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Abstract—Subgroup discovery (SD) is the task of discovering
interpretable patterns in the data that stand out w.r.t. some prop-
erty of interest. Discovering patterns that accurately discriminate
a class from the others is one of the most common SD tasks.
Standard approaches of the literature are based on local pattern
discovery, which is known to provide an overwhelmingly large
number of redundant patterns. To solve this issue, pattern set
mining has been proposed: instead of evaluating the quality of
patterns separately, one should consider the quality of a pattern
set as a whole. The goal is to provide a small pattern set that is
diverse and well-discriminant to the target class. In this work, we
introduce a novel formulation of the task of diverse subgroup set
discovery where both discriminative power and diversity of the
subgroup set are incorporated in the same quality measure. We
propose an efficient and parameter-free algorithm dubbed FSSD
and based on a greedy scheme. FSSD uses several optimization
strategies that enable to efficiently provide a high quality pattern
set in a short amount of time.

Index Terms—Pattern Mining, Subgroup Discovery.

I. INTRODUCTION

Data science can be seen as a language that allows, among
others, the analysis of (large amount of) data [43]. Following
the same philosophy of Exploratory Data Analysis (EDA) [47],
one of the main tasks of data science is the discovery of
interpretable and understandable patterns in the data, a task
known as data mining [11]. Subgroup discovery (SD) [27],
[50] is a popular data mining task that aims, amongst many
other possibilities, to discover patterns describing regions in
a dataset where the distribution of the target variable signif-
icantly deviates from the norm. For instance, a subgroup de-
fined by the description age ≥ 65 ∧ smoker = true fosters
the target variable “lung cancer” prevalence in some patient-
dataset.

In SD, as in most of local pattern mining approaches, an
important problem that one has to consider is the huge number
of patterns (subgroups) that can be produced. Many of these
subgroups are redundant and convey very similar information.
This issue notably becomes more serious when the number
and/or the domain of attributes is large. This challenge led
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to the definition of the pattern set mining problem [8], [20],
[28], [40]. While local pattern mining seeks for patterns where
each of them satisfies local constraints individually, pattern
set mining aims to find a small set of patterns that together
satisfy global constraints. These global constraints are used to
guarantee the diversity in the returned pattern set. Different
approaches exist in the literature to tackle the problem of
pattern set mining:

(1) Non-diversified top-k approach. Such algorithms output
the top-k best subgroups (e.g., BSD [32] and MiSoSouP
[41]). Although this allows to control the number of returned
patterns, this does not solve the redundancy problem since the
top-k patterns can be very similar and describe only a few of
all the local optima (lack of diversity).

(2) Exhaustive approach. Such methods aim to find the best
possible solution. The pioneering work of [40] proposes a level
wise algorithm to explore the search space, and [21], [26],
[38] use a Constraint Programming (CP) solver to retrieve
the k-pattern set. In large and complex datasets, the exhaustive
selection of the best k-pattern set becomes unfeasible, even if
pruning strategies are used. As the number of possible pattern
sets is exponential in the size of the set of local patterns,
which is itself huge, the computational efficiency of pattern set
mining is a very challenging task. In fact, the general problem
of pattern set discovery is NP-hard [35].

(3) Two-step approach. These algorithms start by (a) gen-
erating a collection of local patterns by some exhaustive or
heuristic technique followed by (b) a heuristic selection of
a smaller subset of complementary patterns [5], [8], [44].
However, since the number of local patterns can be large,
these algorithms need a huge amount of memory to store them.
Moreover, post-processing the set of all mined local patterns
can be time-consuming. Noteworthy algorithms belonging to
this family are: DSSD [48] and MCTS4DM [7].

(4) Sequential covering approach. Algorithms proposed in
[9], [31], [46] use the so-called sequential covering strategy
for subgroup set discovery. These algorithms repeatedly and
heuristically (i.e. beam search) look for one subgroup; add
it to the already constituted subgroup set; then re-weight or



delete the already covered objects in the database in the aim
of reducing their impact in the next iterations. This approach
allows to implicitly consider the diversity of the produced
subgroup set, conversely to some two-step approaches where
an additional “diversity” measure is used.

Contributions. In this paper, we investigate the problem of
subgroup set discovery, i.e. “discovery of a non-redundant
set of high-quality subgroups.” [48]. This can be seen as
a particular instance of the more general task of pattern
set mining. After formally introducing the notion of SD-
compatible quality measures (e.g. WRAcc) that locally eval-
uate subgroups interestingness, we extend their definitions to
subgroup sets. This allows to evaluate the interestingness of a
subgroup set in terms of its discriminative power and diversity.
We propose a greedy scheme to maximize these measures by
incrementally augmenting the subgroup set with subgroups
providing the highest marginal contribution. In this respect,
we devise a branch-and-bound algorithm, dubbed FSSD, a
parameter-free and memory efficient algorithm tailored for
diverse subgroup set discovery. It exploits (i) tight optimistic
estimates on the marginal contributions of SD-compatible
measures to prune unpromising branches, (ii) closure operators
to efficiently explore the search space and (iii) successive
removal of already covered objects (i.e. sequential covering)
to significantly reduce candidate subgroups.

Outline. The remainder of this paper is organised as follows.
Sec. II recalls preliminary notions. Sec. III introduces the
problem of k-diverse subgroup set discovery. Sec. IV presents
the generic greedy framework. Sec. V introduces FSSD. While
the approximation ratio to the best possible solution of the
proposed problem is not theoretically bounded, Sec. VI reports
a thorough empirical study that demonstrates FSSD efficiency
and effectiveness. Sec. VII concludes the paper.

II. PRELIMINARIES

In this paper, for any set E, ℘(E) denotes the powerset of
E. For f : E → F and a subset A ⊆ E, the image of A by f
is denoted by f [A] (i.e. f [A] = {f(a) | a ∈ A}). Details on
order-theoretic notions can be found in [42].

A. Input dataset.

A dataset is a pair (G,A) where G is a set of objects and
A = {ai}1≤i≤m is an ordered set of attributes. Each attribute
a ∈ A can be seen as a mapping a : G → Ra where Ra is
called the domain of the attribute. For instance, Ra is given
by R if a is numerical, by a finite set of categories Ci if a
is nominal (categorical) or by {0, 1} if a is Boolean. Each
object g ∈ G is labeled as either positive or negative. It means
that G is partitioned into two subsets G+ and G− enclosing
respectively positive and negative instances. The proportion
α := |G+|/|G| is called the positive prevalence. Fig. 1 (left)
depicts a dataset containing 3 attributes of distinct types where
G+ = {g2, g3, g5} is the set of individuals having a high
income.

B. Pattern Language

A pattern d is a constrained selector of a subset of objects
of the dataset using their attribute values. We refer to the set
of all possible patterns that we want to explore by the pattern
language and we denote it D. In our case, D =×m

i=1
Di

where Di is given by the set of all possible intervals in R
if ai is numerical, the set {Ci, ∅} ∪ {{c} | c ∈ Ci} if ai is
nominal or {{0, 1}, {1}} if ai is Boolean (i.e. if negative item
{0} needs to be considered, attribute ai needs to be considered
as nominal). A pattern d ∈ D is then given by a sequence
of restrictions over each attribute (i.e. d = (di)1≤i≤m). For
example, in Fig. 1 (right) pattern d = ({0, 1}, {M},R) is
read “individual that are married or not, men and having
any age”. Note that we considered here the exhaustive search
space for the numerical attributes as in [7], [25] and no apriori
discretization is performed.

As when we deal with itemsets, patterns in D are or-
dered from the most general one to the most restrictive
one by an order relation v. In our case, for two patterns
c = (ci)1≤i≤m ∈ D and d = (di)1≤i≤m ∈ D, we have:
c v d ⇔ ∀i ∈ J1,mK (ci ⊇ di). In Fig. 1 (right), pattern
c = ({0, 1}, {M},R) is less restrictive than pattern d =
({0, 1}, {M}, [27, 65]) (i.e. c v d) since d has an additional
constraint on the age attribute. One can show that the partially
ordered set (D,v) is a meet-semilattice (the meet is denoted
u). It means that for all c, d ∈ D, there is maximum common
lower bound cu d (i.e. (∀e ∈ D) e v c∧ e v d⇔ e v cu d).

Given the pattern language explained above, we should link
objects in G to descriptions in D. This is done by the cover
relationship. A description d ∈ D is said to cover g ∈ G
iff ∀i ∈ J1,mK : ai(g) ∈ di. Each object g ∈ G is now
mapped to the most-restrictive description δ(g) ∈ D covering
it: ∀d ∈ D, d covers g iff d v δ(g). Fig. 1 illustrates this
mappings between objects and descriptions.

C. Pattern Structure

Pattern structure is a generalization of the Formal Concept
Analysis (FCA) framework [13] to complex attributes such
as numerical and nominal ones (see [14] for further details).
Since (D,v) is a meet-semilattice, the triple (G, (D,v), δ) is
pattern structure. This triple contains all information we need
to search for patterns in a dataset and allows us to use an
algorithm like Close-by-One (CbO) [29] to exhaustively enu-
merate them. Two mappings associated to a pattern structure
are important to keep in mind: (1) ext : D → ℘(G), d 7→
{g ∈ G | d v δ(g)} called the extent. It associates to each
pattern d ∈ D the set of objects in G for which d hold.
(2) int : ℘(G) → D, E 7→

d
g∈E δ(g) associates to each

subset E ⊆ G the most-restrictive pattern d ∈ D covering
them. Note that ext is order-reversing: i.e. if c v d then
ext(d) ⊆ ext(c) (i.e. if d is more restrictive than c, then
d covers less objects than c), property from which (anti)-
monotonicity of some measures ensues. Note also that int◦ext
and ext ◦ int are closure operators since the pair (ext, int)
forms a Galois connection.



married? sex age income
g1 × I 23 ≤ 50k
g2 × M 27 > 50k
g3 M 65 > 50k
g4 F 54 ≤ 50k
g5 × F 43 > 50k
g6 M 13 ≤ 50k

mapping δ income
g1 ({1}, {I}, [23, 23]) ≤ 50k
g2 ({1}, {M}, [27, 27]) > 50k
g3 ({0, 1}, {M}, [65, 65]) > 50k
g4 ({0, 1}, {F}, [54, 54]) ≤ 50k
g5 ({1}, {F}, [43, 43]) > 50k
g6 ({0, 1}, {M}, [13, 13]) ≤ 50k

Descriptions and their extents:

c = ({0, 1}, {M},R), ext(c) = {g2, g3, g6}
d = ({0, 1}, {M}, [27, 65]), ext(d) = {g2, g3}

Fig. 1: A labeled dataset (left), objects and their descriptions (center) and some descriptions in D (right)

III. PROBLEM DEFINITION

A. Subgroups and their interestingness.

A subgroup s is any subset of objects in S = ext[D] =
{ext(d) | d ∈ D}. We choose to describe subgroups by their
intents since they provide the most specific (most insightful)
description. For instance, in Figure 1, the set {g2, g3} is a
subgroup whose intent is d = ({0, 1}, {M}, [27, 65]). Indeed,
any refinement of the description d will drop at least one
object.

A measure φ : ℘(G)×℘(G)→ R; (s, U) 7→ φ(s, U) defines
a mapping that evaluates some property of a subgroup s ∈
℘(G) in the sub-dataset U ⊆ G. For the sake of clarity, if
the second parameter U is omitted, then U is the whole set
of objects G. The very basic measure is the relative support :
relsup : s, U 7→ |s ∩ U |/|U |.

The relative support is monotonic w.r.t. parameter 1 (i.e. s ⊆
t⇒ relsup(s, U) ≤ relsup(t, U)). Using the relative support,
the true positive rate (tpr) and the false positive rate (fpr) of
a subgroup s are defined respectively as follows tpr(s, U) =
relsup(s,G+∩U) and fpr(s, U) = relsup(s,G−∩U). Every
objective measure ([17]) can be written using tpr, fpr and
some constants. Properties of measures w.r.t. the task have
been thoroughly studied in the literature [12], [24], [33], [39].
For a SD task, we define SD-compatible measures.

Definition 1. A measure φ is said to be SD-compatible if
the following property ∀s1, s2 ∈ S: if tpr(s1) ≥ tpr(s2) and
fpr(s1) ≤ fpr(s2) then φ(s1) ≥ φ(s2). In other words, if s1
dominates s2 in the ROC space (i.e. tpr-vs.-fpr space), then
φ(s1) ≥ φ(s2).

Almost all usual measures in SD are SD-compatibles. For
instance, Weighted Relative Accuracy (WRAcc), Accuracy,
correlation coefficient, Cohen’s kappa, m-estimate, G-measure
and Fβ-measure among others are SD-compatible (see Ap-
pendix C). Please note that, preferably, other properties must
hold for a measure in order to be useful for a SD task (e.g.
constant in independence case, i.e. tpr = fpr [33]).

B. Subgroup Sets Interestingness.

A subgroup set is a set S ⊆ S. Following [40], subgroup
sets are interpreted as disjunctions of subgroups. Accordingly,
the set of objects covered by a subgroup set is given by the
union of its subgroups. To evaluate the interestingness of a
subgroup set S , we extend the quality measure φ definition
as follows φ(S) = φ

(⋃
s∈S s

)
since the description associated

to S is the disjunction of the intent of each subgroup. Such
a formulation gives higher quality φ(S) to subgroups in S
covering different regions.

C. Problem - Subgroup Set Discovery.

Problem Statement. Let be a dataset (G,A), a cardinality
constraint k ∈ N and a SD-compatible measure φ. Output one
subgroup set from argmaxS⊆S,|S|≤k φ(S).

To the best of the authors’ knowledge, this is a novel way to
present the problem of diverse subgroup set discovery. It has
the advantage that both discriminative power and diversity of
the subgroup set are incorporated into the same measure. It is
worth to note that Problem III-C, even when S is considered
as an input, is NP-Hard. For the convenience of the reader, we
delay the proof to Appendix A. One naive (exact) solution for
this problem is: (1) look for all possible subgroups in the first
phase then (2) test all possible sets of subgroups which size
is below k. However, such a solution is practically unfeasible.

IV. A GREEDY SOLUTION

To approximate the exact solution of problem III-C, we rely
on a greedy optimization algorithm. Before presenting such
a solution, we present below in Definition 2 the notion of
marginal contribution associated to some quality measure.

Definition 2. For a measure φ and a subgroup set S ⊆ S, the
marginal contribution to S is the function φS :

φS : ℘(G)→ R; s 7→ φ
(⋃
S ∪ s

)
− φ

(⋃
S
)

The marginal contribution φS quantifies the quality φ gain that
a subgroup s brings to the subgroup set S if added.

A. The Greedy Scheme.

Algorithm 1 presents the general scheme of a greedy
solution [36]. It starts by an empty subgroup set (line 1). Next,
it incrementally constitutes the subgroup set S by successively
adding the subgroup s∗ providing the top marginal contribu-
tion (line 3). Algorithm 1 stops when |S| = k or there is no
subgroup providing a positive marginal contribution.

When studying the quality of a greedy approach solution,
one need to evaluate the so-called approximation ratio. How-
ever, since quality measures φ : ℘(S) → R extended to

Algorithm 1: Greedy solution for Problem III-C
Input: (G,A) labeled dataset, k ∈ N, a measure φ

1 S ← {}
2 while |S| < k do
3 Look for s∗ ∈ argmaxs∈S φS(s)
4 if φS(s∗) > 0 then S ← S ∪ {s∗} else Break
5 return S



a b c class
g1 × +
g2 × +
g3 × +
g4 × × −
g5 × × −
g6 × −

TABLE I: Dataset with boolean descriptive attributes

subgroup sets are not necessarily sub-modular [36], one cannot
use the usual lower bound on the approximation ratio, i.e.
1− 1

e .

Definition 3. Let φ be a measure, k be the cardinality
constraint and Sgreedy be the output of Algorithm 1 w.r.t. k.
The approximation ratio ρ of Sgreedy is given by:

ρ(Sgreedy) =
φ(Sgreedy)

maxS∈S,|S|≤k φ(S)

N.B. maxS∈S,|S|≤k φ(S) = 0⇒ ρ(Sgreedy) = 1.

Unfortunately, the quality of the greedy solution cannot be
theoretically guaranteed (i.e. lower-bounded) for the general
formulation of Problem III-C. Indeed, consider Problem III-C
with dataset (G,A) depicted in Table I, WRAcc quality
measure and k = 2. We consider the itemset search space (i.e.
attributes in A are Booleans). Hence, the description language
is (isomorphic to) ℘({a, b, c}). For an itemset i ∈ ℘({a, b, c}),
we denote by si the subgroup ext(i). One can show that for
all itemsets i ∈ ℘({a, b, c}), we have tpr(si) ≤ fpr(si).
Thus, WRAcc(si) ≤ 0. Algorithm 1 outputs thus Sgreedy = ∅
since the top gain is below 0. Let be the 2−sized subgroup
set S = {s{a}, s{b}} . We have WRAcc(S) > 0 since
tpr(S) > fpr(S). Hence, the top subgroup set S∗ has
WRAcc(S∗) > 0. Then ρ(Sgreedy) = 0. Other measures are
concerned by the non-existence of the theoretical bound on ρ
such as Klösgen measure, linear correlation coefficient and Co-
hen’s Kappa. Here, we particularly considered Problem III-C
instance on a boolean dataset. We show in Appendix B that
no approximation guarantee can be ensured by Algorithm 1
when attribute-value datasets are considered, i.e. categorical
and numerical attributed datasets.

V. FSSD - FAST AND EFFICIENT SUBGROUP SET
DISCOVERY

There are several ways to implement line 3 in Algorithm 1.
The easiest one is to look for all subgroups in the dataset using
some known pattern mining algorithm (for example SD-Map
[2]) beforehand. We refer to such a solution by BASELINE
algorithm. This BASELINE algorithm suffers from many
drawbacks. For instance, it needs to store all found patterns
in memory before post-processing them at the end. We need
to find hence a fast and memory-efficient way to implement
line 3; i.e. the step of finding the top-gain subgroup. If we do
not want to store all found subgroups before post-processing
them, one should explore at each step of the algorithm the
whole search space S. Therefore, in order to optimize line 3,

one need to look for less subgroups (i.e. explore subgroups in
some Si ⊆ S) at each iteration i ∈ 1...k to find the top-gain
one. Starting from here, we will explain how to build these
smaller search spaces Si at each iteration.

A. Ignore already-covered instances.

Consider some iteration i ∈ 1...k in Algorithm 1 with
some already constituted subgroup set Si−1 ⊆ S. We draw
the reader attention to the following fact: looking for the
top-gain subgroup in pattern structure P = (G, (D,v), δ)
is equivalent to looking for it in pattern structure Pi−1 =
(GSi−1

, (D,v), δ) associated to the set of non-already covered
instances GSi−1 = G\

⋃
Si−1. Indeed, consider one top-gain

subgroup s∗ in Pi−1 (i.e. s∗ ⊆ GSi−1 and s∗ not necessarily
belongs to S), subgroup ext(int(s∗)) ∈ S maximizes the
marginal contribution φSi−1

. Supposing the converse, that is
∃t ∈ S s.t. φSi−1

(t) > φSi−1
(ext(int(s∗))), allow to build

another subgroup s∗∗ = t ∩ GSi−1 in pattern structure Pi−1
better than s∗ which is contradictory under the hypothesis
that s∗ maximizes φSi−1

. Using this observation, we build
a smaller subgroup search space Si at each iteration i: i.e.
Si =

{
ext(int(s ∩ GSi−1

)) | s ∈ S
}

. Note that S0 = ∅.

B. Ignore non closed-on-the-positive subgroups.

The closed on the positive (cotp for short) concept was
introduced with the concept of relevance in [15], [16]. In-
formally, cotp are subgroups for which the addition of any
constraint to their intent results in dropping at least one
positive object (reducing the true positive rate). Formally,
a subgroup s ∈ S is cotp iff s = ext(int(s ∩ G+)).
Mapping s 7→ ext(int(s ∩ G+)) and d 7→ int(ext(d) ∩ G+)
are closure operators. Given an arbitrary subgroup s ∈ S,
subgroup s+ = ext(int(s ∩ G+)) covers the same positive
instances as s (tpr(s+) = tpr(s)) but may cover less negative
instances (fpr(s+) ≤ fpr(s)). Hence, when optimizing a SD-
compatible measure φ, cotp must be preferred: i.e. (∀s ∈ S)
φ(s+) ≥ φ(s). In Figure 1, subgroup ext(c) is not cotp while
subgroup ext(d) = ext(c) ∩ G+ is cotp. Hence, using this
second observation along with the first obtained beforehand,
we get Si =

{
ext(int(s ∩ GSi−1

∩ G+)) | s ∈ S
}

.

C. Ignore unpromising branches.

When exploring the search space of subgroups Si, one can
exploit the order of visit of the subgroups and properties of the
quality measure φ to ignore unpromising parts of the search
space. For instance, if subgroups are explored in a top-down
fashion (from larger subgroups to smaller ones), a usual way
is to build an optimistic estimate following [19], [49].

Definition 4. We say that a measure φ has an optimistic
estimate iff there exists some function φoe : ℘(G)→ R s.t.

∀s ∈ ℘(G)∀t ∈ ℘(G) s.t. t ⊆ s : φ(t) ≤ φoe(s)

Moreover, φoe is said to be a tight iff:

∀s ∈ ℘(G)∃t ∈ ℘(G) s.t. t ⊆ s : φ(t) = φoe(s)



Hence, if an optimistic estimate φoeS is defined for the
marginal contribution φS , a simple branch-and-bound tech-
nique can be used in any top-down depth-first-search (DFS)
algorithm exploring elements of Si to find the top-gain sub-
group in Si. Indeed, consider during exploration of Si, the
current top-gain subgroup is s∗. Then, whenever we visit a
subgroup s s.t. φoeSi−1

(s) < φSi−1
(s∗), we ignore subgroups

t ⊆ s since φSi−1
(t) ≤ φoeSi−1

(s) < φSi−1
(s∗). Theorem 1

states a tight optimistic estimate for the marginal contribution
of an arbitrary SD-compatible measure.

Theorem 1. Let S be a subgroup set and let φ be a SD-
compatible measure. The marginal contribution φS has a tight
optimistic estimate given by: φoeS : s 7→ φS(s ∩ G+).

Proof. Let t ⊆ s, we need to show that the quantity φS(s ∩
G+)−φS(t) ≥ 0. We have φS(s∩G+)−φS(t) = φ(

⋃
S∪(s∩

G+))− φ(
⋃
S ∪ t). Clearly, t∩G+ ⊆ s∩G+. It follows that:

(i) tpr(
⋃
S ∪ t) ≤ tpr(

⋃
S ∪ (s∩G+)). Moreover, fpr(

⋃
S ∪

(s∩G+)) = fpr(
⋃
S), since G+∩G− = ∅. Given that

⋃
S ⊆⋃

S ∪ t, we have: (ii) fpr(
⋃
S ∪ t) ≥ fpr(

⋃
S ∪ (s ∩ G+)).

From (i) and (ii) and given that φ is SD-compatible, we obtain:
φS(s ∩ G+) − φS(t) ≥ 0. The tightness is obtained directly
from φoeS definition since s ∩ G+ ⊆ s.

N.B. Optimistic estimates of any SD-compatible measure φ
can be obtained from Theorem 1 when S = ∅.

WRAcc measure. We draw a particular attention to WRAcc
measure as it is one of the most frequently used measure in SD.
The WRAcc marginal contribution to S can be reformulated
as follows (with α = |G+|/|G| and GS = G\

⋃
S):

WRAccS : s 7→ α · (1− α) ·
[
tpr (GS ,G) · tpr (s,GS)

−fpr (GS ,G) · fpr (s,GS)
]

Using Theorem 1, its associated optimistic estimate is:

WRAccoeS : s 7→ α · (1− α) · tpr(GS ,G) · tpr(s,GS)

D. Algorithm FSSD.

Algorithm 2, dubbed FSSD for Fast and Efficient Algorithm
for Subgroup Set Discovery, is basically the combination of
the three optimizations presented beforehand. This algorithm
provides a greedy solution to Problem III-C given that φ is
SD-compatible. It follows the same schema of Algorithm 1
where step 3 is revisited as follows: At a given iteration i
for the already subgroup set Si−1, it looks for the top-gain
subgroup s maximizing φSi−1

in the space Si presented at
the end of Sec. V-B. This is done by leveraging the closure-
on-the-positive operator d 7→ int(ext(d) ∩ G+) in pattern
structure (GSi−1

, (D,v), δ). The explorations of subgroups in
(GS , (D,v), δ) is done in a top-down depth-first-search (DFS)
fashion (i.e. subgroups with larger support are visited first).
Details of equivalent exploration can be found in [3], [25].
The employed search strategy for the top-gain subgroup at
each iteration i follows a branch-and-bound technique using
the optimistic estimate of the marginal contribution φoeSi−1

as
explained in Sec. V-C.

Algorithm 2: FSSD Algorithm
Input: (G,A) labeled dataset, k ∈ N

1 S, GS , ← ∅, G // GS is the set of considered objects
2 while |S| < k do
3 Find cotp subgroup s∗ providing the maximal gain

φS in pattern structure (GSi , (D,v), δ) using
optimistic estimate in a branch-and-bound scheme.

4 if φS(ext(int(s∗))) ≤ 0 then Break
5 S, GS ← S ∪ {ext(int(s∗))}, GS\s∗

6 return S

E. Discussion.

FSSD presents many advantages comparing to literature
algorithm: it is a parameter free algorithm (apart from the
cardinality constraint) handling any quality measure that is
SD-compatible. Moreover, FSSD is memory-efficient since it
does not need to store all found patterns before post-processing
them as done by DSSD [48] or MCTS4DM [7]. Note also that,
in the first iteration (i.e. S = ∅), FSSD finds the top quality
subgroup existing in the dataset w.r.t. to the pattern language.

VI. EMPIRICAL STUDY

We report our experimental study to evaluate the effec-
tiveness of FSSD implemented in Python 3.7.2. The source
code and supplementary experiments are made available in
https://github.com/Adnene93/FSSD. We consider
a variety of datasets (Tab. II) involving categorical, ordinal
and/or continuous numerical attributes from the UCI reposi-
tory. Experiments are performed using WRAcc.

First, we show and analyze an example of subgroup set
returned by FSSD. Second, we study how well FSSD ap-
proximates the optimal solution in the benchmark datasets.
Third, we compare FSSD to the naive two step greedy solution
(dubbed BASELINE) in terms of both memory and time

id dataset rows class |G+|
|G| #attrs (cat./num.)

D01 abalone 4177 M 0.37 (0/8)
D02 adult 32561 ≥ 50K 0.24 (8/6)
D03 autos 195 3 0.12 (11/14)
D04 balance 625 B 0.08 (0/4)
D05 breastCancer 683 4 0.35 (0/9)
D06 BreastTissue 106 car 0.20 (0/10)
D07 CMC 1473 2 0.23 (0/9)
D08 credit 666 + 0.45 (9/6)
D09 dermatology 358 3 0.20 (0/34)
D10 glass 214 3 0.08 (0/10)
D11 haberman 306 2 0.26 (0/3)
D12 iris 150 V 0.33 (0/4)
D13 mushrooms 8124 p 0.48 (22/0)
D14 sonar 208 R 0.47 (0/60)
D15 TicTacToe 958 - 0.35 (9/0)

TABLE II: Benchmark datasets and their characteristics: num-
ber of rows, the considered class and its prevalence |G+|

|G| ,
number of attributes (categorical / numerical attributes).



efficiency. Fourth, we confront FSSD against three state-of-
the-art algorithms: two Two-steps approach algorithms DSSD
[48], MCTS4M [7], and one sequential covering approach
algorithm CN2-SD [31].

Table III reports a subgroup set of size k = 5 returned by
FSSD when executed on Haberman (D11). This results set
covers 210/306 ≈ 68.6% records of the dataset, with a tpr ≈
92.6% and a fpr ≈ 0.6. The WRAcc of the set equals 0.063.
Notice that the identified subgroups are completely disjoint.
This example demonstrates the ability of FSSD to uncover
a subgroup set that is both discriminant and diversified (see
Fig. 2 (left)). It is worth mentioning that FSSD can return
overlapping subgroups as depicted in Fig. 2 (right).

In order to evaluate the quality of FSSD’ results, we
compute the approximation ratio ρ of FSSD for the benchmark
datasets. This requires to retrieve the ground truth (the optimal
solution) for each of the 15 datasets. In order to make the
calculation of the ground truth computationally possible, we
have reduced the number of attributes. We specify the number
of considered attributes for each dataset in its affiliated id. For
example, D07-4 refers to the 7th dataset and the number of at-
tributes is 4. Attributes are selected in the following order: first,
categorical, and then, numerical. Categorical (resp. numerical)
attributes are sorted in an ascending order according to the
size of their domain. Table IV reports the results. For most
datasets, the approximation ratio is very high. FSSD succeeds
to approximate the ground truth by at least 87% for all the
datasets except for D10-3, where the ratio is acceptable (62%).

Table V presents the time and memory usage of FSSD
and the BASELINE on all the datasets. The number of
attributes is limited so that the BASELINE succeeds to mine
the subgroup set in the limit of 30 minutes and without
exceeding the machine memory limit. FSSD is faster than
the BASELINE in all the configuration. Furthermore, FSSD
consumes significantly less memory than the BASELINE (10
times less in average). The memory usage of the BASELINE is
considerably impacted by the number of local subgroups, since
it needs to store their complete list in order to process them.

We compare FSSD (Depthmax=8) against the competitive
approaches: DSSD (Depthmax=8, BeamWidth=5, j=10000
and coverBeamMultiplier=0.9), MCTS4DM (nbiter=50000
and maxRedundancy=0.25), and CN2-SD (Depthmax=8,
BeamWidth=50 and min sup pos ≥ |G+|/10). We report in
Table VI the runtime and quality of results for each approach
on the benchmark datasets. For each dataset, we limit the
number of attributes to the maximum number so that the four

Subgroup Intent support WGain

“age ∈ [43, 83] ∧ operation year ∈ [58, 65]” 179 0.041
“age ∈ [34, 46] ∧ operation year ∈ [66, 69]” 20 0.009
“age ∈ [54, 61] ∧ operation year ∈ [68, 68]” 4 0.006
“age ∈ [41, 41] ∧ operation year ∈ [60, 64]” 3 0.004
“age ∈ [52, 52] ∧ operation year ∈ [66, 69]” 4 0.003

TABLE III: A subgroup set of size 5, WRAcc ≈ 0.063
and support = 210 identified by FSSD in the dataset D11
projected on two out of three attributes.

id ρ id ρ id ρ id ρ

D01-1 99.7% D05-1 100% D09-5 99.7% D13-7 99.6%
D02-3 100 % D06-1 90.54% D10-3 62.2% D14-1 100 %
D03-7 87.3% D07-4 99.66% D11-1 100% D15-4 100 %
D04-2 100 % D08-7 99.62% D12-1 100 %

TABLE IV: Approximation ratios ρ of the Top3 obtained after
running FSSD on each of the 15 reduced datasets.

id BASELINE FSSD

t(s) M(MiB) t(s) Mem.(MiB)

D01-5 0.37 22.73 0.21 15.34
D02-10 120.31 426.16 8.70 40.09
D03-10 34.37 37.10 0.09 9.13
D04-4 0.77 25.60 0.29 1.55
D05-9 2.63 103.52 0.06 2.58
D06-10 38.01 23.98 0.04 5.51
D07-9 97.54 2556.15 45.62 7.42
D08-10 3.76 77.22 0.26 3.33
D09-10 34.46 338.61 0.06 2.32
D10-10 11.89 26.11 0.07 9.46
D11-3 33.78 1141.01 7.16 2.58
D12-4 15.78 341.79 0.02 1.29
D13-10 149.25 457.50 3.96 33.52
D14-10 36.97 1533.13 17.77 4.08
D15-9 2.68 20.77 0.27 2.06

TABLE V: Comparison of the runtime -t(s)- and memory
consumption -Mem.(MiB)- of FSSD vs. BASELINE for a
Top5 subgroup set discovery task on the benchamrk datasets.

id DSSD MCTS4DM CN2SD FSSD

t(s) Qual t(s) Qual t(s) Qual t(s) Qual

D01-5 4.93 0.06 30.28 0.05 11.75 0.04 72.09 0.07
D02-10 504 0.10 111.53 - 130 0.07 237 0.11
D03-10 1.77 0.08 788.79 - 3.54 - 0.01 0.07
D04-4 1.36 0.02 3.91 0.002 7.62 - 0.28 0.03
D05-9 2.30 0.17 2.28 0.05 3.58 - 1.18 0.22
D06-10 1.83 0.14 4.40 - 1.64 - 0.01 0.16
D07-9 2.95 0.06 2.87 0.06 20.19 0.03 133 0.08
D08-10 2.34 0.18 1864 - 7.24 - 0.23 0.19
D09-10 1.40 0.09 1.76 0.004 2.58 - 0.03 0.16
D10-10 2.08 0.06 2.66 0.02 2.92 - 0.01 0.07
D11-3 1.38 0.07 5.16 0.02 4.61 0.08 0.35 0.09
D12-4 1.34 0.20 2.59 0.20 1.35 0.20 0.01 0.22
D13-10 6.56 0.19 565.81 - 2.94 - 0.54 0.23
D14-10 2.32 0.11 9.09 0.08 10.71 - 933 0.16
D15-9 1.91 0.07 178.04 - 3.24 0.13 0.24 0.17

TABLE VI: Comparison of the runtime and qualities of the
Top5 identified subgroups set by FSSD, DSSD, MCTS4DM and
CN2SD. ‘-’ corresponds to the cases when an algorithm fails
to find a subgroup set with a strictly positive quality.

algorithms succeed to finish within one hour. FSSD provides
the best qualities for all the datasets except D03, where
DSSD performs better. Particularly, the difference is notable
when comparing with CN2-SD and MCTS4DM. Regarding
the runtime, FSSD is generally faster than DSSD, MCTS4DM,
and CN2-SD in most configurations except for D01 and D14
where FSSD managed to find a better subgroup set in terms
of the quality.

VII. CONCLUSION

We introduced in this paper a novel problem of diverse
subgroup set discovery where both discriminative power and
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Fig. 2: (left) subgroup set found for dataset D11 illustrating Table III, (right) subgroup set found for a synthetic dataset with
two numerical attributes. One can see that almost all positive instances are covered by the subgroup set.

diversity of the subgroup set are incorporated into the same
measure (i.e. quality of subgroups union). We proposed then
FSSD , a parameter-free and memory efficient greedy algo-
rithm approximating the solution of the proposed problem.
FSSD exploits closure operators and tight optimistic estimates
on the marginal contributions of SD-compatible measures
to efficiently explore and prune unpromising areas of the
search space. We shown that unfortunately, for many SD-
compatible measures like WRAcc, greedy algorithms cannot
provide guarantees (lower bound) on the approximation ratio
to the best possible solution. Nonetheless, empirical study
gave evidence that FSSD (1) is a time and memory efficient
algorithm, (2) is able to provide a diverse and high quality
subgroup set and (3) provides a judicious trade-off between
the runtime and the quality compared to the state-of-the-art
approaches. A further improvement of FSSD performance
may be achieved if only class-relevant patterns are sought.
This requires a polynomial space and output-polynomial time
algorithm for enumerating such patterns, which remains an
open problem [18]. Other open questions that need to be
further investigated are the following: is there an algorithm
that ensure approximation guarantees for Problem III-C in a
tractable way, i.e. is Problem III-C hard to approximate?
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[19] Henrik Grosskreutz, Stefan Rüping, and Stefan Wrobel. Tight optimistic

estimates for fast subgroup discovery. In ECML/PKDD 2008, pages
440–456, 2008.

[20] Tias Guns, Siegfried Nijssen, and Luc De Raedt. Evaluating pattern set
mining strategies in a constraint programming framework. In PAKDD,
pages 382–394, 2011.

[21] Tias Guns, Siegfried Nijssen, and Luc De Raedt. k-pattern set mining
under constraints. IEEE TKDE., pages 402–418, 2013.

[22] Jon Hills, Luke M. Davis, and Anthony Bagnall. Interestingness
measures for fixed consequent rules. In IDEAL, pages 68–75. Springer,
2012.

[23] Frederik Janssen and Johannes Fürnkranz. On trading off consistency
and coverage in inductive rule learning. In LWA, volume 1/2006



of Hildesheimer Informatik-Berichte, pages 306–313. University of
Hildesheim, Institute of Computer Science, 2006.

[24] Roberto J. Bayardo Jr. and Rakesh Agrawal. Mining the most interesting
rules. In KDD, pages 145–154. ACM, 1999.

[25] Mehdi Kaytoue, Sergei O. Kuznetsov, and Amedeo Napoli. Revisiting
Numerical Pattern Mining with Formal Concept Analysis. In IJCAI,
pages 1342–1347, 2011.

[26] Mehdi Khiari, Patrice Boizumault, and Bruno Crémilleux. Constraint
programming for mining n-ary patterns. In CP 2010, pages 552–567,
2010.

[27] Willi Klösgen. Explora: A multipattern and multistrategy discovery
assistant. In Advances in Knowledge Discovery and Data Mining, pages
249–271. 1996.

[28] Arno J. Knobbe and Eric K. Y. Ho. Pattern teams. In PKDD, pages
577–584, 2006.

[29] Sergei O. Kuznetsov. Learning of simple conceptual graphs from
positive and negative examples. In PKDD, pages 384–391, 1999.

[30] Nada Lavrac, Peter A. Flach, and Blaz Zupan. Rule evaluation measures:
A unifying view. In ILP, volume 1634 of Lecture Notes in Computer
Science, pages 174–185. Springer, 1999.

[31] Nada Lavrac, Branko Kavsek, Peter A. Flach, and Ljupco Todorovski.
Subgroup discovery with CN2-SD. JMLR, pages 153–188, 2004.

[32] Florian Lemmerich, Mathias Rohlfs, and Martin Atzmüller. Fast dis-
covery of relevant subgroup patterns. In FLAIRS, 2010.

[33] Philippe Lenca, Patrick Meyer, Benoı̂t Vaillant, and Stéphane Lallich. On
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APPENDIX

A. Problem III-C is NP-Hard.

Before giving the demonstration, let us consider a reformu-
lation of Problem III-C presented below in Problem A.

Problem Statement (Problem A). Let be some set of objects
G partitioned into G+ and G−. Let S ⊆ ℘(G) be all possible
subgroups derived w.r.t. some pattern language and let k ∈ N∗.
Output one subgroup set from argmaxS⊆S,|S|≤kWRAcc(S)

Problem A can be seen as a simplification of Problem III-C
in the sense that (1) it does consider only the special problem
of optimizing the WRAcc measure and (2) consider the set
of all possible subgroups S as an input rather than as an
intermediary output. Showing that Problem A is NP-hard
allows us hence to show that Problem III-C is also NP-hard.
Before showing the NP-hardness of Problem A, we recall
below the Maximum Cover Problem (MCP) which is an NP-
complete problem. The NP-hardness of MCP is a consequence
of the NP-hardness of optimizing a submodular set function
subject to a cardinality constraint [36].

Problem Statement (MCP). Let G be a finite universe, S ⊆
℘(G) and k ∈ N∗. Finds out a subset S ⊆ S such that |S| ≤ k
for which |

⋃
S| is maximized. Formally, output one solution

from argmaxS⊆S,|S|≤k |
⋃
S|.

Proposition 1. Problem A is NP-hard.

Proof. Consider the following MCP problem with G+ is a
finite set of elements, S+ ⊆ ℘(G+) and k ∈ N∗. We reduce
(in a polynomial-time) this MCP problem to an instance of
Problem A as follow: Build a set G s.t. G = G+ ∪ G−, G+ ∩
G− = ∅ and |G−| = |G+|. Let S = S+. It is clear that for all
S ⊆ S+, we have:

WRAcc(S) = 1

2 · |G|
·
∣∣∣⋃S∣∣∣

where 1
2·|G| is a constant. Clearly, any solution of this instance

of Problem A is also a solution of the MCP problem instance.
Hence, since the MCP Problem is NP-hard then Problem A is
NP-hard.

Corollary 1. Problem III-C is NP-hard.

B. Greedy algorithm provides no guarantee.

We have investigated in Section IV of the paper that the
greedy algorithm provides no guarantee on the approximation
ratio. However, in this proof, we considered the language of
itemsets. We show here that, still, even for datasets with ex-
clusively categorical attributes (or numerical ones), there is no
provided guarantee on the approximation ratio. Proposition 2
formalizes this observation.

Proposition 2. ∀ε > 0, one can build an instance of Prob-
lem III-C such that all the attributes are categorical and
solution Sgreedy outputted from Algorithm 1 (i.e. greedy
scheme) provide an approximation ratio ρ(Sgreedy) < ε.
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Fig. 3: Inexistence of approximation guarantee by the greedy
algorithm for numerical datasets (Proposition 2 proof)

Proof. Let us build a parametric instance of Problem III-C
where k is the cardinality constraint and the optimized measure
is the WRAcc measure. Let be m ∈ N∗, we build the dataset
(G,A) as depicted in Fig. 3. That is: G = {gi}0≤i<2·k·m and
A = {a} with a is numerical. The black (resp. white) dots
refer to elements in G+ (resp. in G−). We write below each
dot the value of the attribute a and above the dot the number of
elements having the same value. For instance, in this dataset,
there is m positive instances having for value 0 on attribute a
followed by m − 1 negative instances having for value 1, ...
followed by m positive instances having for value 2 · k − 2
followed by m + k − 1 negative instances having for value
2·k−1. It is clear that there is k ·m positive instances and k ·m
negative instances. Since the used patterns are interval patterns,
with k is the cardinality constraints one can build the k-sized
optimal subgroup set S∗ for which WRAcc(S∗) = 0.25 is
optimal (i.e. regroups subgroups associated to constraints 0 ≤
a ≤ 0, 2 ≤ a ≤ 2, ... , 2·k−2 ≤ a ≤ 2·k−2). Subgroup set S∗
is optimal since its true positive rate is 1 and false positive rate
is 0. That is: it takes all positive instances without covering any
negative one. However, one can easily show that the greedy
algorithm will output 1-sized subgroup set Sgreedy containing
the extent of pattern 0 ≤ a ≤ 2 ·k−2 since that this subgroup
is the optimal one w.r.t. WRAcc. Hence: WRAcc(Sgreedy) =
0.25 ·

(
1− (k−1)·(m−1)

k·m

)
. Thus, ρ(Sgreedy) = k+m−1

k·m . It is
easy to see now that for all ε > 0 one can always compute k
and m such that ρ(Sgreedy) < ε.

Please note that this proof consider also categorical at-
tributes. Indeed, one can transform the numerical dataset
(G, {a}) used here to the categorical dataset (G,AC) where
AC = {ai | i ∈ 0..2 · k− 1} s.t. the range of each ai is given
by Rai = {“ ≤ i”, “ > i”}. If an object g ∈ G has a(g) = i
in the first dataset then it has aj(g) = “ ≤ j” for all j ≥ i
and aj(g) = “ > j” for j < i. It is clear that the subgroups
induced by (G,AC) are exactly the same as those induced the
numerical dataset (G, {a}).

One can follow an equivalent reasoning for other SD-
compatible measures such as the measures highlighted in bold
in Table VII.

C. Quality measures in SD

Following the notations presented in Sec. II, Table VII
presents different quality measures that are used in subgroup
discovery. Except the support and the false positive rate, all
these quality measures are SD-Compatible following Defi-
nition 1. Please note that measures are regrouped in blocs.
Each bloc refer to compatible measures, i.e. measures ordering
subgroups in the same way (see Definition 2.2 in [12]).

In order to compute an optimistic estimate (see Definition 4)
for these measures, one can follow Theorem 1 where the
false positive rate of the subgroup (x) is replaced by 0. The
measures highlighted in bold refer to the measure having a
non constant optimistic estimate.

Measure Definition
False Positive Rate x := fpr(t) = |t ∩ G−|/|G−|
True Positive Rate y := tpr(t) = |t ∩ G+|/|G+|
Positive Prevalence α := |G+|/|G|
Dataset size n := |G|
Relative Support [1] s := α · y + (1− α) · x
Precision/Confidence [1] p := α · y/s
Growth Rate [10] [(1− α)/α] · [p/(1− p)] = y/x
Ganascia index [22] 2p− 1
Sebag-Schoenaur [22] p/(1− p)
ECE rate [22] 2− 1/p
Ohsakis Conviction [37] (1− α)2/(1− p)
Lift [22] p/α
Mutual information [22] log(p/α)
One way support [17] p · log(p/α)
Added Value [30] p− α
Certainty Factor [22] (p− α)/(1− α)
Brin’s Conviction [22] (1− α)/(1− p)
Zhang [51] (y − x)/sup{y, x}
Odds Ratio [45] Ω := [y · (1− x)]/[x(1− y)]
Yule’s Q [45] (Ω− 1) / (Ω + 1)

Yule’s x [45]
(√

Ω− 1
)
/
(√

Ω + 1
)

Least contradiction [17] [α · y − (1− α) · x]/α
Accuracy [17] α · y − (1− α) · x+ (1− α)
WRAcc [30] α · (1− α) · (y − x)
Informedness [4] y − x
Binomial Test [34] α · (1− α) · (y − x)/

√
s

Klösgenω (ω ∈ [0, 1]) [23] α · (1− α) · sω−1 · (y − x)

Linear correlation [45]
√

[(α · (1− α)) / (s · (1− s))] ·(y−x)
Cohen’s kappa (κ) [45] κ := 2α·(1−α)(y−x)/[α+(1−2α)·s]
Cosine/G-Measure [17] y/

√
[y + ({1/α} − 1) · x]

m-estimate (m > 0) [12] α · [y+m/n]/[α ·y+(1−α) ·x+m/n]
Discriminativity [6] n2 · α · (1− α) · y · (1− x)
Fβ (β ∈ [0,+∞)) [23] [(1 +β2) ·y]/[y+ ({1/α}−1) ·x+β2]

TABLE VII: Quality of a subgroup t using its false positive
rate x, its true positive rate y, positive prevalence α and the
dataset size n.


