Adnene Belfodil 
  
Aimene Belfodil 
  
Anes Bendimerad 
  
Philippe Lamarre 
  
Céline Robardet 
  
Mehdi Kaytoue 
  
Marc Plantevit 
  
FSSD -A Fast and Efficient Algorithm for Subgroup Set Discovery

Keywords: 

Subgroup discovery (SD) is the task of discovering interpretable patterns in the data that stand out w.r.t. some property of interest. Discovering patterns that accurately discriminate a class from the others is one of the most common SD tasks. Standard approaches of the literature are based on local pattern discovery, which is known to provide an overwhelmingly large number of redundant patterns. To solve this issue, pattern set mining has been proposed: instead of evaluating the quality of patterns separately, one should consider the quality of a pattern set as a whole. The goal is to provide a small pattern set that is diverse and well-discriminant to the target class. In this work, we introduce a novel formulation of the task of diverse subgroup set discovery where both discriminative power and diversity of the subgroup set are incorporated in the same quality measure. We propose an efficient and parameter-free algorithm dubbed FSSD and based on a greedy scheme. FSSD uses several optimization strategies that enable to efficiently provide a high quality pattern set in a short amount of time.

I. INTRODUCTION

Data science can be seen as a language that allows, among others, the analysis of (large amount of) data [START_REF] Siebes | Data science as a language: challenges for computer science -a position paper[END_REF]. Following the same philosophy of Exploratory Data Analysis (EDA) [START_REF] Tukey | Exploratory data analysis. Addison-Wesley series in behavioral science : quantitative methods[END_REF], one of the main tasks of data science is the discovery of interpretable and understandable patterns in the data, a task known as data mining [START_REF] Usama | From data mining to knowledge discovery in databases[END_REF]. Subgroup discovery (SD) [START_REF] Klösgen | Explora: A multipattern and multistrategy discovery assistant[END_REF], [START_REF] Wrobel | An algorithm for multi-relational discovery of subgroups[END_REF] is a popular data mining task that aims, amongst many other possibilities, to discover patterns describing regions in a dataset where the distribution of the target variable significantly deviates from the norm. For instance, a subgroup defined by the description age ≥ 65 ∧ smoker = true fosters the target variable "lung cancer" prevalence in some patientdataset.

In SD, as in most of local pattern mining approaches, an important problem that one has to consider is the huge number of patterns (subgroups) that can be produced. Many of these subgroups are redundant and convey very similar information. This issue notably becomes more serious when the number and/or the domain of attributes is large. This challenge led * Both authors contributed equally to this work.

to the definition of the pattern set mining problem [START_REF] Bringmann | The chosen few: On identifying valuable patterns[END_REF], [START_REF] Guns | Evaluating pattern set mining strategies in a constraint programming framework[END_REF], [START_REF] Arno | Pattern teams[END_REF], [START_REF] De | Constraint-based pattern set mining[END_REF]. While local pattern mining seeks for patterns where each of them satisfies local constraints individually, pattern set mining aims to find a small set of patterns that together satisfy global constraints. These global constraints are used to guarantee the diversity in the returned pattern set. Different approaches exist in the literature to tackle the problem of pattern set mining:

(1) Non-diversified top-k approach. Such algorithms output the top-k best subgroups (e.g., BSD [START_REF] Lemmerich | Fast discovery of relevant subgroup patterns[END_REF] and MiSoSouP [START_REF] Riondato | Misosoup: Mining interesting subgroups with sampling and pseudodimension[END_REF]). Although this allows to control the number of returned patterns, this does not solve the redundancy problem since the top-k patterns can be very similar and describe only a few of all the local optima (lack of diversity).

(2) Exhaustive approach. Such methods aim to find the best possible solution. The pioneering work of [START_REF] De | Constraint-based pattern set mining[END_REF] proposes a level wise algorithm to explore the search space, and [START_REF] Guns | k-pattern set mining under constraints[END_REF], [START_REF] Khiari | Constraint programming for mining n-ary patterns[END_REF], [START_REF] Ouali | Integer linear programming for pattern set mining; with an application to tiling[END_REF] use a Constraint Programming (CP) solver to retrieve the k-pattern set. In large and complex datasets, the exhaustive selection of the best k-pattern set becomes unfeasible, even if pruning strategies are used. As the number of possible pattern sets is exponential in the size of the set of local patterns, which is itself huge, the computational efficiency of pattern set mining is a very challenging task. In fact, the general problem of pattern set discovery is NP-hard [START_REF] Mielikäinen | The pattern ordering problem[END_REF].

(3) Two-step approach. These algorithms start by (a) generating a collection of local patterns by some exhaustive or heuristic technique followed by (b) a heuristic selection of a smaller subset of complementary patterns [START_REF] De Bie | A framework for mining interesting pattern sets[END_REF], [START_REF] Bringmann | The chosen few: On identifying valuable patterns[END_REF], [START_REF] Siebes | Item sets that compress[END_REF]. However, since the number of local patterns can be large, these algorithms need a huge amount of memory to store them. Moreover, post-processing the set of all mined local patterns can be time-consuming. Noteworthy algorithms belonging to this family are: DSSD [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF] and MCTS4DM [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF].

(4) Sequential covering approach. Algorithms proposed in [START_REF] Clark | The CN2 induction algorithm[END_REF], [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF], [START_REF] Ljupčo ; Todorovski | Predictive performance of weighted relative accuracy[END_REF] use the so-called sequential covering strategy for subgroup set discovery. These algorithms repeatedly and heuristically (i.e. beam search) look for one subgroup; add it to the already constituted subgroup set; then re-weight or delete the already covered objects in the database in the aim of reducing their impact in the next iterations. This approach allows to implicitly consider the diversity of the produced subgroup set, conversely to some two-step approaches where an additional "diversity" measure is used.

Contributions.

In this paper, we investigate the problem of subgroup set discovery, i.e. "discovery of a non-redundant set of high-quality subgroups." [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF]. This can be seen as a particular instance of the more general task of pattern set mining. After formally introducing the notion of SDcompatible quality measures (e.g. WRAcc) that locally evaluate subgroups interestingness, we extend their definitions to subgroup sets. This allows to evaluate the interestingness of a subgroup set in terms of its discriminative power and diversity. We propose a greedy scheme to maximize these measures by incrementally augmenting the subgroup set with subgroups providing the highest marginal contribution. In this respect, we devise a branch-and-bound algorithm, dubbed FSSD, a parameter-free and memory efficient algorithm tailored for diverse subgroup set discovery. It exploits (i) tight optimistic estimates on the marginal contributions of SD-compatible measures to prune unpromising branches, (ii) closure operators to efficiently explore the search space and (iii) successive removal of already covered objects (i.e. sequential covering) to significantly reduce candidate subgroups.

Outline. The remainder of this paper is organised as follows. Sec. II recalls preliminary notions. Sec. III introduces the problem of k-diverse subgroup set discovery. Sec. IV presents the generic greedy framework. Sec. V introduces FSSD. While the approximation ratio to the best possible solution of the proposed problem is not theoretically bounded, Sec. VI reports a thorough empirical study that demonstrates FSSD efficiency and effectiveness. Sec. VII concludes the paper.

II. PRELIMINARIES

In this paper, for any set E, ℘(E) denotes the powerset of E. For f : E → F and a subset A ⊆ E, the image of A by f is denoted by f [A] (i.e. f [A] = {f (a) | a ∈ A}). Details on order-theoretic notions can be found in [START_REF] Roman | Lattices and Ordered Sets[END_REF].

A. Input dataset.

A dataset is a pair (G, A) where G is a set of objects and A = {a i } 1≤i≤m is an ordered set of attributes. Each attribute a ∈ A can be seen as a mapping a : G → R a where R a is called the domain of the attribute. For instance, R a is given by R if a is numerical, by a finite set of categories C i if a is nominal (categorical) or by {0, 1} if a is Boolean. Each object g ∈ G is labeled as either positive or negative. It means that G is partitioned into two subsets G + and G -enclosing respectively positive and negative instances. The proportion α := |G + |/|G| is called the positive prevalence. Fig. 1 (left) depicts a dataset containing 3 attributes of distinct types where G + = {g 2 , g 3 , g 5 } is the set of individuals having a high income.

B. Pattern Language

A pattern d is a constrained selector of a subset of objects of the dataset using their attribute values. We refer to the set of all possible patterns that we want to explore by the pattern language and we denote it D. In our case, D = × m i=1 D i where D i is given by the set of all possible intervals in R if a i is numerical, the set {C i , ∅} ∪ {{c} | c ∈ C i } if a i is nominal or {{0, 1}, {1}} if a i is Boolean (i.e. if negative item {0} needs to be considered, attribute a i needs to be considered as nominal). A pattern d ∈ D is then given by a sequence of restrictions over each attribute (i.e. d = (d i ) 1≤i≤m ). For example, in Fig. 1 (right) pattern d = ({0, 1}, {M }, R) is read "individual that are married or not, men and having any age". Note that we considered here the exhaustive search space for the numerical attributes as in [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF], [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF] and no apriori discretization is performed.

As when we deal with itemsets, patterns in D are ordered from the most general one to the most restrictive one by an order relation . In our case, for two patterns c = (c i ) 1≤i≤m ∈ D and d = (d i ) 1≤i≤m ∈ D, we have: Given the pattern language explained above, we should link objects in G to descriptions in D. This is done by the cover relationship. A description d ∈ D is said to cover g ∈ G iff ∀i ∈ 1, m : a i (g) ∈ d i . Each object g ∈ G is now mapped to the most-restrictive description δ(g) ∈ D covering it: ∀d ∈ D, d covers g iff d δ(g). Fig. 1 illustrates this mappings between objects and descriptions.

c d ⇔ ∀i ∈ 1, m (c i ⊇ d i ). In

C. Pattern Structure

Pattern structure is a generalization of the Formal Concept Analysis (FCA) framework [START_REF] Ganter | Formal Concept Analysis[END_REF] to complex attributes such as numerical and nominal ones (see [START_REF] Ganter | Pattern structures and their projections[END_REF] for further details). Since (D, ) is a meet-semilattice, the triple (G, (D, ), δ) is pattern structure. This triple contains all information we need to search for patterns in a dataset and allows us to use an algorithm like Close-by-One (CbO) [START_REF] Kuznetsov | Learning of simple conceptual graphs from positive and negative examples[END_REF] to exhaustively enumerate them. Two mappings associated to a pattern structure are important to keep in mind: [START_REF] Rakesh Agrawal | Mining association rules between sets of items in large databases[END_REF] ({0, 1}, {M }, [START_REF] Ganter | Formal Concept Analysis[END_REF][START_REF] Ganter | Formal Concept Analysis[END_REF]) ≤ 50k

ext : D → ℘(G), d → {g ∈ G | d δ(g)} called the extent. It associates to each pattern d ∈ D the set of objects in G for which d hold. (2) int : ℘(G) → D, E → g∈E δ(g) associates to each subset E ⊆ G the most-restrictive pattern d ∈ D covering them. Note that ext is order-reversing: i.e. if c d then ext(d) ⊆ ext(c) (i.e. if
Descriptions and their extents:

c = ({0, 1}, {M }, R), ext(c) = {g2, g3, g6} d = ({0, 1}, {M }, [27, 65]), ext(d) = {g2, g3}
Fig. 1: A labeled dataset (left), objects and their descriptions (center) and some descriptions in D (right)

III. PROBLEM DEFINITION

A. Subgroups and their interestingness.

A subgroup s is any subset of objects in S = ext[D] = {ext(d) | d ∈ D}.
We choose to describe subgroups by their intents since they provide the most specific (most insightful) description. For instance, in Figure 1, the set {g 2 , g 3 } is a subgroup whose intent is d = ({0, 1}, {M }, [START_REF] Klösgen | Explora: A multipattern and multistrategy discovery assistant[END_REF]65]). Indeed, any refinement of the description d will drop at least one object.

A measure φ :

℘(G) × ℘(G) → R; (s, U ) → φ(s, U
) defines a mapping that evaluates some property of a subgroup s ∈ ℘(G) in the sub-dataset U ⊆ G. For the sake of clarity, if the second parameter U is omitted, then U is the whole set of objects G. The very basic measure is the relative support :

relsup : s, U → |s ∩ U |/|U |.
The relative support is monotonic w.r.t. parameter 1 (i.e. s ⊆ t ⇒ relsup(s, U ) ≤ relsup(t, U )). Using the relative support, the true positive rate (tpr) and the false positive rate (f pr) of a subgroup s are defined respectively as follows tpr(s, U ) = relsup(s, G + ∩U ) and f pr(s, U ) = relsup(s, G -∩U ). Every objective measure ( [START_REF] Geng | Interestingness measures for data mining: A survey[END_REF]) can be written using tpr, f pr and some constants. Properties of measures w.r.t. the task have been thoroughly studied in the literature [START_REF] Fürnkranz | ROC 'n' rule learning -towards a better understanding of covering algorithms[END_REF], [START_REF] Bayardo | Mining the most interesting rules[END_REF], [START_REF] Lenca | On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid[END_REF], [START_REF] Piatetsky-Shapiro | Discovery, analysis, and presentation of strong rules[END_REF]. For a SD task, we define SD-compatible measures. Definition 1. A measure φ is said to be SD-compatible if the following property ∀s 1 , s 2 ∈ S: if tpr(s 1 ) ≥ tpr(s 2 ) and f pr(s 1 ) ≤ f pr(s 2 ) then φ(s 1 ) ≥ φ(s 2 ). In other words, if s 1 dominates s 2 in the ROC space (i.e. tpr-vs.-f pr space), then φ(s 1 ) ≥ φ(s 2 ).

Almost all usual measures in SD are SD-compatibles. For instance, Weighted Relative Accuracy (WRAcc), Accuracy, correlation coefficient, Cohen's kappa, m-estimate, G-measure and F β -measure among others are SD-compatible (see Appendix C). Please note that, preferably, other properties must hold for a measure in order to be useful for a SD task (e.g. constant in independence case, i.e. tpr = f pr [START_REF] Lenca | On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid[END_REF]).

B. Subgroup Sets Interestingness.

A subgroup set is a set S ⊆ S. Following [START_REF] De | Constraint-based pattern set mining[END_REF], subgroup sets are interpreted as disjunctions of subgroups. Accordingly, the set of objects covered by a subgroup set is given by the union of its subgroups. To evaluate the interestingness of a subgroup set S , we extend the quality measure φ definition as follows φ(S) = φ s∈S s since the description associated to S is the disjunction of the intent of each subgroup. Such a formulation gives higher quality φ(S) to subgroups in S covering different regions.

C. Problem -Subgroup Set Discovery.

Problem Statement. Let be a dataset (G, A), a cardinality constraint k ∈ N and a SD-compatible measure φ. Output one subgroup set from argmax S⊆S,|S|≤k φ(S).

To the best of the authors' knowledge, this is a novel way to present the problem of diverse subgroup set discovery. It has the advantage that both discriminative power and diversity of the subgroup set are incorporated into the same measure. It is worth to note that Problem III-C, even when S is considered as an input, is NP-Hard. For the convenience of the reader, we delay the proof to Appendix A. One naive (exact) solution for this problem is: (1) look for all possible subgroups in the first phase then (2) test all possible sets of subgroups which size is below k. However, such a solution is practically unfeasible.

IV. A GREEDY SOLUTION

To approximate the exact solution of problem III-C, we rely on a greedy optimization algorithm. Before presenting such a solution, we present below in Definition 2 the notion of marginal contribution associated to some quality measure. Definition 2. For a measure φ and a subgroup set S ⊆ S, the marginal contribution to S is the function φ S :

φ S : ℘(G) → R; s → φ S ∪ s -φ S
The marginal contribution φ S quantifies the quality φ gain that a subgroup s brings to the subgroup set S if added.

A. The Greedy Scheme.

Algorithm 1 presents the general scheme of a greedy solution [START_REF] Nemhauser | An analysis of approximations for maximizing submodular set functions -I[END_REF]. It starts by an empty subgroup set (line 1). Next, it incrementally constitutes the subgroup set S by successively adding the subgroup s * providing the top marginal contribution (line 3). Algorithm 1 stops when |S| = k or there is no subgroup providing a positive marginal contribution.

When studying the quality of a greedy approach solution, one need to evaluate the so-called approximation ratio. However, since quality measures φ : ℘(S) → R extended to

Algorithm 1: Greedy solution for Problem III-C Input: (G, A) labeled dataset, k ∈ N, a measure φ 1 S ← {} 2 while |S| < k do 3 Look for s * ∈ argmax s∈S φ S (s) 4 if φ S (s * ) > 0 then S ← S ∪ {s * } else Break a b c class g 1 × + g 2 × + g 3 × + g 4 × × - g 5 × × - g 6 × -
TABLE I: Dataset with boolean descriptive attributes subgroup sets are not necessarily sub-modular [START_REF] Nemhauser | An analysis of approximations for maximizing submodular set functions -I[END_REF], one cannot use the usual lower bound on the approximation ratio, i.e.

1 -1 e . Definition 3. Let φ be a measure, k be the cardinality constraint and S greedy be the output of Algorithm 1 w.r.t. k. The approximation ratio ρ of S greedy is given by: ρ(S greedy ) = φ(S greedy ) max S∈S,|S|≤k φ(S)

N.B. max S∈S,|S|≤k φ(S) = 0 ⇒ ρ(S greedy ) = 1.
Unfortunately, the quality of the greedy solution cannot be theoretically guaranteed (i.e. lower-bounded) for the general formulation of Problem III-C. Indeed, consider Problem III-C with dataset (G, A) depicted in Table I, WRAcc quality measure and k = 2. We consider the itemset search space (i.e. attributes in A are Booleans). Hence, the description language is (isomorphic to) ℘({a, b, c}). For an itemset i ∈ ℘({a, b, c}), we denote by s i the subgroup ext(i). One can show that for all itemsets i ∈ ℘({a, b, c}), we have tpr(s i ) ≤ f pr(s i ). Thus, WRAcc(s i ) ≤ 0. Algorithm 1 outputs thus S greedy = ∅ since the top gain is below 0. Let be the 2-sized subgroup set S = {s {a} , s {b} } . We have WRAcc(S) > 0 since tpr(S) > f pr(S). Hence, the top subgroup set S * has WRAcc(S * ) > 0. Then ρ(S greedy ) = 0. Other measures are concerned by the non-existence of the theoretical bound on ρ such as Klösgen measure, linear correlation coefficient and Cohen's Kappa. Here, we particularly considered Problem III-C instance on a boolean dataset. We show in Appendix B that no approximation guarantee can be ensured by Algorithm 1 when attribute-value datasets are considered, i.e. categorical and numerical attributed datasets.

V. FSSD -FAST AND EFFICIENT SUBGROUP SET DISCOVERY

There are several ways to implement line 3 in Algorithm 1. The easiest one is to look for all subgroups in the dataset using some known pattern mining algorithm (for example SD-Map [START_REF] Atzmüller | Sd-map -A fast algorithm for exhaustive subgroup discovery[END_REF]) beforehand. We refer to such a solution by BASELINE algorithm. This BASELINE algorithm suffers from many drawbacks. For instance, it needs to store all found patterns in memory before post-processing them at the end. We need to find hence a fast and memory-efficient way to implement line 3; i.e. the step of finding the top-gain subgroup. If we do not want to store all found subgroups before post-processing them, one should explore at each step of the algorithm the whole search space S. Therefore, in order to optimize line 3, one need to look for less subgroups (i.e. explore subgroups in some S i ⊆ S) at each iteration i ∈ 1...k to find the top-gain one. Starting from here, we will explain how to build these smaller search spaces S i at each iteration.

A. Ignore already-covered instances.

Consider some iteration i ∈ 1...k in Algorithm 1 with some already constituted subgroup set S i-1 ⊆ S. We draw the reader attention to the following fact: looking for the top-gain subgroup in pattern structure P = (G, (D, ), δ) is equivalent to looking for it in pattern structure P i-1 = (G Si-1 , (D, ), δ) associated to the set of non-already covered instances G Si-1 = G\ S i-1 . Indeed, consider one top-gain subgroup s * in P i-1 (i.e. s * ⊆ G Si-1 and s * not necessarily belongs to S), subgroup ext(int(s * )) ∈ S maximizes the marginal contribution φ Si-1 . Supposing the converse, that is ∃t ∈ S s.t. φ Si-1 (t) > φ Si-1 (ext(int(s * ))), allow to build another subgroup s * * = t ∩ G Si-1 in pattern structure P i-1 better than s * which is contradictory under the hypothesis that s * maximizes φ Si-1 . Using this observation, we build a smaller subgroup search space S i at each iteration i: i.e.

S i = ext(int(s ∩ G Si-1 )) | s ∈ S . Note that S 0 = ∅.

B. Ignore non closed-on-the-positive subgroups.

The closed on the positive (cotp for short) concept was introduced with the concept of relevance in [START_REF] Garriga | Closed sets for labeled data[END_REF], [START_REF] Garriga | Closed sets for labeled data[END_REF]. Informally, cotp are subgroups for which the addition of any constraint to their intent results in dropping at least one positive object (reducing the true positive rate). Formally, a subgroup s ∈ S is cotp iff s = ext(int(s ∩ G + )). Mapping s → ext(int(s ∩ G + )) and d → int(ext(d) ∩ G + ) are closure operators. Given an arbitrary subgroup s ∈ S, subgroup s + = ext(int(s ∩ G + )) covers the same positive instances as s (tpr(s + ) = tpr(s)) but may cover less negative instances (f pr(s + ) ≤ f pr(s)). Hence, when optimizing a SDcompatible measure φ, cotp must be preferred: i.e. (∀s ∈ S) φ(s + ) ≥ φ(s). In Figure 1, subgroup ext(c) is not cotp while subgroup ext(d) = ext(c) ∩ G + is cotp. Hence, using this second observation along with the first obtained beforehand, we get

S i = ext(int(s ∩ G Si-1 ∩ G + )) | s ∈ S .

C. Ignore unpromising branches.

When exploring the search space of subgroups S i , one can exploit the order of visit of the subgroups and properties of the quality measure φ to ignore unpromising parts of the search space. For instance, if subgroups are explored in a top-down fashion (from larger subgroups to smaller ones), a usual way is to build an optimistic estimate following [START_REF] Grosskreutz | Tight optimistic estimates for fast subgroup discovery[END_REF], [START_REF] Webb | OPUS: an efficient admissible algorithm for unordered search[END_REF]. Definition 4. We say that a measure φ has an optimistic estimate iff there exists some function

φ oe : ℘(G) → R s.t. ∀s ∈ ℘(G) ∀t ∈ ℘(G) s.t. t ⊆ s : φ(t) ≤ φ oe (s)
Moreover, φ oe is said to be a tight iff:

∀s ∈ ℘(G) ∃t ∈ ℘(G) s.t. t ⊆ s : φ(t) = φ oe (s)
Hence, if an optimistic estimate φ oe S is defined for the marginal contribution φ S , a simple branch-and-bound technique can be used in any top-down depth-first-search (DFS) algorithm exploring elements of S i to find the top-gain subgroup in S i . Indeed, consider during exploration of S i , the current top-gain subgroup is s * . Then, whenever we visit a subgroup s s.t. φ oe Si-1 (s) < φ Si-1 (s * ), we ignore subgroups t ⊆ s since φ Si-1 (t) ≤ φ oe Si-1 (s) < φ Si-1 (s * ). Theorem 1 states a tight optimistic estimate for the marginal contribution of an arbitrary SD-compatible measure.

Theorem 1. Let S be a subgroup set and let φ be a SDcompatible measure. The marginal contribution φ S has a tight optimistic estimate given by: φ oe S : s → φ S (s ∩ G + ). Proof. Let t ⊆ s, we need to show that the quantity φ S (s ∩ G + )-φ S (t) ≥ 0. We have φ S (s∩G

+ )-φ S (t) = φ( S ∪(s∩ G + )) -φ( S ∪ t). Clearly, t ∩ G + ⊆ s ∩ G + . It follows that: (i) tpr( S ∪ t) ≤ tpr( S ∪ (s ∩ G + )). Moreover, f pr( S ∪ (s ∩ G + )) = f pr( S), since G + ∩ G -= ∅. Given that S ⊆ S ∪ t, we have: (ii) f pr( S ∪ t) ≥ f pr( S ∪ (s ∩ G + ))
. From (i) and (ii) and given that φ is SD-compatible, we obtain: φ S (s ∩ G + ) -φ S (t) ≥ 0. The tightness is obtained directly from φ oe S definition since s ∩ G + ⊆ s.

N.B.

Optimistic estimates of any SD-compatible measure φ can be obtained from Theorem 1 when S = ∅.

WRAcc measure. We draw a particular attention to WRAcc measure as it is one of the most frequently used measure in SD. The WRAcc marginal contribution to S can be reformulated as follows (with α = |G + |/|G| and G S = G\ S):

WRAcc S : s → α • (1 -α) • tpr (G S , G) • tpr (s, G S ) -f pr (G S , G) • f pr (s, G S )
Using Theorem 1, its associated optimistic estimate is:

WRAcc oe S : s → α • (1 -α) • tpr(G S , G) • tpr(s, G S ) D. Algorithm FSSD.
Algorithm 2, dubbed FSSD for Fast and Efficient Algorithm for Subgroup Set Discovery, is basically the combination of the three optimizations presented beforehand. This algorithm provides a greedy solution to Problem III-C given that φ is SD-compatible. It follows the same schema of Algorithm 1 where step 3 is revisited as follows: At a given iteration i for the already subgroup set S i-1 , it looks for the top-gain subgroup s maximizing φ Si-1 in the space S i presented at the end of Sec. V-B. This is done by leveraging the closureon-the-positive operator d → int(ext(d) ∩ G + ) in pattern structure (G Si-1 , (D, ), δ). The explorations of subgroups in (G S , (D, ), δ) is done in a top-down depth-first-search (DFS) fashion (i.e. subgroups with larger support are visited first). Details of equivalent exploration can be found in [START_REF] Belfodil | Flash points: Discovering exceptional pairwise behaviors in vote or rating data[END_REF], [START_REF] Kaytoue | Revisiting Numerical Pattern Mining with Formal Concept Analysis[END_REF]. The employed search strategy for the top-gain subgroup at each iteration i follows a branch-and-bound technique using the optimistic estimate of the marginal contribution φ oe Si-1 as explained in Sec. V-C.

Algorithm 2: FSSD Algorithm Input: (G, A) labeled dataset, k ∈ N 1 S, G S , ← ∅, G // G S is the set of considered objects 2 while |S| < k do 3
Find cotp subgroup s * providing the maximal gain φ S in pattern structure (G Si , (D, ), δ) using optimistic estimate in a branch-and-bound scheme. FSSD presents many advantages comparing to literature algorithm: it is a parameter free algorithm (apart from the cardinality constraint) handling any quality measure that is SD-compatible. Moreover, FSSD is memory-efficient since it does not need to store all found patterns before post-processing them as done by DSSD [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF] or MCTS4DM [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF]. Note also that, in the first iteration (i.e. S = ∅), FSSD finds the top quality subgroup existing in the dataset w.r.t. to the pattern language.

VI. EMPIRICAL STUDY

We report our experimental study to evaluate the effectiveness of FSSD implemented in Python 3.7.2. The source code and supplementary experiments are made available in https://github.com/Adnene93/FSSD. We consider a variety of datasets (Tab. II) involving categorical, ordinal and/or continuous numerical attributes from the UCI repository. Experiments are performed using WRAcc.

First, we show and analyze an example of subgroup set returned by FSSD. Second, we study how well FSSD approximates the optimal solution in the benchmark datasets. Third, we compare FSSD to the naive two step greedy solution (dubbed BASELINE) in terms of both memory and time efficiency. Fourth, we confront FSSD against three state-ofthe-art algorithms: two Two-steps approach algorithms DSSD [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF], MCTS4M [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF], and one sequential covering approach algorithm CN2-SD [START_REF] Lavrac | Subgroup discovery with CN2-SD[END_REF].

Table III reports a subgroup set of size k = 5 returned by FSSD when executed on Haberman (D11). This results set covers 210/306 ≈ 68.6% records of the dataset, with a tpr ≈ 92.6% and a f pr ≈ 0.6. The WRAcc of the set equals 0.063. Notice that the identified subgroups are completely disjoint. This example demonstrates the ability of FSSD to uncover a subgroup set that is both discriminant and diversified (see Fig. 2 (left)). It is worth mentioning that FSSD can return overlapping subgroups as depicted in Fig. 2 (right).

In order to evaluate the quality of FSSD' results, we compute the approximation ratio ρ of FSSD for the benchmark datasets. This requires to retrieve the ground truth (the optimal solution) for each of the 15 datasets. In order to make the calculation of the ground truth computationally possible, we have reduced the number of attributes. We specify the number of considered attributes for each dataset in its affiliated id. For example, D07-4 refers to the 7 th dataset and the number of attributes is 4. Attributes are selected in the following order: first, categorical, and then, numerical. Categorical (resp. numerical) attributes are sorted in an ascending order according to the size of their domain. Table IV reports the results. For most datasets, the approximation ratio is very high. FSSD succeeds to approximate the ground truth by at least 87% for all the datasets except for D10-3, where the ratio is acceptable (62%).

Table V presents the time and memory usage of FSSD and the BASELINE on all the datasets. The number of attributes is limited so that the BASELINE succeeds to mine the subgroup set in the limit of 30 minutes and without exceeding the machine memory limit. FSSD is faster than the BASELINE in all the configuration. Furthermore, FSSD consumes significantly less memory than the BASELINE (10 times less in average). The memory usage of the BASELINE is considerably impacted by the number of local subgroups, since it needs to store their complete list in order to process them.

We compare FSSD (Depth max =8) against the competitive approaches: DSSD (Depth max =8, BeamWidth=5, j=10000 and coverBeamMultiplier=0.9), MCTS4DM (nb iter =50000 and maxRedundancy=0.25), and CN2-SD (Depth max =8, BeamWidth=50 and min sup pos ≥ |G + |/10). We report in Table VI the runtime and quality of results for each approach on the benchmark datasets. For each dataset, we limit the number of attributes to the maximum number so that the four where FSSD managed to find a better subgroup set in terms of the quality.

VII. CONCLUSION

We introduced in this paper a novel problem of diverse subgroup set discovery where both discriminative power and diversity of the subgroup set are incorporated into the same measure (i.e. quality of subgroups union). We proposed then FSSD , a parameter-free and memory efficient greedy algorithm approximating the solution of the proposed problem. FSSD exploits closure operators and tight optimistic estimates on the marginal contributions of SD-compatible measures to efficiently explore and prune unpromising areas of the search space. We shown that unfortunately, for many SDcompatible measures like WRAcc, greedy algorithms cannot provide guarantees (lower bound) on the approximation ratio to the best possible solution. Nonetheless, empirical study gave evidence that FSSD (1) is a time and memory efficient algorithm, (2) is able to provide a diverse and high quality subgroup set and (3) provides a judicious trade-off between the runtime and the quality compared to the state-of-the-art approaches. A further improvement of FSSD performance may be achieved if only class-relevant patterns are sought. This requires a polynomial space and output-polynomial time algorithm for enumerating such patterns, which remains an open problem [START_REF] Grosskreutz | Class relevant pattern mining in output-polynomial time[END_REF]. Other open questions that need to be further investigated are the following: is there an algorithm that ensure approximation guarantees for Problem III-C in a tractable way, i.e. is Problem III-C hard to approximate?
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 1 right), pattern c = ({0, 1}, {M }, R) is less restrictive than pattern d = ({0, 1}, {M }, [27, 65]) (i.e. c d) since d has an additional constraint on the age attribute. One can show that the partially ordered set (D, ) is a meet-semilattice (the meet is denoted ). It means that for all c, d ∈ D, there is maximum common lower bound c d (i.e. (∀e ∈ D) e c ∧ e d ⇔ e c d).

4 if

 4 φ S (ext(int(s * ))) ≤ 0 then Break 5 S, G S ← S ∪ {ext(int(s * ))}, G S \s * 6 return S E. Discussion.

Fig. 2 :

 2 Fig. 2: (left) subgroup set found for dataset D11 illustrating TableIII, (right) subgroup set found for a synthetic dataset with two numerical attributes. One can see that almost all positive instances are covered by the subgroup set.

TABLE II :

 II Benchmark datasets and their characteristics: number of rows, the considered class and its prevalence |G + | |G| , number of attributes (categorical / numerical attributes).

TABLE III :

 III 

	id	ρ	id	ρ	id	ρ	id	ρ
	D01-1	99.7%	D05-1	100%	D09-5	99.7%	D13-7	99.6%
	D02-3	100 %	D06-1	90.54%	D10-3	62.2%	D14-1	100 %
	D03-7	87.3%	D07-4	99.66%	D11-1	100%	D15-4	100 %
	D04-2	100 %	D08-7	99.62%	D12-1	100 %		

A subgroup set of size 5, W RAcc ≈ 0.063 and support = 210 identified by FSSD in the dataset D11 projected on two out of three attributes.

TABLE IV :

 IV Approximation ratios ρ of the Top3 obtained after running FSSD on each of the 15 reduced datasets.

	id	BASELINE		FSSD
		t(s)	M(MiB)	t(s)	Mem.(MiB)
	D01-5	0.37	22.73	0.21	15.34
	D02-10	120.31	426.16	8.70	40.09
	D03-10	34.37	37.10	0.09	9.13
	D04-4	0.77	25.60	0.29	1.55
	D05-9	2.63	103.52	0.06	2.58
	D06-10	38.01	23.98	0.04	5.51
	D07-9	97.54	2556.15	45.62	7.42
	D08-10	3.76	77.22	0.26	3.33
	D09-10	34.46	338.61	0.06	2.32
	D10-10	11.89	26.11	0.07	9.46
	D11-3	33.78	1141.01	7.16	2.58
	D12-4	15.78	341.79	0.02	1.29
	D13-10	149.25	457.50	3.96	33.52
	D14-10	36.97	1533.13	17.77	4.08
	D15-9	2.68	20.77	0.27	2.06

TABLE V :

 V Comparison of the runtime -t(s)-and memory consumption -Mem.(MiB)-of FSSD vs. BASELINE for a Top5 subgroup set discovery task on the benchamrk datasets.

	id	DSSD	MCTS4DM	CN2SD	FSSD	
		t(s)	Qual	t(s)	Qual	t(s)	Qual	t(s)	Qual
	D01-5	4.93	0.06	30.28	0.05	11.75	0.04	72.09	0.07
	D02-10	504	0.10	111.53	-	130	0.07	237	0.11
	D03-10	1.77	0.08	788.79	-	3.54	-	0.01	0.07
	D04-4	1.36	0.02	3.91	0.002	7.62	-	0.28	0.03
	D05-9	2.30	0.17	2.28	0.05	3.58	-	1.18	0.22
	D06-10	1.83	0.14	4.40	-	1.64	-	0.01	0.16
	D07-9	2.95	0.06	2.87	0.06	20.19	0.03	133	0.08
	D08-10	2.34	0.18	1864	-	7.24	-	0.23	0.19
	D09-10	1.40	0.09	1.76	0.004	2.58	-	0.03	0.16
	D10-10	2.08	0.06	2.66	0.02	2.92	-	0.01	0.07
	D11-3	1.38	0.07	5.16	0.02	4.61	0.08	0.35	0.09
	D12-4	1.34	0.20	2.59	0.20	1.35	0.20	0.01	0.22
	D13-10	6.56	0.19	565.81	-	2.94	-	0.54	0.23
	D14-10	2.32	0.11	9.09	0.08	10.71	-	933	0.16
	D15-9	1.91	0.07	178.04	-	3.24	0.13	0.24	0.17

TABLE VI :

 VI Comparison of the runtime and qualities of the Top5 identified subgroups set by FSSD, DSSD, MCTS4DM and CN2SD. '-' corresponds to the cases when an algorithm fails to find a subgroup set with a strictly positive quality. algorithms succeed to finish within one hour. FSSD provides the best qualities for all the datasets except D03, where DSSD performs better. Particularly, the difference is notable when comparing with CN2-SD and MCTS4DM. Regarding the runtime, FSSD is generally faster than DSSD, MCTS4DM, and CN2-SD in most configurations except for D01 and D14
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APPENDIX

A. Problem III-C is NP-Hard.

Before giving the demonstration, let us consider a reformulation of Problem III-C presented below in Problem A.

Problem Statement (Problem A). Let be some set of objects G partitioned into G + and G -. Let S ⊆ ℘(G) be all possible subgroups derived w.r.t. some pattern language and let k ∈ N * . Output one subgroup set from argmax S⊆S,|S|≤k WRAcc(S) Problem A can be seen as a simplification of Problem III-C in the sense that (1) it does consider only the special problem of optimizing the WRAcc measure and (2) consider the set of all possible subgroups S as an input rather than as an intermediary output. Showing that Problem A is NP-hard allows us hence to show that Problem III-C is also NP-hard. Before showing the NP-hardness of Problem A, we recall below the Maximum Cover Problem (MCP) which is an NPcomplete problem. The NP-hardness of MCP is a consequence of the NP-hardness of optimizing a submodular set function subject to a cardinality constraint [START_REF] Nemhauser | An analysis of approximations for maximizing submodular set functions -I[END_REF]. 

Problem Statement (MCP). Let

where 1 2•|G| is a constant. Clearly, any solution of this instance of Problem A is also a solution of the MCP problem instance. Hence, since the MCP Problem is NP-hard then Problem A is NP-hard.

B. Greedy algorithm provides no guarantee.

We have investigated in Section IV of the paper that the greedy algorithm provides no guarantee on the approximation ratio. However, in this proof, we considered the language of itemsets. We show here that, still, even for datasets with exclusively categorical attributes (or numerical ones), there is no provided guarantee on the approximation ratio. Proposition 2 formalizes this observation.

Proposition 2. ∀ > 0, one can build an instance of Problem III-C such that all the attributes are categorical and solution S greedy outputted from Algorithm 1 (i.e. greedy scheme) provide an approximation ratio ρ(S greedy ) < .

Fig. 3: Inexistence of approximation guarantee by the greedy algorithm for numerical datasets (Proposition 2 proof)

Proof. Let us build a parametric instance of Problem III-C

where k is the cardinality constraint and the optimized measure is the WRAcc measure. Let be m ∈ N * , we build the dataset (G, A) as depicted in Fig. 3. That is: G = {g i } 0≤i<2•k•m and A = {a} with a is numerical. The black (resp. white) dots refer to elements in G + (resp. in G -). We write below each dot the value of the attribute a and above the dot the number of elements having the same value. For instance, in this dataset, there is m positive instances having for value 0 on attribute a followed by m -1 negative instances having for value 1, ... followed by m positive instances having for value 2 • k -2 followed by m + k -1 negative instances having for value 2•k-1. It is clear that there is k•m positive instances and k•m negative instances. Since the used patterns are interval patterns, with k is the cardinality constraints one can build the k-sized optimal subgroup set S * for which WRAcc(S * ) = 0.25 is optimal (i.e. regroups subgroups associated to constraints 0

Subgroup set S * is optimal since its true positive rate is 1 and false positive rate is 0. That is: it takes all positive instances without covering any negative one. However, one can easily show that the greedy algorithm will output 1-sized subgroup set S greedy containing the extent of pattern 0 ≤ a ≤ 2 • k -2 since that this subgroup is the optimal one w.r.t. WRAcc. Hence: WRAcc(S greedy ) = 0.25

. Thus, ρ(S greedy ) = k+m-1 k•m . It is easy to see now that for all > 0 one can always compute k and m such that ρ(S greedy ) < .

Please note that this proof consider also categorical attributes. Indeed, one can transform the numerical dataset (G, {a}) used here to the categorical dataset (G, A C ) where

in the first dataset then it has a j (g) = " ≤ j" for all j ≥ i and a j (g) = " > j" for j < i. It is clear that the subgroups induced by (G, A C ) are exactly the same as those induced the numerical dataset (G, {a}).

One can follow an equivalent reasoning for other SDcompatible measures such as the measures highlighted in bold in Table VII.

C. Quality measures in SD

Following the notations presented in Sec. II, Table VII presents different quality measures that are used in subgroup discovery. Except the support and the false positive rate, all these quality measures are SD-Compatible following Definition 1. Please note that measures are regrouped in blocs. Each bloc refer to compatible measures, i.e. measures ordering subgroups in the same way (see Definition 2.2 in [START_REF] Fürnkranz | ROC 'n' rule learning -towards a better understanding of covering algorithms[END_REF]).

In order to compute an optimistic estimate (see Definition 4) for these measures, one can follow Theorem 1 where the false positive rate of the subgroup (x) is replaced by 0. The measures highlighted in bold refer to the measure having a non constant optimistic estimate. n := |G| Relative Support [START_REF] Rakesh Agrawal | Mining association rules between sets of items in large databases[END_REF] s

Precision/Confidence [START_REF] Rakesh Agrawal | Mining association rules between sets of items in large databases[END_REF] p := α • y/s Growth Rate [START_REF] Dong | Efficient mining of emerging patterns: Discovering trends and differences[END_REF] [(1 -α)/α] • [p/(1 -p)] = y/x Ganascia index [START_REF] Hills | Interestingness measures for fixed consequent rules[END_REF] 2p -1 Sebag-Schoenaur [START_REF] Hills | Interestingness measures for fixed consequent rules[END_REF] p/(1 -p) ECE rate [START_REF] Hills | Interestingness measures for fixed consequent rules[END_REF] 2 -1/p Ohsakis Conviction [START_REF] Ohsaki | Evaluation of rule interestingness measures with a clinical dataset on hepatitis[END_REF] (1 -α) 2 /(1 -p) Lift [START_REF] Hills | Interestingness measures for fixed consequent rules[END_REF] p/α Mutual information [START_REF] Hills | Interestingness measures for fixed consequent rules[END_REF] log(p/α) One way support [START_REF] Geng | Interestingness measures for data mining: A survey[END_REF] p • log(p/α) Added Value [START_REF] Lavrac | Rule evaluation measures: A unifying view[END_REF] p -α Certainty Factor [START_REF] Hills | Interestingness measures for fixed consequent rules[END_REF] (p -α)/(1 -α) Brin's Conviction [START_REF] Hills | Interestingness measures for fixed consequent rules[END_REF] (1 -α)/(1 -p) Zhang [START_REF] Zhang | Association rules[END_REF] (y -x)/sup{y, x} Odds Ratio [START_REF] Tan | Selecting the right interestingness measure for association patterns[END_REF] Ω

(Ω -1) / (Ω + 1)

y -x Binomial Test [START_REF] Mampaey | Efficient algorithms for finding richer subgroup descriptions in numeric and nominal data[END_REF] α • (1 -α) • (y -x)/ √ s Klösgenω (ω ∈ [0, 1]) [START_REF] Janssen | On trading off consistency and coverage in inductive rule learning[END_REF] α • (1 -α) • s ω-1 • (y -x) Linear correlation [START_REF] Tan | Selecting the right interestingness measure for association patterns[END_REF] [(α • (1 -α)) / (s • (1 -s))] • (y -x) Cohen's kappa (κ) [START_REF] Tan | Selecting the right interestingness measure for association patterns[END_REF] κ := 2α•(1-α)(y-x)/[α+(1-2α)•s] Cosine/G-Measure [START_REF] Geng | Interestingness measures for data mining: A survey[END_REF] y/ [y + ({1/α} -1) • x] m-estimate (m > 0) [START_REF] Fürnkranz | ROC 'n' rule learning -towards a better understanding of covering algorithms[END_REF] α TABLE VII: Quality of a subgroup t using its false positive rate x, its true positive rate y, positive prevalence α and the dataset size n.