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Sorbonne Paris Cité, 92195 Meudon Cedex, France
6 Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
7 Univ. Lyon, Univ. Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-

Laval, France

Received 5 July 2019 / Accepted 20 September 2019

ABSTRACT

Context. The harvest of exoplanet discoveries has opened the area of exoplanet characterisation. But this cannot be achieved without
a careful analysis of the host star parameters.
Aims. The system of HD 219134 hosts two transiting exoplanets and at least two additional non-transiting exoplanets. We revisit
the properties of this system using direct measurements of the stellar parameters to investigate the composition of the two transiting
exoplanets.
Methods. We used the VEGA/CHARA interferometer to measure the angular diameter of HD 219134. We also derived the stellar
density from the transits light curves, which finally gives a direct estimate of the mass. This allowed us to infer the mass, radius, and
density of the two transiting exoplanets of the system. We then used an inference model to obtain the internal parameters of these two
transiting exoplanets.
Results. We measure a stellar radius, density, and mass of R? = 0.726 ± 0.014 R�, ρ? = 1.82 ± 0.19 ρ�, and M? = 0.696 ± 0.078 M�,
respectively; there is a correlation of 0.46 between R? and M?. This new mass is lower than that derived from the C2kSMO stellar
evolutionary model, which provides a mass range of 0.755−0.810 (±0.040) M�. Moreover, we find that planet b and c have smaller
radii than previously estimated of 1.500 ± 0.057 and 1.415 ± 0.049 R⊕ respectively; this clearly puts these planets out of the gap in
the exoplanetary radii distribution and validates their super-Earth nature. Planet b is more massive than planet c, but the former is
possibly less dense. We investigate whether this could be caused by partial melting of the mantle and find that tidal heating due to
non-zero eccentricity of planet b may be powerful enough.
Conclusions. The system of HD 219134 constitutes a very valuable benchmark for both stellar physics and exoplanetary science. The
characterisation of the stellar hosts, and in particular the direct determination of the stellar density, radius, and mass, should be more
extensively applied to provide accurate exoplanets properties and calibrate stellar models.

Key words. Stars: fundamental parameters - Stars:individual: HD 219134 - Planetary systems - Techniques: interferometric -
Methods: numerical - Planets and satellites: fundamental parameters

1. Introduction

The huge harvest of exoplanets discovered by the space tele-
scopes Kepler (Borucki et al. 2010) and CoRoT (Baglin 2003)
has led to the understanding that exoplanets are the rule rather
than the exception. We have now moved to the era of exo-
planet characterisation, and the next challenge is to understand
how common rocky planets are and if any are suitable for life.
The most interesting exoplanets to study are certainly the tran-
siting exoplanets, as the transit light curve allows us to know
the planetary radius. An additional radial velocity (RV) follow-
up provides the planetary mass and thus the planetary density.
The three ingredients to estimate planetary bulk composition are
then gathered. But this is only true if the stellar radius and mass

are known. Up to now, most of transiting exoplanet hosts have
been very faint, driven by the search for exoplanets rather than
their characterisation, often leading to inaccurate and/or impre-
cise stellar parameters. This makes the characterisation of the
whole exoplanetary system difficult and the determination of the
exoplanetary internal structure approximate.

Several methods can be employed to obtain the stellar pa-
rameters. Concerning the mass, it is often determined indirectly,
as only stars in binary systems can have their mass directly mea-
sured if the system inclination is known. However, if an exo-
planet is transiting its host star, the density of the star can be
directly inferred from the transit light curve (Seager & Mallén-
Ornelas 2003). Then, in the case of bright stars, the radius can
be directly determined using interferometry, which is a high an-
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R. Ligi: Stellar and planetary properties of HD 219134.

gular resolution technique aimed at measuring the angular diam-
eter of stars with a precision up to a few percent (Baines et al.
2010; Boyajian et al. 2012a,b; Huber et al. 2012; Creevey et al.
2012; Ligi et al. 2012; Creevey et al. 2015; Ligi et al. 2016,
e.g.). The mass can thus be directly computed from the tran-
sit and interferometric measurements. This method has recently
been used by Crida et al. (2018b,a) to derive the mass of the
very bright star 55 Cnc with a precision of 6.6% using the inter-
ferometric diameter measured by Ligi et al. (2016) and the den-
sity from the transit light curve obtained for 55 Cnc e (Bourrier
et al. 2018). This yielded the best characterisation of the transit-
ing super-Earth 55 Cnc e so far and a new estimate of its internal
composition.

HD 219134 (HIP 114622, GJ 892) is also a bright (V=5.57)
K3V star 6.5 parsecs away from us. Motalebi et al. (2015) first
detected four exoplanets around the star from RV measurements
using the High Accuracy Radial velocity Planet Searcher for the
Northern hemisphere (HARPS-N) on the Telescopio Nazionale
Galileo (TNG). Moreover, Spitzer time-series photometric ob-
servations allowed the detection of the transit of planet b, leading
to the estimate of a rocky composition. The same year, Vogt et al.
(2015) claimed the detection of six planets around HD 219134
from the analysis of RV obtained with the HIgh Resolution
Echelle Spectrometer (HIRES) on Keck I Observatory and the
Levy Spectrograph at the Automated Planet Finder Telescope
(Lick Observatory). These authors derived similar periods for
planets b, c, and d, the other diverging because of the different
Keplerian analysis of the RV signal leading to a different number
of planets. Later, Gillon et al. (2017) reported additional Spitzer
observations of the system that led to the discovery of the transit
of the second innermost planet, HD 219134 c. The two inner-
most planets seem rocky, but more interestingly, planet c shows
a higher density while it has a lower mass than planet b. The
detailed planetary data and their relative differences place ad-
ditional constraints on their interiors with implications to their
formation and evolution.

In this paper, we report new observations of HD 219134 us-
ing the Visible spEctroGraph and polArimeter (VEGA) instru-
ment on the Center for High Angular Resolution Astronomy
(CHARA) interferometric array that led to a new accurate de-
termination of angular diameter of this star (Sect. 2). In Sect. 3,
we determine the stellar radius and density, and derive the joint
probability density function (PDF) of the stellar mass and radius
independently of stellar models. We then use the PDF to com-
pute the new parameters of the two transiting exoplanets and we
revisit those of the non-transiting exoplanets in Sect. 4.1. Finally,
we derive the internal composition of planets b and c in Sect. 4.2
using a planetary interior model, and we discuss the possible
cause of the different densities of planets b and c in Sect. 4.3.
We conclude in Sect. 5.

2. Interferometric measurement of the angular
diameter with VEGA/CHARA

We used the technique of interferometry to measure the angular
diameter of HD 219134. These measurements constitute the first
step to determine the other fundamental parameters of this star.

2.1. Observations and data reduction

We observed HD 219134 from 2016 to 2018 using the
VEGA/CHARA instrument at visible wavelengths (see Table 1)
and medium resolution. The spectro-interferometer VEGA

(Mourard et al. 2009; Ligi et al. 2013) is based on the CHARA
array (ten Brummelaar et al. 2005), which takes advantage of
the six 1 m telescopes distributed in a Y-shape to insure wide
(u,v) coverage. It can be used at medium (5000) or high spectral
resolution (30 000) and with baselines ranging from 34 to 331
m in the two telescope (2T), 3T, or 4T modes. The observations
were calibrated following the sequence calibrator - science star
- calibrator, and were performed using different configurations
(Table 1), mainly in the 2T mode at once to optimise the signal-
to-noise ratio (S/N) of the observations. The calibrator stars were
selected into the SearchCal software1 (Table 2), and we used
the uniform disc diameter in the R band (UDDR) found in the
JSDC2 (Bourgés et al. 2014) or SearchCal (Chelli et al. 2016)
catalogue otherwise. However, for conservative reasons, we de-
cided to use an uncertainty of 7% or that given in the JSDC1
(Bonneau et al. 2006) if higher. We selected the calibrators with
several criteria: in the neighbourhood of the star, discarding vari-
able stars and multiple systems, and with high squared visibili-
ties, allowing an optimal measurement of the instrumental trans-
fer function. Finally, the data were reduced using the vegadrs
pipeline (Mourard et al. 2009, 2011) developed at Observatoire
de la Côte d’Azur. For each observation, we selected two non-
redundant spectral bands of 20 nm wide centred at 685 nm, 705
nm, or 725 nm in most cases to derive the squared visibility (V2),
but the reddest band is sometimes of bad quality or features ab-
sorption lines and cannot be used. In total, we collected 36 data
points, which are shown in Fig. 1.

2.2. Angular diameter

The squared visibilities that we obtained (Fig. 1, coloured filled
circles) are well spread on the V2 curve. We note some disper-
sion around 0.7 × 108/rad (corresponding to the E1E2 config-
uration) but it is taken into account in the computation of the
error on the angular diameter. We also adopted a conservative
approach by setting a minimum error of 5% on V2 to balance the
known possible bias with VEGA (Mourard et al. 2012, 2015).

We used the LITpro software (Tallon-Bosc et al. 2008)
to fit our visibility points and derive the angular diameter of
HD 219134 and its related uncertainty. Taking a model of uni-
form disc, we obtained θUD = 0.980 ± 0.020 millisecond of arc
(mas ; Table 3). However, this simple representation is not real-
istic and we thus used a linear limb-darkening (LD) model to re-
fine it, as the LD diameter (θLD) cannot be directly measured. We
must indeed use empirical tables of LD coefficients µλ, which
depend on the effective temperature Teff , gravity log (g), and
metallicity [Fe/H] at a given wavelength λ. We used Claret &
Bloemen (2011) tables as a start in the R and I band since we
observed between 685 and 720 nm, and proceeded on interpola-
tions to obtain a reliable LD coefficient at our wavelength, as
described in Ligi et al. (2016). The LD coefficients in Claret
& Bloemen (2011) tables are given in steps of 250 K for Teff ,
0.5 dex for log (g) and less uniform steps for [Fe/H]. We set a
starting value of these parameters to perform our interpolation
in between the surrounding values. We searched in the litera-
ture previous values of log (g) and [Fe/H] through the SIMBAD
database2 and calculated the median and standard deviation of
the values given there (see selected values in Table A.1 and
the medians in Table 3). Beforehand, we eliminated aberrant
values and values obtained before the year 2000, to insure re-
cent and probably more reliable estimates. Since many values

1 http://www.jmmc.fr/searchcal page.htm
2 Available at http://cdsweb.u-strasbg.fr/
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Table 1: Observing log.

Date Telescopes Bas. length Seq. S/N V2 σV2
Stat σV2

Syst λ δλ

MJD UT [m] [nm] [nm]
57621.451 2016-08-21 W2E2 105.30 C1 – sci – C1 4.1 0.206 0.050 1.43E-03 685 20
57711.177 2016-11-19 E1E2 65.79 C1 – sci – C1 13.9 0.694 0.050 1.78E-03 705 20
57711.177 65.79 15.0 0.751 0.050 1.76E-03 725 20
57711.269 2016-11-19 E1E2 65.48 C1 – sci – C1 10.9 0.546 0.050 1.41E-03 705 20
57711.292 2016-11-19 E1E2 65.36 C1 – sci – C1 11.3 0.567 0.050 1.69E-03 705 20
57712.150 2016-11-20 W1W2 107.82 C1 – sci – C2 5.6 0.280 0.050 1.48E-03 705 20
57712.172 2016-11-20 W1W2 107.20 C2 – sci – C1 6.0 0.300 0.050 1.64E-03 705 20
57712.172 107.20 2.2 0.111 0.050 9.24E-04 725 20
57712.221 2016-11-20 W1W2 103.69 C1 – sci – C2 3.8 0.189 0.050 9.39E-04 705 20
57712.221 103.69 6.1 0.304 0.050 1.46E-03 725 20
57712.245 2016-11-20 W1W2 101.20 C2 – sci – C1 4.9 0.245 0.050 1.16E-03 705 20
57712.245 101.20 5.3 0.267 0.050 1.21E-03 725 20
57734.160 2016-12-12 S1S2 29.52 C1 – sci – C1 11.6 0.987 0.085 5.80E-04 705 20
57734.160 29.52 11.6 0.958 0.083 5.38E-04 725 20
57960.258 2017-07-26 W1W2 95.26 C3 – sci – C3 5.9 0.296 0.050 1.63E-03 705 20
57960.258 95.26 5.8 0.289 0.050 1.51E-03 725 20
57960.279 2017-07-26 W1W2 96.32 C3 - sci – C4 6.1 0.304 0.050 2.14E-03 705 20
57960.279 96.32 6.7 0.334 0.050 2.28E-03 725 20
57960.302 2017-07-26 W1W2 97.91 C4 - sci – C4 6.6 0.331 0.050 2.57E-03 705 20
57960.302 97.91 7.5 0.373 0.050 2.74E-03 725 20
57960.324 2017-07-26 W1W2 99.79 C4 - sci – C3 5.8 0.290 0.050 2.07E-03 705 20
57960.324 99.79 5.9 0.294 0.050 2.02E-03 725 20
57964.369 2017-07-30 E1E2 61.12 C4 - sci – C3 9.8 0.489 0.050 1.06E-03 705 20
57964.369 61.12 9.1 0.455 0.050 9.33E-04 725 20
57964.510 2017-07-30 E1E2 65.87 C3 – sci – C3 15.0 0.750 0.050 2.25E-03 705 20
57964.510 65.87 16.5 0.823 0.050 2.18E-03 725 20
57965.343 2017-07-31 E1E2 59.00 C3 – sci – C3 14.7 0.737 0.050 2.19E-03 705 20
57965.343 59.00 14.9 0.745 0.050 1.79E-03 725 20
58299.481 2018-06-30 E1E2 63.21 C3 – sci - C3 10.5 0.525 0.050 1.24E-03 703 20
58299.481 63.21 11.5 0.577 0.050 1.29E-03 723 20
58299.501 2018-06-30 E1E2 64.25 C3 – sci - C3 13.2 0.659 0.050 1.58E-03 703 20
58299.501 64.25 13.3 0.665 0.050 1.50E-03 723 20
58302.334 2018-07-03 W1W2 95.87 C3 – sci – C4 7.6 0.378 0.050 2.77E-03 703 20
58302.334 95.87 6.3 0.361 0.057 2.21E-03 723 20
58302.351 2018-07-03 W1W2 96.91 C4 - sci - C3 3.7 0.220 0.060 1.47E-03 703 20
58302.351 96.91 7.7 0.385 0.050 2.41E-03 723 20

Notes. From left to right, the table shows the observing date, telescopes used, projected baseline lengths, observing sequence (“sci” refers to
the science target, and “C-” to the calibrator; see Table 2), the S/N, measured squared visibility, statistical and systematic errors, observation
wavelength, and corresponding bandwidth.

Table 2: Angular diameters of the calibrators used.

Cal. Name θUD ± σθUD [mas] Ref.
C1 HD 1279 0.183 ± 0.013 (1)
C2 HD 209419 0.158 ± 0.011 (1)
C3 HD 218376 0.188 ± 0.013 (2)
C4 HD 205139 0.174 ± 0.017 (2)

References. (1) JSDC2 (Bourgés et al. 2014) ; (2) SearchCal (Chelli
et al. 2016).

of the metallicity could be derived from a same data set, and
because the uncertainty in the various papers can be higher
than our standard deviation (0.05 dex), we set the uncertainty
on [Fe/H] to 0.1 dex. Concerning the starting Teff value, we
used that fitted through the spectral energy distribution (SED;
Teff,SED = 4 839 K, Sect. 3.2). Since the star is close by (dis-
tance, d = 6.533 ± 0.038 pc, Table 3), we set the reddening to
Av = 0.0 ± 0.01 mag. This value is consistent with the extinc-
tion given by the Stilism (Lallement et al. 2014) 3D map of the

galactic interstellar matter (E(B-V) = 0±0.014) but corresponds
to a smaller uncertainty on the extinction (0.0034 mag).

For each filter, we first computed the linear interpolation of
the LD coefficients corresponding to the surrounding values of
[Fe/H], log (g) and Teff of our star. We then averaged the two
coefficients coming out from each filter to get a final coefficient.
Then, we used the LITpro software to fit our data using a lin-
ear LD model while fixing in the model our new LD coefficient.
This results in θLD = 1.035 ± 0.021 mas (2% precision). It has
to be noted that using different LD laws does not significantly
change the final diameter as we are not sensitive to it in the first
lobe of visibility. If we set Teff = 4 750 K, log (g) = 4.5 dex,
and [Fe/H] = 0.1 dex, a quadratic LD law described by Claret
& Bloemen (2011) yields θLD = 1.047 ± 0.022 mas in the R
band (using the LD coefficients a1,R = 0.5850 and b2,R = 0.1393
given in the table) and θLD = 1.033 ± 0.022 mas in the I band
(taking a1,I = 0.4490 and b2,I = 0.1828). Similarly, averaging
a1,R and a1,I coefficients on the one hand, and b2,R and b2,I on the
other hand, leads to θLD = 1.040 ± 0.022 mas, and thus a value
within the error bars of our first estimate. Our determined angu-
lar diameter is smaller than that previously measured with the
CHARA Classic beam combiner (1.106 ± 0.007 mas; Boyajian
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Fig. 1: Squared visibilities obtained with VEGA/CHARA for
HD 219134. The different colours represent the data points ob-
tained with different baselines. The solid line represents the
model of LD diameter.

et al. 2012b). Although their visibilities seem more precise, we
stress that we obtain higher spatial frequency data, which re-
solves the star better. The angular diameter derived from the
SED θSED is also very consistent with our measurement (1.04
mas, see Sect. 3.2).

3. Stellar parameters

The new angular diameter constitutes the basis of our analysis.
It is now possible to determine the other stellar parameters from
our interferometric measurements, and to compare these param-
eters with those derived from stellar evolution models.

3.1. Radius, density, and mass

The stellar radius is generally derived using the distance and an-
gular diameter as follows: θLD = 2R?/d. As for the mass, Crida
et al. (2018b,a) showed the importance of using the correlation
between the stellar mass and radius to reduce the possible so-
lutions in the mass-radius plane. We took the same approach to
derive R? and M?. The PDF of R?, called fR? , can be expressed
as a function of the PDF of the observables θLD (angular diame-
ter) and π (parallax), called fθ and fπ respectively. This gives

fR? (R) =
R0

R2

∫ ∞

0
t fπ

(R0 t
R

)
fθ(t) dt , (1)

where R0 is a constant (see Crida et al. 2018b, for the proof).
Concerning Gaia parallaxes, Stassun & Torres (2018) have re-
ported that an offset of −82±33 µas is observed, while Lindegren
et al. (2018) have provided −30 µas. In any case, these offsets
are within the uncertainty of the parallax for HD 219134 and do
not impact significantly our results. As advised by Luri et al.
(2018), we only used the parallax and its error given in the Gaia
DR2 catalogue (Gaia Collaboration et al. 2016, 2018), keeping
in mind the possible offsets and that for such bright stars, there
might still be unknown offsets that DR3 and DR4 will provide.

We found R? = 0.726±0.014 ρ�, which is a lower value than
that found by Boyajian et al. (2012b, R? = 0.778 ± 0.005 R�).
Our uncertainty on R? is clearly dominated by the uncertainty
on the angular diameter because we took the parallax from Gaia
DR2, which is very precise (0.06%).

Table 3: Stellar parameters of HD 219134.

Parameter Value Ref
Coordinates and photometry

RA (J2000) 23h13m16s.97 Gaia DR2(1)

DEC (J2000) +57
◦

10
′

06
′′

.08 Gaia DR2(1)

π [mas] 153.081 ± 0.0895 Gaia DR2(1)

d [pc] 6.533 ± 0.038 Gaia DR2(1),(a)

V [mag] 5.570 ± 0.009 CDS(2)

K [mag] 3.25 ± 0.01 CDS(2)

L? [L�] 0.30 Gaia DR2(1)

Interferometric parameters
θUD [mas] 0.980 ± 0.020 (2%) This work, Sect. 2.2
uλ 0.588 This work(b), Sect. 2.2
θLD [mas] 1.035 ± 0.021 (2%) This work, Sect. 2.2

Fixed parameters
Av [mag] 0.0 ± 0.01 This work, Sect. 3.2
[Fe/H] 0.07 ± 0.1 SIMBAD(c), Sect. 2.2
log(g [cm s−2]) 4.57 ± 0.14 SIMBAD(c), Sect. 2.2

Fitted parameters
Teff,SED [K] 4 839 ± 25 This work, Sect. 3.2
θSED [mas] 1.043 ± 0.013 This work, Sect. 3.2
Fbol [erg s−1 cm−2] (19.86 ± 0.21) · 10−8 This work, Sect. 3.2

Measured and computed parameters
Teff [K] 4 858 ± 50 This work, Sect. 3.2
R? [R�] 0.726 ± 0.014 This work, Sect. 3.1
L? [L�] 0.264 ± 0.004 This work, Sect. 3.2
ρ? [ρ�] 1.82 ± 0.19 This work, Sect. 3.1
M? [M�] 0.696 ± 0.078 This work(d), Sect. 3.1
Mgrav,? [M�] 0.72 ± 0.23 This work(e), Sect. 3.1
Corr(R?,M?) 0.46 This work, Sect. 3.1

Stellar model inferences with C2kSMO
R? [R�] 0.727 ± 0.017 This work, Sect. 3.3
M? [M�] 0.755 ± 0.040 This work, Sect. 3.3
ρ? [ρ�] 1.96 ± 0.22 This work, Sect. 3.3
Age? [Gyr] 9.3 This work, Sect. 3.3

Notes. (a)From π. (b)Computed from Claret & Bloemen (2011) tables.
(c)Averaged from the values available in the SIMBAD database (Wenger
et al. 2000); see text for details. (d)From ρ? and R?. (e)From log(g).

References. (1)Gaia Collaboration et al. (2018) ; (2)Oja (1993).

The stellar density ρ? can be derived from the transit du-
ration, period and depth (Seager & Mallén-Ornelas 2003). In
our system, we have two transiting exoplanets. We computed
the stellar density independently for both transits using the data
given by Gillon et al. (2017) and found 1.74±0.22 and 2.04±0.37
ρ� for planets b and c, respectively. We note that the density
coming from the analysis of the light curve for HD 219134 c
is less precise than that of HD 219134 b. This comes from the
transit light curves themselves, which are more complete and
more precise for planet b. Combining both densities, we ob-
tained 1.82 ± 0.19 ρ�, which we use in the rest of our analysis.
We computed the uncertainty following a classical propagation
of errors and found a value close but different, and with a bigger
error bar compared to that given in Gillon et al. (2017). The joint
likelihood of M? and R? can be expressed as

LMR?(M,R) =
3

4πR3 × fR? (R) × fρ?

(
3M

4πR3

)
, (2)

as described in Crida et al. (2018b) and where fρ? is the PDF
of the stellar density (Fig. 2). The calculated correlation coeffi-
cient between R? and M? is 0.46. Our computation yields M?

= 0.696 ± 0.078 M�, which is consistent with the value deter-
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Fig. 2: Joint likelihood of the radius and mass of the star
HD 219134. The 9 plain red contour lines separate 10 equal-
sized intervals between 0 and the maximum of Eq. (2).

mined directly from log (g) and R? but with a better precision.
For reference, other authors derived 0.763± 0.076M� (Boyajian
et al. 2012b) using the relation by Henry & McCarthy (1993),
and 0.81 ± 0.03M� (Gillon et al. 2017) using stellar evolution
modelling. In this latter case, the uncertainty corresponds to the
internal source of error of the model and is thus underestimated.

3.2. Bolometric flux, effective temperature, and
luminosity

To derive the Teff of the star we combined the angular diameter
with its bolometric flux Fbol using

Teff =

4 × Fbol

σSBθ
2
LD

0.25

, (3)

where σSB is the Stefan-Boltzmann constant. This implies the
computation of the bolometric flux, which we derived from the
stellar photometry as described in the next subsection.

3.2.1. Bolometric flux

We determine the bolometric flux Fbol and its uncertainty in
the following way. We retrieved photometric data from the lit-
erature made available by the VizieR Photometry tool3. These
photometry converted-to-flux measurements were fitted to the
BaSeL empirical library of spectra (Lejeune et al. 1997), using
a non-linear least-squared minimisation algorithm (Levenberg-
Marquardt). The spectra are characterised by Teff , [M/H], and
log (g). To convert these spectra to observed spectra they need
to be scaled by (R?/d) and reddened for interstellar extinction
Av. Thus each model spectrum is characterised by these five pa-
rameters. In practice most of these parameters are degenerate,
so it is necessary to fix a subset of these. For each minimisation
performed we fixed [M/H], log (g), and Av i.e. we only fitted
Teff and (R/d ∝ θ), and then we integrated under the resulting
scaled and unreddened empirical spectrum to obtain Fbol.

To properly estimate the uncertainties in the parameters we
repeated this method 1000 times to obtain a distribution of Fbol.
Each of these minimisations had different fixed values of [M/H],

3 http://vizier.u-strasbg.fr/vizier/sed/

Fig. 3: Photometric data (black squares) and fitted model (solid
red line) from the BaSeL library of spectra.

log (g), and Av obtained by drawing random numbers from
gaussian distributions characterised by the following: [M/H] =
+0.07 ± 0.10, log (g) = 4.57 ± 0.14, and Av = 0.00 ± 0.01 mag,
as discussed in Sect. 2.2. The initial values of Teff and (R/d)
were obtained by drawing them from a random uniform distribu-
tion with values between 4 100 and 5 700 K and between 4.0 and
8.0. Using the resulting distribution of Fbol, we calculated Fbol
= (19.86±0.21) ·10−8 erg s−1 cm−2. In the same way, we also es-
timated the Teff from the resulting distributions of the best-fitted
Teff (Teff,SED) and the angular diameter (R/d) converted to units
of mas (θSED), although these latter two are not used any further
in this work.

The best-fit model spectrum is shown in Fig. 3 in red, along
with photometric data points in black. Overall, the model fits
the data well, except for two points that are above the fit, but
removing the two outliers did not change the results. These over-
fluxes could come from a close star or another undetermined
source, although we could not verify these hypotheses.

3.2.2. Effective temperature and luminosity

We derived the effective temperature Teff from Fbol and θLD us-
ing Eq. (3) to obtain 4 858±50 K. This is in very good agreement
with the Teff determined by Gaia (4 787+92

−73 K) and with that de-
termined through the SED fitting (4 839 ± 25 K), which has a
lower uncertainty. We finally obtained the luminosity using the
distance and Fbol as follows:

L? = 4πd2Fbol . (4)

The errors on these final parameters were estimated following a
classical propagation of errors (see Ligi et al. 2016, for details).
The Gaia luminosity is L? = 0.30L�, which is in good agree-
ment with our value (L? = 0.264 ± 0.004L�) considering the
documented possible systematic errors. All final stellar parame-
ters are reported in Table 3.

3.3. Comparison with stellar evolution models

HD 219134 is now a well-characterised star thanks to our di-
rect measurements of its radius and density, providing in turn its
mass. Therefore, it constitutes a good benchmark to be compared
to stellar evolution models.

We thus confront our measurements (mass, radius, and den-
sity) to the values that can be inferred from stellar evolution
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modelling. For that purpose, we have used the C2kSMO4 stellar
model optimisation pipeline (Lebreton & Goupil 2014) to find
the mass, age, and initial metallicity of the stellar model that
best fits the luminosity, effective temperature, and surface metal-
licity (hereafter observational constraints) of HD 219134 given
in Table 3. The procedure operates via a Levenberg-Marquardt
minimisation performed on stellar models calculated on-the-fly
with the Cesam2k (Morel & Lebreton 2008) stellar evolution
code (C2kSMO is described in detail in Lebreton & Goupil 2014).

For a given set of input parameters and physics of a stellar
model (nuclear reaction rates, equation of state, opacities, atmo-
spheric boundary conditions, convection formalism, and related
mixing-length parameter for convection, element diffusion and
mixing, solar mixture of heavy elements, initial helium content,
etc.), we can therefore infer the mass, age, and initial metallic-
ity of the best model for HD 219134 with internal error bars re-
sulting from the uncertainties on the observational constraints.
However, among these inputs, many are still very uncertain or
even unknown. Accordingly, to get a reasonable estimate of the
accuracy of the results, we performed several model optimisa-
tions, each of which correspond to a different set of input physics
and parameters. We varied the following – most uncertain – in-
puts:

– Solar mixture. We investigated the effects of using either the
GN93 (Grevesse & Noels 1993) or the AGSS09 (Asplund
et al. 2009) mixture. However, we point out that, although
still widely used, the GN93 mixture is no longer valid.
The AGSS09 mixture is based on carefully updated atomic
data and on a 3D time-dependent hydrodynamic model of
the solar atmosphere, while the GN93 mixture was inferred
through a 1D model of the solar atmosphere. As discussed
by for example Nordlund et al. (2009), the 3D model repro-
duces the observations of the solar atmosphere remarkably
well, while the 1D model atmosphere does not. The AGSS09
mixture should therefore be preferred.

– Convection description. We used either the classical mixing-
length theory (usually referred to as MLT; Böhm-Vitense
1958) or the Canuto, Goldmann, and Mazzitelli formalism
(usually referred to as CGM; Canuto et al. 1996).

– External boundary conditions. We investigated the effects of
using either the approximate Eddington’s grey radiative T−τ
law (T is the temperature, τ the optical depth) or the more
physical T − τ law extracted from Model Atmospheres in
Radiative and Convective Scheme (MARCS) model atmo-
spheres (Gustafsson et al. 2008). Although MARCS models
are classical 1D model atmospheres in local thermodynami-
cal equilibrium, they do include convection in the MLT for-
malism and use up-to-date atomic and molecular data (see
e.g. Gustafsson et al. 2008). Therefore, these models repre-
sent an important progress with respect to the grey law and
should be preferred.

– Initial helium abundance. This quantity is not accessible
through the analysis of stellar spectra because helium lines
are not formed in the spectra of cool and tepid stars. It
is a major source of uncertainty in stellar model calcula-
tion. In stellar models the initial helium abundance is gen-
erally estimated from the ∆Y/∆Z galactic enrichment law5

to overcome this difficulty. Two different ∆Y/∆Z values are
usually used: the value obtained from solar model calibra-

4 C2kSMO stands for ”Cesam2k Stellar Model Optimisation”
5 ∆Y/∆Z = (Y −YP)/Z, where YP is the primordial helium abundance

in mass fraction, and Y and Z are the current helium and metallicity
mass fractions, respectively.

tion6 (chosen for instance in the new Bag of Stellar Tracks
and Isochrones (BaSTI) stellar model grids; see Hidalgo
et al. 2018), which is ≈ 1 or the so-called galactic value,
∆Y/∆Z ≈ 2 (Casagrande et al. 2007) adopted for instance
in the Modules for Experiments in Stellar Astrophysics
(MESA) grids by Coelho et al. (2015). The former depends
on the input physics of the solar model while the latter is very
uncertain (see e.g. Gennaro et al. 2010). On the other hand,
the initial helium content can be estimated by modelling stars
with available asteroseismic observational constraints. This
is the case of 66 stars in the Kepler Legacy sample for which
we obtained values of ∆Y/∆Z in the range 1− 3 with a mean
of (∆Y/∆Z)seism ≈ 2.3 with the C2kSMO pipeline (see e.g.
Silva Aguirre et al. 2017). Since no strong justification of
what would be the best choice can be given, we investigated
the impact of using the two values ∆Y/∆Z = 1 and 2 because
the latter is also close to the mean Kepler Legacy asteroseis-
mic value (∆Y/∆Z)seism, but keeping in mind this remains the
main source of uncertainty in our results.

More details on the uncertainties of stellar model inputs and
their consequences can be found in Lebreton et al. (2014). To
avoid such sources of uncertainties, direct measurements of stel-
lar parameters should be preferred when possible.

Depending on the stellar model input physics and parame-
ters, we obtained a large range of possible ages, between ≈ 0.2
and 9.3 Gyr with large error bars. The range of possible masses
is between 0.755 and 0.810 M�. The internal error bar on the in-
ferred mass for an optimised stellar model based on a given set
of inputs physics and parameters due to the uncertainty on the
observational constraints (luminosity, effective temperature, and
metallicity) is ≈ ±0.04 M�. This error bar appears to be small.
Indeed, in the Levenberg-Marquardt minimisation the error bars
on the free parameters are obtained as the diagonal coefficients
of the inverse of the Hessian matrix and have been shown to
be smaller than those provided with other minimisation tech-
niques (see e.g. Silva Aguirre et al. 2017). The inferred stel-
lar radii are in the range 0.727 − 0.728 R� with an internal er-
ror bar of ±0.017 R�, while the mean densities are in the range
1.96− 2.09 (±0.22) ρ�. We chose as reference model for the star
that based on the most appropriate input physics as explained
in the description above (AGSS09 solar mixture and boundary
conditions from MARCS model atmospheres), and the galactic
value ∆Y/∆Z = 2 derived by Casagrande et al. (2007), which
is also rather close to the Kepler Legacy seismic mean value
(∆Y/∆Z)seism. This particular model has M? = 0.755±0.040 M�
and an age of 9.3 Gyr. Although this mass estimate is higher
than the mass we derived from interferometry and transit by
∼ 8%, the interval of solutions is consistent with our uncertain-
ties. Similarly, our radius and density are consistent with those
derived from the model (0.727 ± 0.017 R�, 1.96 ± 0.22 ρ�, re-
spectively). We point out that pushing the ∆Y/∆Z value from 2.
to 3.would induce a change of mass from 0.755 to 0.719 M�, i.e.
closer to the interferometric measure, but with a change in age
from 9.3 to 13.8 Gyr, i.e. the age of the Universe; in our opinion
this indicates that ∆Y/∆Z values that are too high are not realistic
for this star.

We point out that, as is well-known in particular in the
case of low-mass stars, the ages of stars are very poorly esti-

6 In the solar model calibration process, the evolution of a 1 M�
model is calculated up to the known solar age. Its initial helium con-
tent and mixing-length parameter are fixed by the constraint that at so-
lar age, the model has reached the observed values of the solar radius,
luminosity, and surface metallicity.
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Fig. 4: Joint likelihood of the planetary mass and radius for
planet b (green long-dashed line) and planet c (yellow solid line).
The 9 contour lines separate 10 equal-sized intervals between 0
and the maximum of fp(Mp,Rp). The dashed lines show the iso-
densities corresponding to the mean densities of planets b and
c.

mated when only the H-R diagram parameters and metallicity
are known because of degeneracies in the stellar models (see
e.g. Lebreton et al. 2014; Ligi et al. 2016). Furthermore, other
values of the classical stellar parameters of HD 219134 have
been reported in the literature. To see how these reported val-
ues can modify our results we optimised stellar models on the
basis of the Folsom et al. (2018) results on Teff and [Fe/H] and
on L? inferred from the SIMBAD Hipparcos V-magnitude. We
obtained a similar range of masses 0.76 − 0.79M�, while the
models systematically point towards higher ages 10.2−13.8 Gyr,
which is mainly due to the smaller Teff (4 756±86 K) derived by
Folsom et al. (2018). It is also worth pointing out that, as noted
by Johnson et al. (2016), the very high ages inferred from stellar
models commonly found in the literature for HD 219134 seem to
be in conflict with ages from activity which, although not very
precise, span the range ≈ 3 − 9 Gyr7.

4. Planetary parameters and composition of the
transiting exoplanets

The precise and accurate stellar parameters that we have deter-
mined allow us to infer the parameters of the transiting exoplan-
ets of the system. It is then possible to derive their internal com-
position using an inference scheme, and to verify if they stand in
a dynamical point of view.

4.1. Radius, density, and mass of the two transiting
exoplanets

The two planets HD 219134 b and c transit their host star, and
we can thus derive their properties. We computed the planetary
radius Rp and mass Mp of each planet starting from the PDF of

7 We estimated this age range from the empirical relation relating
the CaII H & K emission index R′HK and age derived by Mamajek &
Hillenbrand (2008), with the value of R′HK measured by Boro Saikia
et al. (2018).

the stellar mass and radius. As explained by Crida et al. (2018b)
concerning 55 Cnc e, for any Mp and M?, we can derive the as-
sociated semi-amplitude of the RV signal K following Kepler’s
law, and for any pair of Rp and R?, we can derive the associ-
ated transit depth ∆F. We took the ∆F, K, and the period P from
Gillon et al. (2017) to calculate the PDF of the planetary mass
and radius following the formula (see Sect. 3.1 of Crida et al.
2018b, for more details) :

fp(Mp,Rp) ∝
"

exp

−1
2

(
K(Mp,M?) − K

σK

)2
× exp

−1
2

(
∆F(Mp,M?) − ∆F

σ∆F

)2
× LMR?(M?,R?) dM? dR? .

(5)

From this joint PDF, we compute the densities of both transiting
exoplanets taking into account the correlation between Rp and
Mp (Fig. 4).

The new values of the planetary parameters are given in
Table 4. The radii of planets b and c are 1.500 ± 0.057 and
1.415 ± 0.049 R⊕, respectively. Because we find that the star
is smaller than initially thought, the two planets appear smaller
as well; Gillon et al. (2017) give Rp = 1.602 ± 0.055 and
1.511 ± 0.047 R⊕, and Mp = 4.74 ± 0.19 and 4.36 ± 0.22 M⊕,
for planets b and c, respectively. This enforces the idea that the
two planets lie in the super-Earth part of the distribution of exo-
planetary radii set by Fulton et al. (2017).

Even more interestingly, planet c presents a higher density
than planet b, whereas it has smaller mass and radius. From the
values in Table 4, we get ρb/ρc = 0.901±0.157 assuming ρb and
ρc to be independent variables. But ρb and ρc are slightly corre-
lated as they both depend on the stellar parameters. Estimating
directly the ratio, the stellar parameters simplify out to

ρb

ρc
=

Mb/R3
b

Mc/R3
c

=

(
Pb

Pc

)1/3 (
∆Fc

∆Fb

)3/2 (
Kb

Kc

)
= 0.905 ± 0.131 , (6)

where Pb and Pc are the orbital periods of the planets; we used a
standard propagation of error. This is a larger difference than be-
tween the Earth and Venus (whose density is 0.944 ρ⊕). A better
knowledge of the transit depth would help discriminate between
the density ratio and unity. We investigated the causes of this
potential disparity in the next section.

We also updated the values of the minimum masses of plan-
ets f and d, which as expected we find lower than previous esti-
mates, and of their semi-major axes (Table 4) using Gillon et al.
(2017) orbital solutions, as these planets are confirmed by sev-
eral independent detection. Finally, we determined the habitable
zone (HZ) of the star to verify if any of the exoplanets of this
system lie in this zone. To compute the HZ, we used the method
described by Jones et al. (2006), who adopted a conservative ap-
proach of this range of distances. We first computed the critical
flux which depends on the Teff of the star, and we derived the
inner and outer boundaries of the HZ (see Eq. (1a) to (2b) of
Jones et al. 2006, for details). As a result, we find that the HZ
spreads from 0.46 to 0.91 au from the star and that no planet in
the system is located in this area.

4.2. Internal compositions

The new mass and radius estimates allowed us to investigate the
planetary interiors. Interestingly, there is a 10% density differ-
ence between the two planets (see Eq. (6)), which are otherwise
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Table 4: Parameters of the innermost exoplanets of the system HD 219134.

Param. HD 219134 b HD 219134 c HD 219134 f HD 219134 d
Rp [R⊕ ] 1.500 ± 0.057 1.415 ± 0.049 - -
Mp [M⊕ ] 4.27 ± 0.34 3.96 ± 0.34 6.60 14.64
Corr(Rp,Mp) 0.22 0.23 - -
ρp [ρ⊕ ] 1.27 ± 0.16 1.41 ± 0.17 - -
a [au] 0.037 0.062 0.139 0.225

Notes. For the two transiting exoplanets, the mass is given, while for the two other planets the minimum planetary mass Mp sin(i) is given.

Table 5: Median stellar abundances of HD 219134 from Hypatia
catalog (Hinkel et al. 2014) after the outliers and duplicate stud-
ies were removed.

Parameter HD 219134
[Fe/H] 0.13 ± 0.08
[Mg/H] 0.16 ± 0.14
[Si/H] 0.17 ± 0.15
[Na/H] 0.22 ± 0.08
[Al/H] 0.26 ± 0.07
[Ca/H] 0.13 ± 0.13

Notes. The unit is dex.

very similar in mass. Although the uncertainty in the density ra-
tio allows for no interior difference between the planets, it is
worth investigating what could cause this possible difference,
which is larger than that between the Earth and Venus with a
probability of about 70% (or stated differently, 30% chance for
a difference of less than 5%). In fact, Eq. (6) suggests that there
is a 50% chance that planet b is more than 10% less dense than
planet c.

The lower density of planet b can be associated with sec-
ondary atmospheres or a rock composition that is enriched in
very refractory elements (Dorn et al. 2018; Dorn & Heng 2018).
Recently, Bower et al. (2019) demonstrated that fully or partially
molten mantle material can lower the bulk density of super-Earth
up to 13%. Therefore, a difference between the planetary densi-
ties may also be due to different melt fractions in both planets.
In Sect.4.2, we investigate this additional scenario and discuss
its implications.

We start by solving an inference problem, for which we use
the data of mass, radius (Sect. 4.1), stellar irradiation, and stellar
abundances (Table 5) to infer the possible structures and compo-
sitions of both planets. Stellar abundances of rock-forming ele-
ments (e.g. Fe, Mg, Si) are used as proxies for the rocky interiors
to reduce interior degeneracy as proposed by Dorn et al. (2015).
The differences between both planet interiors may provide evi-
dence of their different formation or evolution history.

4.2.1. Inference scheme

We used the inference scheme of Dorn et al. (2017), which cal-
culates possible interiors and their confidence ranges. Our as-
sumptions for the interior model are similar to those in Dorn
et al. (2017) and are summarised in the following. Since these
two planets are smaller than ∼ 1.8R⊕, which is suggested to be
the boundary between super-Earths and mini-Neptunes (Fulton
et al. 2017), we consider that the planets are made of iron-rich
cores, silicate mantles, and terrestrial-type atmospheres. In addi-

tion to following Dorn et al. (2017), we also allowed for some
reduction of the mantle density as caused by a high melt fraction.

The interior parameters comprise

– Core size rcore
– Size of rocky interior rcore+mantle
– Mantle composition (i.e. Fe/Simantle, Mg/Simantle)
– Reduction factor of mantle density fmantle
– Pressure imposed by gas envelope Penv
– Temperature of gas envelope parametrised by α (see Eq.

(10))
– Mean molecular weight of gas envelope µ.

The prior distributions of the interior parameters used in this
study are stated in Table 6.

Our interior model uses a self-consistent thermodynamic
model for solid state interiors from Dorn et al. (2017). For any
given set of interior parameters, this model allows us to cal-
culate the respective mass, radius, and bulk abundances and to
compare them to the actual observed data. The thermodynamic
model comprises the equation of state (EoS) of pure iron by
Bouchet et al. (2013) and of the light alloy FeSi by Hakim
et al. (2018), assuming 2.5% of FeSi similar to Earth’s core. For
the silicate-mantle, we used the model by Connolly (2009) to
compute equilibrium mineralogy and density profiles given the
database of Stixrude & Lithgow-Bertelloni (2011). We allowed
for a reduction of mantle densities as caused by the presence of
melt. Unfortunately, the knowledge of EoS of melts is limited for
pressures that occur in super-Earths (e.g. Spaulding et al. 2012;
Bolis et al. 2016; Wolf & Bower 2018). Therefore, we decided
to use a very simplified approach in that we used a fudge factor
fmantle that reduces the mantle density ρmantle in each grid layer i
by ρmantle,i × (1 − fmantle).

For the gas layer, we used a simplified atmospheric model
for a thin, isothermal atmosphere in hydrostatic equilibrium and
ideal gas behaviour, which is calculated using the scale-height
model (model II in Dorn et al. 2017). The model parameters that
parametrise the gas layer and that we aim to constrain are the
pressure at the bottom of the gas layer Penv, the mean molecu-
lar weight µ, and the mean temperature (parametrised by α, see
below). The thickness of the opaque gas layer denv is given by

denv = H ln
Penv

Pout
, (7)

where the amount of opaque scale heights H is determined by
the ratio of Penv and Pout. The quantity Pout is the pressure level
at the optical photosphere for a transit geometry that we fix to
20 mbar (Fortney et al. 2007). We allowed a maximum pressure
Penv equivalent to a Venus-like atmosphere (i.e. 100 bar). The
scale height H is expressed by

H =
Tenv R∗

genv µ
, (8)
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Table 6: Prior ranges for interior parameters.

Parameter Prior range Distribution

Core radius rcore (0.01 – 1) rcore+mantle uniform in r3
core

Fe/Simantle 0 – Fe/Sistar uniform
Mg/Simantle Mg/Sistar Gaussian
fmantle 0. – 0.2 uniform
Size of rocky interior rcore+mantle (0.01 – 1) Rp Uniform in r3

core+mantle
Pressure imposed by gas envelope Penv 20 mbar – 100 bar uniform in log-scale
Temperature of gas envelope α 0.5 − 1 uniform
Mean molecular weight of gas envelope µ 16 – 50 g/mol uniform

where genv and Tenv are gravity at the bottom of the atmosphere
and mean atmospheric temperature, respectively. The quantity
R∗ is the universal gas constant (8.3144598 J mol−1 K−1) and µ
the mean molecular weight. The mass of the atmosphere menv is
directly related to the pressure Penv as

menv = 4πPenv
(Rp − denv)2

genv
, (9)

where Rp − denv is the radius at the bottom of the atmosphere.
The atmosphere’s constant temperature is defined as

Tenv = αTeff

√
R?

2a
, (10)

where a is the semi-major axis. The factor α accounts for pos-
sible cooling and warming of the atmosphere and can vary be-
tween 0.5 and 1, which is equivalent to the observed range of
albedos among solar system bodies (0.05 for asteroids up to 0.96
for Eris). The upper limit of 1 is verified against the estimated
αmax (see Appendix A in Dorn et al. 2017), which takes possible
greenhouse warming into account.

4.2.2. Inference results

Figure 5 summarises the interior estimates. Both planets have
mantle compositions and core sizes that fit bulk density and the
stellar abundance constraint. The core fraction of both planets
is close to that of Venus and Earth ((rcore/rcore+mantle)⊕ = 0.53),
which validates their denomination as super-Earths. Compared
to planet c, the lower density of 10% of planet b is associ-
ated with a slightly smaller core (by 10%) and higher fmantle
(by 45%), which indicates that a significantly stronger reduc-
tion of mantle density is plausible given the data. The estimates
of fmantle for planet b and c are 0.073+0.06

−0.05 and 0.05+0.06
−0.04, respec-

tively. Factors of fmantle up to 0.25 can be associated with high
melt fractions (for Earth-sized planets). Similar values can be
achieved when the mantle composition is enriched by very re-
fractory elements (i.e. Al, Ca).

It should be noted that differences between the interiors are
small, since uncertainties on bulk densities are relatively large.
The data allow for no difference in bulk densities. However, a
significant (more than 5%) difference exists with 70% probabil-
ity. In this work, we used an interior model that allows us to
quantify any possible difference in the rocky interiors of both
planets. We assumed that any volatile layer is limited to a 100
bar atmosphere (similar to Venus) at maximum. Further argu-
ments are necessary to evaluate whether a difference between
the rocky interiors, specifically the mantle densities, can exist.

Nonetheless, because Bower et al. (2019) demonstrated that
for Earth-sized planets a fully molten mantle is 25% less dense
than a solidified mantle, this possibility must be considered, and
it is interesting to investigate whether planet b could be less
dense because partially molten. Heating by irradiation from the
host star would not be enough; the black-body equilibrium tem-
perature for this planet is 1 036 K. Nevertheless, in the next sub-
section, we discuss a possible dynamical origin for the possible
difference between HD 219134 b and c.

4.3. Possible origin of a partial mantle melt for HD 219134 b

Large melt fractions may be sustained on planet b by tidal heat-
ing. In the case of synchronous rotation with spin-orbit align-
ment, which is likely for close-in planets such as HD 219134 b,
tidal dissipation acts only on planets on eccentric orbits around
the star. The power is given by (see e.g. Lainey et al. 2009)

Ė =
21
2

k2

Q
(ωRp)5

G
e2 , (11)

where k2 is the Love number and Q the quality factor of the
planet of radius Rp and spin or orbital frequency ω. The key pa-
rameter k2

Q depends on the internal properties of the body8. The
dissipated energy Ė heats the planet and damps the eccentricity
of the orbit, ultimately leading to its circularisation and a reduc-
tion of the semi-major axis. To maintain tidal heating, the orbital
eccentricity must be excited by the interaction with other sec-
ondary objects, as is the case for Jupiter’s moon Io for instance.
In order to investigate if tidal heating on planet b is sufficient
enough, we ran numerical simulations of the planetary system
using the N-body code SyMBA (Duncan et al. 1998).

To build our initial conditions, we took the e, $, orbital pe-
riods, K, and mid-transit time from Gillon et al. (2017). They
measure a non-zero eccentricity for planets c, f , and d, but not
for planet b, whose eccentricity is fixed to zero to fit the other
orbital parameters. They do not provide data for the outermost
two planets g and h, but the long orbital periods of these planets
make them unlikely to affect the inner four planets, and their or-
bital parameters suffer larger uncertainty so we neglect them in
our simulations. We find that the eccentricity of planet b is ex-
cited by the other planets. In absence of dissipation, the system
is stable for at least 1 Gyr, and eb oscillates freely between 0 and
0.13 with a period of a few thousand years9.

8 For reference, it is of the order of 10−4,−5 for gas giant planets and
about 0.025 for the Earth.

9 Using initial circular orbits, i.e. assuming that the planets were fully
formed locally in the protoplanetary disc, we observe no increase of the
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Fig. 5: One-dimensional marginalised posteriors of interior parameters: thickness of atmosphere (denv), size of rocky interior
(rcore+mantle), core size (rcore), fudge factor fmantle, and mantle composition (Fe/Simantle and Mg/Simantle). The prior distribution is
shown in dashed lines (except for denv, for which no explicit prior is defined), while the posterior distribution is shown in solid lines
for planets b (red) and c (blue).

Introducing dissipation in planets b and c, the eccentricities
are damped and eb settles to a regime where it oscillates between
0.01 and 0.06. The energy loss is balanced by an inward drift of
the planets, mainly planet b. We note that the final value of the
eccentricity is independent of the assumed value for k2/Q, only
the timescale of the evolution and inward drift are proportional
to k2/Q. Because of this dissipation, the period ratio Pc/Pb in-
creases with time, and it is possible that this ratio (which is now
2.19) was smaller than 2, so that the 2:1 mean motion resonance
was crossed recently. To check the effect of this phenomenon,
we start planets c and especially b slightly out of their present
position, inside the 2:1 mean motion resonance. Crossing the
resonance at 14.6 Myrs kicks the eccentricities of planets b and
c, but this is quickly damped and the eccentricity of planet b ends
up oscillating between 0.005 and 0.037 with a period of ∼ 3000
years when it reaches its present semi-major axis at 73 Myrs, as
shown in Fig. 6. Meanwhile, ec converges to 0.025 (while Gillon
et al. 2017, find 0.062 ± 0.039). We checked that again, k2/Q

eccentricities of the four planets in 500 Myrs. This is not compatible
with the observations of Gillon et al. (2017); this suggests that these
four planets may not have acquired their final mass and/or orbits during
the protoplanetary disc phase. A phase of giant impacts or the breaking
of a resonance chain (Izidoro et al. 2017; Pichierri et al. 2018) could
have happened in the early history of the system.

has little influence on the final behaviour of the eccentricities,
although the speed at which the resonance is crossed matters.

Using Eq. (11), 0.005 < eb < 0.037 gives a total power
for the tidal heating oscillating in 5.6 − 308 × 1016 ×

(
k2/Q
0.025

)
W

for planet b and around 2.1 × 1016 ×
(

k2/Q
0.025

)
W for planet c. For

reference, tidal heating in Io is of the order of 1014 W (Lainey
et al. 2009) so that, assuming k2/Q = 0.025 like for Earth, planet
b receives at least 2 and up to 100 times more tidal heating per
mass unit than Io (and almost 300 with eb = 0.06). In contrast,
because in Eq. (11) the term (ωRp)5 is 70 times smaller for planet
c than for planet b, all other parameters being equal, it should be
heated much less. We find that it gets a bit less tidal heating
than Io per mass unit, so it is unlikely to melt even partially. In
the end, the idea of a partial (if not total) melt of the mantle of
HD219134 b to explain its possibly lower density than planet c is
strongly supported by dynamics. A refinement of the parameters
of the system and a complete stability analysis would help but
are beyond the scope of this paper.

5. Summary and conclusions

We present a new analysis of the exoplanetary system
HD 219134. We observed the star with the VEGA/CHARA in-
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Fig. 6: Evolution of the inner two planets of the HD219134 sys-
tem under dissipation with k2/Q = 0.025 for both planets, and
in presence of planets f and d of Gillon et al. (2017). Top panel:
semi-major axis of planet b (red curve), location of the 1:2 mean
motion resonance with planet c (green curve, that is ac/22/3),
and present semi-major axis of planet b (blue horizontal line).
Bottom panel: eccentricities of planets b (red) and c (green).

terferometer and measured an angular diameter of 1.035± 0.021
mas and a radius of 0.726 ± 0.014 R�. This radius is not sig-
nificantly affected by the Gaia offset, but new values from the
DR3 or DR4 will allow us to refine R?. We used the transit pa-
rameters from Gillon et al. (2017) to measure the stellar density
(1.82±0.19 ρ�) directly, and we directly derived from these two
measurements the stellar mass (0.696 ± 0.078M�) and the cor-
relation between M? and R? (0.46). We compare our parameters
with those obtained with C2kSMO and find that the range of
masses is compatible with the directly measured mass, although
the best model gives a mass 8% higher than the directly mea-
sured mass. This corresponds to an age of 9.3 Gyr, but a large
range of ages is possible (0.2-9.3 Gyr). Similarly, previous indi-
rect determinations of M? show higher values than our measure-
ment (see e.g. Boyajian et al. 2012b; Gillon et al. 2017), but it
has to be noted that they are based on a larger R?.

The system includes two transiting exoplanets, HD 219134 b
and c, for which we reassess the parameters. Using our new R?

and M?, we computed the PDF of the planetary masses and radii,
which we find lower than previous estimates (since previous stel-
lar parameters were higher), and the correlations between Mp
and Rp. These new values clearly validate the super-Earth nature
of the two planets by putting them out of the gap in the exoplan-
etary radii distribution noticed by Fulton et al. (2017). We could
thus derive the densities of the planets, which appear to differ by
10%, although these values are possibly identical within the er-
ror bars (70% chance that the difference is more than 5%). More
interestingly, planet b has a lower density than planet c despite
its higher mass. Using Dorn et al. (2017) inference scheme, we
show that this difference in density can be attributed to a slightly
smaller core and/or a significantly lower mantle density. The lat-

ter might be due to a molten fraction. Tidal heating might be the
cause of such a melting, as we investigated using the SyMBA
N-body code. Excited by the other planets, the eccentricity of
planets b and c reaches ∼ 0.02 with tidal dissipation. This could
lead to considerable heating for planet b (100 times more than
on Io per mass unit, possibly leading to partial melting of the
mantle), while planet c is too far from the star for tidal heating
to be more intense than on Io. Hence, despite their possible den-
sity difference, planets b and c may have the same composition,
as expected in all standard planet formation models.

The system of HD 219134 constitutes a benchmark case for
both stellar and planetary sciences. Our direct estimation of the
stellar radius and mass directly impacts the planetary parame-
ters. Although within the error bars of the mass coming from
C2kSMO, our new mass changes the planetary mass and the
possibilities of interior structures compared to the possible so-
lutions using the stellar models. Improving the precision of the
transit light curves of the two planets would allow us to reduce
the uncertainty on the stellar density, hence on the stellar mass.
It would reduce the uncertainty on the planetary parameters even
more, potentially answering the question of the density ratio of
the two transiting super-Earths. More generally, measuring the
stellar radius and density as we have done in this work is the
most direct method to infer stellar (hence planetary) parame-
ters and should be more extensively used; this approach will
certainly be possible within the Transiting Exoplanet Survey
Satellite (TESS) and PLAnetary Transits and Oscillations of
stars (PLATO) missions era.
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Creevey, O. L., Thévenin, F., Boyajian, T. S., et al. 2012, A&A, 545, A17
Crida, A., Ligi, R., Dorn, C., Borsa, F., & Lebreton, Y. 2018a, Research Notes

of the American Astronomical Society, 2, 172
Crida, A., Ligi, R., Dorn, C., & Lebreton, Y. 2018b, ApJ, 860, 122
da Silva, R., Milone, A. d. C., & Rocha-Pinto, H. J. 2015, A&A, 580, A24
Dorn, C., Harrison, J. H., Bonsor, A., & Hands, T. O. 2018, Monthly Notices of

the Royal Astronomical Society, 484, 712
Dorn, C. & Heng, K. 2018, The Astrophysical Journal, 853, 64
Dorn, C., Khan, A., Heng, K., et al. 2015, Astronomy & Astrophysics, 577, A83
Dorn, C., Venturini, J., Khan, A., et al. 2017, Astronomy & Astrophysics, 597,

A37
Duncan, M. J., Levison, H. F., & Lee, M. H. 1998, AJ, 116, 2067
Folsom, C. P., Fossati, L., Wood, B. E., et al. 2018, MNRAS, 481, 5286
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, The Astrophysical Journal,

659, 1661
Frasca, A., Covino, E., Spezzi, L., et al. 2009, A&A, 508, 1313
Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1
Gennaro, M., Prada Moroni, P. G., & Degl’Innocenti, S. 2010, A&A, 518, A13
Gillon, M., Demory, B.-O., Van Grootel, V., et al. 2017, Nature Astronomy, 1,

0056
Gray, R. O., Corbally, C. J., Garrison, R. F., McFadden, M. T., & Robinson, P. E.

2003, AJ, 126, 2048
Grevesse, N. & Noels, A. 1993, in Origin and Evolution of the Elements, ed.

N. Prantzos, E. Vangioni-Flam, & M. Casse, 15–25
Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951
Hakim, K., Rivoldini, A., Van Hoolst, T., et al. 2018, Icarus, 313, 61
Heiter, U. & Luck, R. E. 2003, AJ, 126, 2015
Henry, T. J. & McCarthy, Jr., D. W. 1993, AJ, 106, 773
Hidalgo, S. L., Pietrinferni, A., Cassisi, S., et al. 2018, ApJ, 856, 125
Hinkel, N. R., Timmes, F., Young, P. A., Pagano, M. D., & Turnbull, M. C. 2014,

The Astronomical Journal, 148, 54
Huber, D., Ireland, M. J., Bedding, T. R., et al. 2012, ApJ, 760, 32
Izidoro, A., Ogihara, M., Raymond, S. N., et al. 2017, MNRAS, 470, 1750
Johnson, M. C., Endl, M., Cochran, W. D., et al. 2016, ApJ, 821, 74
Jones, B. W., Sleep, P. N., & Underwood, D. R. 2006, ApJ, 649, 1010
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Appendix A: Selected log (g) and metallicity from
literature.

Table A.1: Parameters used to derive the log (g) and [Fe/H] of
Table 3.

Teff [K] log (g) [dex] [Fe/H] Reference
5100 4.40 0.10 Heiter & Luck (2003)
5100 4.65 0.04 Luck & Heiter (2006)
5100 4.65 0.04 Luck & Heiter (2005)
4798 4.55 - Gray et al. (2003)
4732 4.37 0.09 Boeche & Grebel (2016)
4858 4.67 - Maldonado et al. (2015)
5044 4.58 0.04 da Silva et al. (2015)
4900 4.20 0.05 Mishenina et al. (2013)
4833 4.59 0.00 Ramı́rez et al. (2013)
4889 4.60 0.10 Mishenina et al. (2012)
4833 4.59 0.00 Ramı́rez et al. (2012)
- - 0.10 Maldonado et al. (2012)
4851 4.37 0.07 Lee et al. (2011)
4715 4.57 0.06 Prugniel et al. (2011)
4710 4.50 0.20 Frasca et al. (2009)
4913 4.51 0.08 Soubiran et al. (2008)
4825 4.62 0.05 Ramı́rez et al. (2007)
4835 4.56 0.12 Valenti & Fischer (2005)
4900 4.20 0.05 Mishenina et al. (2004)
4743 4.63 0.12 Allende Prieto et al. (2004)

Notes. We took into account the values given in the CDS database, re-
moving those which were redundant and obtained before 2000.
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