homogeneous case
where the absolute configuration is accessible. This
explains the strain scale difference between Figs. 6
and 7(b). As in the homogeneous case, the rise of the
predicted force at deformations much larger than that
observed experimentally confirms that a jamming phe-
nomenon occurs before the nonlinear behavior of our
model, which confirms the relevance of our linearized
approach for more complex loading configurations.
Finally, the framework we developed can be used for any

in-plane deformation of the fabric. In order to further assess
the predictive power of our model, we have investigated
two other different loading configurations: The first one
consists in tilting the initial knit with respect to the axis of
applied loading by an angle θ ¼ 25 °, and the second one
ascribes an initial shear to the knit before uniaxial loading.
Snapshots of representative deformed configurations for
the two tests are shown in Figs. 8(a) and 8(b), and the
corresponding equations for the model are featured in
Appendix D. Despite the symmetry breaking, our model
performs with an accuracy comparable to that obtained in
the symmetrical loading case.

V. DISCUSSION

The experimental study of the mechanical response of a
stretched fabric knitted into a stockinette stitch pattern
allows us to build a reliable elastic model that accurately
recovers its deformation field. The model assesses the
elastic energy of the fabric from the bending energy of its
constituent yarn. Furthermore, the yarn self-crossing top-
ology is represented as a four-degree planar graph that fully
describes the state of the fabric. The topology imposes
kinematic conditions, and yarn-length conservation pre-
scribes geometric properties of the resulting network. The
displacement field of the stitches is then determined by
constrained energy minimization. The model correctly
accounts for the spatial deformation of the fabric over a
reasonable range of applied stretching and consistently
captures the mechanical response upon setting a single
material modulus Ỹ that differs depending on whether
the fabric is stretched or relaxed. The results show that a
knit behaves similarly to a rubberlike material: It is very
stretchable and exhibits a geometric Poisson ratio close to
0.5. Importantly, this analogy holds even though the
material points of the underlying network are purely
topological entities that do not correspond to bulk material
points.
The equilibrium state for a stockinette pattern is not a

flat surface but rather a three-dimensional configuration in
which the fabric wraps around its edges due to out-of-plane
bending of the yarn. The forced flattening and clamping of
the fabric induce residual stresses and thus impose an
inhomogeneous two-dimensional displacement field that
deviates from an absolute homogeneous state. Such pre-
stress would probably disappear from a fabric made of a
seed pattern, characterized by fully alternated knit and purl
stitches [23], for which the equilibrium state is a flat
surface. Nevertheless, our model is able to capture the
equivalent two-dimensional residual deformation field of
any fabric made of a periodic stitch pattern. This is in
contrast with prestressed bulk elastic material for which the
residual strain should be a prescribed field [27].
Let us recall the role of friction in the morphology and

mechanical response of the fabric. Friction is responsible
for the large hysteresis observed in the dynamometry: In
contrast to the elastic part of the response, friction opposes
the deformation. This effect yields different stiffening
behavior upon loading and unloading the fabric while
keeping its morphology globally unaltered. Consequently,
our measurements do not access the “frictionless” elastic
modulus of the fabric, but they allow for the definition of
two effective stretching moduli, Ỹ↑ for the loading and Ỹ↓

for the unloading phase. It turns out that friction in a knitted
fabric proceeds through stick-slip events and that the strong
elastic-recall forces bring the system back to its minimum
energy configuration in high-frequency, collective relaxa-
tion events of small amplitude. A rich phenomenology

y

z x

(a) (b) 

FIG. 8. Predicted and experimental deformations of a stretched
fabric under two different loading configurations. In panel (a), the
fabric is initially tilted by 25°, and in panel (b), the fabric is
initially sheared along the x direction by an angle of 10°. The
parameters c�, w�, δ, and thus β are the same as for the fabric used
in Fig. 7(a). The boundary conditions of these configurations are
shown in Appendix D. The applied strain is ε ¼ 11% for both
fabrics, and scale bars in the panels are 2 cm.
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emerges from this frictional dynamics and the spatially
extended avalanche-like relaxation events [28].
Our model assumes scale separation between the yarn

diameter and the stitch extension and thus applies as long as
the yarn diameter is very small compared to stitch dimen-
sions c and w. Very often in commercial knits, the fluffiness
of the thread gives the impression of tight stitches, but the
fabric remains very stretchable. In these cases, such as for a
scarf or a wool sweater, we expect the model to hold. Of
course, there are occurrences of tightly knitted fabric that
do not feel any different from woven textile from a
mechanical aspect; in such a case, our model would not
be appropriate since deformation might involve significant
thread elongation. In addition, the so-called jamming of the
stitches [12] could occur when this scale separation no
longer holds because of large local deformations. In those
stitches, the yarn is maximally bent and starts to undergo
stretching, which alters the elasticity of the whole fabric.
Even though jamming is localized in a few stitches, the
mechanical response of the knit becomes dominated by
stretching of the yarn. Since the deformation field is
inhomogeneous in the fabric, this phenomenon could occur
locally even for small strains starting mainly from the
corners. This mechanism is responsible for the nonlinear
behavior of the force-strain curve [see Fig. 7(b)] that is not
captured by our model. However, it does not seem to affect
the overall catenary shape of the fabric as drastically, which
is still quantitatively predicted by the model. Indeed,
we observe that the prediction of the model for the shape
holds for larger deformation than that for the mechanical
response.

VI. MATERIALS AND METHODS

The fabrics were crafted using a Toyota KS858 single-
bed knitting machine. All samples used for inhomogeneous
deformation experiments were composed of 51 × 51
stockinette stitches made of a nylon-based monofilament
(Stroft® GTM) of diameter d ¼ 80 μm and length of
approximately 25 m. The yarn Young’s modulus E ≈
5.1 GPa was measured using a tensile test, yielding a
bending modulus B ≈ 10−8 J:m: The fabrics were clamped
at both extremities along the course direction by means
of screws holding each stitch individually, imposing along
the corresponding rows a constant spacing between the
stitches. For homogeneous deformation experiments, a
fabric of 20 × 30 stockinette stitches made of the same
nylon-based yarn but of diameter d ¼ 200 μmwas attached
by its lower and upper rows to cylindrical steel bars such
that the stitches can slide laterally. The steel bars were
lubricated with silicon oil to reduce friction with the knit
as much as possible. In all experiments, fabrics were
stretched in the wale direction [except for the configuration
of Fig. 8(b)] at a constant speed of 0.1 mm=s using an
Instron® (model 5965) mounted with a 50 N load cell.
Starting from an initial configuration with given L0

c and Lw,

the fabrics were pulled over a distance of 30 mm. The
visualization was made using a Nikon® D800 camera with
a 60-mm 1∶2:8:G AFS MicroNikkor lens. Both image and
further data analyses were made using MATLAB R2014b.
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APPENDIX A: DETERMINATION OF THE
GEOMETRICAL PARAMETERS δ, c�, AND w�

The geometrical parameters of the knit can be directly
measured from the position field of the stitches u⃗ðj; iÞ. We
can estimate the average value of the stitch sizes hci and
hwi, with hi the average over all the stitches of the fabric for
a given elongation (see Fig. 5). From the measurements, we
find that for ε > 0, both hci and hwi vary linearly with ε.
Thus, we can define a simple scalar δ ¼ 0.86, which
generates l� ¼ hci þ δhwi ¼ 5.86 mm, that is invariant
with elongation. We then assume that l� is proportional to
the physical yarn length in the fabric.
The linear trajectories of the stitches allow us to approxi-

mate the position field by u⃗ðj; i; εÞ ¼ u⃗0ðj; iÞ þ εu⃗1ðj; iÞ.
Moreover, we assume the existence of a reference configu-
ration of the fabric where all the stitches have the same
size, c⃗ ¼ c�e⃗x and w⃗ ¼ w�e⃗y. The reference configuration
must also comply with the yarn-length condition such
that hci þ δhwi ¼ c� þ δw�. This equation, in the limit of
small deformation and slowly varying fields, reads
l0 þ εl1 ¼ c� þ δw�, with

l0 ¼
1

NcNw

ZZ
x;y

dxdy
c�w� (c

�ð1þ a0;xÞ þ δw�ð1þ b0;yÞ)

¼ c� þ δw�; ðA1Þ

l1 ¼
1

NcNw

ZZ
x;y

dxdy
c�w� ðc�a1;x þ δw�b1;y þ c�b1;xb0;x

þ δw�a1;ya0;yÞ ¼ 0; ðA2Þ
where Nc and Nw are the number of stitches in the course
and wale directions, respectively, and f;x ¼ ½ð∂fÞ=ð∂xÞ�.
The size of the reference fabric is unknown, and for this
reason, the experimental displacement fields a0 and b0 are
functions of c� and w�. The two previous equations can then
be written as a function of the experimental position fields
u⃗0ði; jÞ, u⃗1ði; jÞ, and c�,w�:
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l0 ¼ c� þ δw� ⇔
1

NcNw

X
i;j

½ux0ðjþ 1; iÞ − ux0ðj; iÞ þ δ(uy0ðj; iþ 1Þ − uy0ðj; iÞ)� ¼ c� þ δw�; ðA3Þ

l1 ¼ 0 ⇔
1

NcNw

X
i;j

½ux1ðjþ 1; iÞ − ux1ðj; iÞ þ δ(uy1ðj; iþ 1Þ − uy1ðj; iÞ)�

¼ −
X
i;j

�
(uy1ðjþ 1; iÞ − uy1ðj; iÞ)

uy0ðjþ 1; iÞ − uy0ðj; iÞ
c�

þδ(ux1ðj; iþ 1Þ − ux1ðj; iÞ)
ux0ðj; iþ 1Þ − ux0ðj; iÞ

w�

�
; ðA4Þ

with u⃗0 ¼ ux0e⃗x þ uy0e⃗y and u⃗1 ¼ ux1e⃗x þ uy1e⃗y. Those
equations can be solved to compute c� and w�. For
the fabric used in Fig. 1, we find w� ¼ 2.08 mm and
c� ¼ 3.93 mm. The quantity c� þ δw� can then be com-
pared to l� to verify the validity of our approximations. We
measure c� þ δw� ¼ 5.70 mm, which generates less than
3% discrepancy, confirming the hypothesis of a reference
knit sharing the same properties as the experimental knit
and validating the approximation of small deformation and
slowly varying displacement fields.

APPENDIX B: DERIVATION OF THE
EQUILIBRIUM EQUATIONS AND SOLUTIONS

FOR THE DISPLACEMENT FIELDS

When the deformation in the fabric is heterogeneous,
solving the Lagrangian of the system Eq. (7) provides us
with differential equations whose solutions ensure the
energy minimization and the compliance with the con-
straints. Derivation of the Lagrangian with respect to c⃗:
Lfc⃗þ δ⃗c; w⃗g − Lfc⃗; w⃗g ¼ 0 gives the following equation
and its corresponding boundary condition:

−Ỹ
c⃗
c3

þ α
c⃗
c
þ 1

c�
∂T⃗
∂y ¼ 0⃗; ðB1Þ

½T⃗:δ⃗c�
y¼�L�w

2

¼ 0; ðB2Þ

and with respect to w⃗: Lfc⃗; w⃗þ δ⃗wg − Lfc⃗; w⃗g ¼ 0,

−Ỹβ
w⃗
w3

þ δα
w⃗
w
−

1

w�
∂T⃗
∂x ¼ T ðxÞe⃗y; ðB3Þ

½T⃗:δ⃗w�
x¼�L�c

2

¼ 0: ðB4Þ

Notice that the dependence of α in Eqs. (B1) and (B3)
can be suppressed by normalizing ðc⃗; w⃗Þ by ffiffiffi

α
p

and ðT⃗; T Þ
by α. This scaling allows us to interpret the Lagrange
parameter α as a global scaling for the tension in the fabric.
Moreover, Eqs. (B1) and (B3) can be combined to eliminate
the Lagrange multiplier T⃗:

c�
∂
∂x

�
−Ỹ

c⃗
c3
þα

c⃗
c

�
þw� ∂

∂y
�
−Ỹβ

w⃗
w3

þδα
w⃗
w

�
¼0: ðB5Þ

Using Eqs. (B2) and (B4), the boundary conditions
corresponding to the experimental setup of Fig. 1 are
c⃗ ½x;y¼�ðL�

w=2Þ�¼ðL0
c=NcÞe⃗x and

R ½ðdyÞ=w��w⃗¼Lwe⃗y.
The conditions on the free edges at x ¼ �ðL�

c=2Þ are
T⃗½x ¼ �ðL�

c=2Þ; y� ¼ 0, which we can rewrite as a function
of c⃗ thanks to Eq. (B1), −ðc⃗=c3Þ þ αðc⃗=cÞjx¼�ðL�

c=2Þ ¼ 0.
To guarantee the topological constraint, we write this
equation and the boundary conditions as a function of
the displacement fields a0, b0, a1, and b1 thanks to the
relations

c⃗ ¼ c�
���� 1þ a0;x þ εa1;x

b0;x þ εb1;x;
ðB6Þ

w⃗ ¼ w�
���� a0;y þ εa1;y
1þ b0;y þ εb1;y;

ðB7Þ

with the underscript ; x or ; y designating a partial derivative
in the corresponding direction. Experimental observations
suggest that those displacement fields are linear in ε, so
we also express the Lagrange multiplier α ¼ α0 þ εα1 as
varying linearly with ε. Equation (B5) will be solved in the
limit of small deformation and consequently developed at
the first order of ε. We also consider that inner stress
induces only a small deformation of the stitches, meaning
that a0;x, b0;x, a0;y, b0;y ≪ 1; thus, the equation will also
develop up to the first order in a0;x, b0;x, a0;y, b0;y. By
projecting Eq. (B5) along x and y, we end up with two sets
of equations, each one with one part independent of ε
and another one proportional to the strain. Equilibrium of
the homogeneous fabric for c ¼ c� and w ¼ w� imposes
β ¼ δðw�=c�Þ2. We define the dimensionless Lagrange
multiplier α̃ ¼ ½ðc�2αÞ=Ỹ� and introduce the following
two coefficients to lighten the mathematical expressions,
ν ¼ δðw�=c�Þ and χ ¼ ½ðα̃0 − 1Þ=2�. For the independent
part of the strain, one gets

a0;xx þ νχa0;yy ¼ 0; ðB8Þ
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b0;xx þ
ν

χ
b0;yy ¼ 0: ðB9Þ

Canceling the part proportional to ε leads to

a1;xx þ νχa1;yy þ Pa ¼ 0; ðB10Þ

b1;xx þ
ν

χ
b1;yy þ Pb ¼ 0; ðB11Þ

with Pa and Pb terms that arise from the nonuniform initial
state for ε ¼ 0, whose expressions are

Paðx; yÞ ¼ −3
∂
∂x ½a1;xa0;x�

þ ν

�
ð1− χÞ ∂

∂y ½b1;ya0;y þ a1;yb0;y� þ
α̃1
2
a0;yy

�
;

ðB12Þ

Pbðx; yÞ ¼
�
1

χ
− 1

� ∂
∂x ½b1;xa0;x�

þ ν

� ∂
∂y

��
1

χ
− 1

�
a1;ya0;y −

3

χ
b1;yb0;y

��
:

ðB13Þ

The boundary conditions written with the displacement
fields are

∀ x

y¼�L�
w
2

8<
:
a0¼ L0

c−L�
c

L�
c
x

b0¼�L0
w−L�

w
2

∀ y

x¼�L�
c
2

�
a0;x¼−χ
b0;x¼0

ðB14Þ

and

∀ x

y¼�L�
w
2

�a1¼0

b1¼�L0
w
2

∀ y

x¼�L�
c
2

�
a1;x¼− α̃1

2ð3χþ1Þ
b1;x¼0.

ðB15Þ

First, the solutions for a0 and b0, the displacement from
the absolute reference configuration, should be determined.
The solution for b0 is straightforward; it is simply a linear
solution in y:

b0ðx; yÞ ¼
L0
w − L�

w

L�
w

y: ðB16Þ

The solution for a0ðx; yÞ is more advanced; let us make the
following change of variables:

x ¼ X
L�
c

2
; ðB17Þ

y ¼ Y
ffiffiffiffiffi
νχ

p
L�
c

2
; ðB18Þ

a0 ¼
L�
c

2

��
χ þ L0

c − L�
c

L�
c

�
Aþ L0

c − L�
c

L�
c

X

�
; ðB19Þ

L ¼ L�
wffiffiffiffiffi

νχ
p

L�
c
: ðB20Þ

The equations for a0 become

A;XX þ A;YY ¼ 0; ðB21Þ

with the boundary conditions

AðX; Y ¼ �LÞ ¼ 0 and A;XðX ¼ �1; YÞ ¼ −1: ðB22Þ

Therefore, Aðx; yÞ is a harmonic function inside a rectangle
that satisfies Eq. (B22) at the boundaries. Semianalytical
resolution can be performed using conformal mapping
techniques. In the present case, we numerically solve this
problem using the Schwarz-Christoffel transform Matlab
Toolbox [29].
Combining Eqs. (B10)–(B13), one gets the following

equations for the affine displacement field ða1; b1Þ:

ð1 − 3a0;xÞa1;xx þ νχ

�
1þ

�
1

χ
− 1

�
b0;y

�
a1;yy þ νð1 − χÞa0;yb1;yy ¼ −νa0;yy

�
3χa1;x þ ð1 − χÞb1;y þ

α̃1
2

�
; ðB23Þ

�
1þ

�
1

χ
− 1

�
b0;y

�
b1;xx þ

ν

χ
ð1 − 3b0;yÞb1;yy þ

ν

χ
ð1 − χÞa0;ya1;yy ¼

ν

χ
ð1 − χÞa0;yyðχb1;x − a1;yÞ: ðB24Þ

These equations combined with the boundary conditions
(B15) are solved numerically on a discrete lattice.
Recall that the geometrical parameters of the knit, c�, w�,

and δ, are computed from the measured position field of the
stitches. However, the calculated displacement field is still
parametrized by the Lagrange multipliers α̃0 and α̃1, which

are the only parameters left to compute the shape of the
fabric. With α̃ ¼ α̃0 þ εα̃1 being the Lagrange multiplier
associated with the yarn-length conservation, we find its
value using the corresponding equations l0 ¼ c� þ δw�
and l1 ¼ 0 but this time estimated from our model and not
from experimental measurements; i.e., one should satisfy
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Eqs. (A3) and (A4) using the computed deformation
vector field u⃗ðx; yÞ. Notice that l0 is independent of α̃1;
thus, we can compute α̃0 such that l0ðα̃0Þ ¼ c� þ δw� [see
Fig. 9(a)]. Then, with the selected α̃0, we apply the same
treatment to l1 and thus determine the α̃1 that satisfies
l1ðα̃1Þ ¼ 0 [see Fig. 9(b)]. For the fabric used in Fig. 1, we
find α̃0 ¼ 1.32 and α̃1 ¼ 9.04.

APPENDIX C: COMPUTATION OF THE
LAGRANGE MULTIPLIER T⃗ðx; yÞ AND

THE APPLIED FORCE

We have introduced the vector T⃗ as the Lagrange
multiplier associated with the topological constraint.
Since we express the variables c⃗ and w⃗ directly in
terms of displacement fields, the topological constraint is
automatically fulfilled; thus, T⃗ does not appear explicitly
in the solutions. However, once a0, a1, b0, b1 are
determined, one can evaluate this vector field using
Eqs. (B1) and (B3), and the boundary condition
T⃗½x ¼ �ðL�

c=2Þ; y� ¼ 0⃗. Recall that T ðxÞ is a traction
distribution such that the total force applied on the fabric
is written

FT ¼ w�
Z L�c

2

−L�c
2

T ðxÞdx: ðC1Þ

Let us define a new vector T⃗ðx; yÞ ¼ ỸT⃗1ðx; yÞ and
T ðxÞ ¼ ỸT 1ðxÞ=w�2. Equations (B1) and (B3) become

1

c�
∂T⃗1

∂y ¼ c⃗
c3

−
α̃

c�2
c⃗
c
≡ 1

c�2
f⃗cðx; yÞ; ðC2Þ

1

w�
∂T⃗1

∂x ¼ −δ
�
w�

c�

�
2
�
w⃗
w3

−
α̃

w�2
w⃗
w

�
−

1

w�2 T 1ðxÞe⃗y

≡ 1

w�2 f⃗wðx; yÞ −
1

w�2 T 1ðxÞe⃗y: ðC3Þ

The determination of the vector field T⃗1ðx; yÞ allows us to
compute the applied force. Integrating Eq. (C3) and using
the boundary condition T⃗½x ¼ −ðL�

c=2Þ; y� ¼ 0⃗ yields

T⃗1ðx; yÞ ¼
1

w�

Z
x

−L�c
2

f⃗wðx0; yÞdx0 −
1

w�

Z
x

−L�c
2

T 1ðxÞe⃗ydx0:

ðC4Þ

Using Eq. (B5), one can show that this solution for T⃗1

satisfies Eq. (C2). Moreover, using the boundary condition
T⃗½x ¼ ðL�

c=2Þ; y� ¼ 0⃗, one finds

FT ¼ Ỹ
Z L�c

2

−L�c
2

f⃗wðx; yÞ · e⃗y
dx
w� : ðC5Þ

This shows that the integral of the tension over the course
direction should be a conserved quantity independent of the
coordinate in the wale direction.
To remain consistent with the solutions obtained for a0,

b0, a1, and b1, the vector field f⃗wðx; yÞ is developed to first
order in ε and in a0;x, b0;x, a0;y, b0;y. To compute the tension

field T⃗ and the force FT , one needs to know the stretching
modulus Ỹ. However, the force needed to pull the fabric can
also be obtained from the variation of bending energy with
respect to Lw. This provides an alternative estimation of the
force that we name FE. Both FT and FE are proportional to
the unknown effective stretching modulus Ỹ. This coef-
ficient is adjusted such that the slopes of Fexp and FT near
ε ¼ 0 coincide; we find Ỹ↑ ≈ 1.5 × 10−2 J:m−1: The
resulting three curves are shown in Fig. 7(b). The con-
sistency of the model and the correctness of the compu-
tations appear here, as the slope of FE matches those of
Fexp and FT in the vicinity of ε ¼ 0. While FexpðεÞ is well
described by FT at small strains (up to ε ≈ 4%), the
nonlinear behavior of FE manages to capture Fexp until
ε ≈ 8%. We apply the same process for the unloading
phase, and we find Ỹ↓ ≈ 1.5 × 10−3 J:m−1:

(a) (b)

~ ~

FIG. 9. Determination of the Lagrange parameter α̃ ¼ α̃0 þ εα̃1. (a) For each value of α̃0, a0 and b0 are calculated and l0 is estimated;
we find that l0 − ðc� þ δw�Þ ¼ 0 for α̃0 ¼ 1.32. (b) For α̃0 ¼ 1.32, while α̃1 is varied, a1 and b1 are calculated to estimate l1; we find
l1 ¼ 0 for α̃1 ¼ 9.04.
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The tension T⃗ðx; yÞ over the fabric cannot be retrieved
independently of T ðxÞ. However, one can compute an
equivalent total stress T⃗ tot ¼ T⃗ þ w� R x

0 T ðxÞdxe⃗y; see
Fig. 10 for the amplitude of this vector field over the fabric.
Notice that T⃗ is the Lagrange multiplier associated with the
topological constraint, so one interpretation of kT⃗ totk would
be how hard it is to fulfill this constraint. In other words, it
can be interpreted as an interstitch tension, and its behavior
reflects a stress distribution within the fabric.

APPENDIX D: EQUATIONS FOR THE
ALTERNATIVE LOADING CONDITIONS

Figures 8(a) and 8(b) show the deformation fields for
different loading configurations applied to the fabric. In the
model, those changes will not affect the equilibrium
equations of the displacement fields but only the associated
boundary conditions. In Fig. 8(a), the fabric is tilted by an
angle θ ¼ 25° and loaded in the y direction. The initial
configuration is identical as the symmetrically loaded one;
hence, a0 and b0 satisfy the same equations with the same
boundary conditions. For the affine displacement fields a1
and b1, the boundary conditions become

∀ x

y ¼ � L�
w
2

�
a1 ¼ � L0

w
2
sinðθÞ

b1 ¼ � L0
w
2
cosðθÞ

∀ y

x ¼ � L�
c
2

�
a1;x ¼ − α̃1

2ð3χþ1Þ
b1;x ¼ 0.

ðD1Þ

For the second configuration displayed in Fig. 8(b), the
fabric is initially sheared by an angle of γ ¼ 10°, thus
inducing an additional lateral displacement. The boundary
conditions associated with the prestressed state are then

∀ x

y¼�L�
w
2

�a0 ¼ L0
c−L�

c
L�
c

x� tanðγÞL0
w
2

b0 ¼�L0
w−L�

w
2

∀ y

x¼�L�
c
2

�
a0;x ¼ −χ
b0;x ¼ 0.

ðD2Þ

The equations and boundary conditions for a1 and b1
are functions of a0 and b0, so their solutions are different
from the symmetric case, even if their expressions are
identical.
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