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ABSTRACT

One key challenge to create believable embodied conversational
agents (ECA) is to produce engaging behavior - and feedbacks (short
verbal, vocal and gestural reactions produced when hearing the
main speaker) play an important role. In this paper we propose a
machine learning-based model for multimodal feedbacks. The goal
is to learn, from a corpus of human-human interactions, when a
virtual agent should display a feedback along with its type. And
to be feasible, an important aspect is to be able to process them in
real time, using reliable features. For this purpose, we used random
forests with different features, using annotated corpora of task-
oriented interactions. Our case study is the context of training
doctors to break bad news to a patient (played by an actor or by the
ECA). The performance of the method highlights the capacity to
predict verbal and non-verbal feedbacks based on a small number
of features characterizing temporal information, in particular, the
silence and the position of the last feedback.
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1 INTRODUCTION

In the intelligent virtual agent domain, several machine learning
models have been proposed to automatically determine the feed-
backs of virtual agents during an interaction, using human-human
interaction datasets as training corpora and most commonly based
on verbal and prosodic features [12, 20]. These approaches sup-
pose an accurate system to automatically recognize speech and
prosody. That makes the overall model’s performance dependent
on the individual performances of speech and prosody recognizers.
As a consequence, one challenge remains to identify features that
could be easily and accurately recognized during a human-machine
interaction for predicting virtual agents’ feedbacks in real time.

Several works have been conducted to implement into ECA the
possibility to generate appropriate feedbacks during an interaction
(e.g. [5, 19] - both of them express verbal and nonverbal feedbacks
during interactions - e.g. “mhm” or head nodes). In [9] logistic re-
gression was applied to predict verbal feedback in the context of
simulations of counseling sessions (n=38), using prosody and lin-
guistic features from the dialogues, in a 4 binary-classes approach
after the end of each IPU (accuracy: 64.3%, precision, recall, and
F1-score: 0.643), with a low recall for verbal feedbacks. Ruede et al.
[17] applied LSTM networks to detect feedbacks based on acous-
tic features (power and pitch), in different time windows, in the
context of telephone conversations (n=2348), with best results of
precision=0.305 and recall=0.488 (F1-score: 0.375). Meena et al. [11]
elicited prosodic, contextual, and syntactic features, with different
combinations of machine learning algorithms. The context was an
artificial task of a user describing a route to a computer, with 10
participants (2272 IPUs) and two possible outcomes (feedback, no
feedback) at the end of each IPU (accuracy: 84.64%, using Naive
Bayes classifier).

In this study, our objective is then to propose a set of features
that could be used to learn the feedback model of an individual and,
then, be replicated on a virtual agent.

2 FROM SEQUENCES TO TEMPORAL
FEATURES LEARNING
2.1 Multimodal corpus

We used an audio-visual corpus comprised of real training sessions
(avg. 15 min) between doctors, being trained, and patients (trained
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actors! following a script) for breaking bad news. The corpus con-
sists of 11 videos, with different patient-doctor dyads (119 min).
The videos were automatically segmented into IPUs using SPPAS
[2] and manually transcribed using PRAAT [3]. The doctors’ and
patients non-verbal behaviors have been manually annotated us-
ing ELAN [18]. The part-of-speech (POS) tags were automatically
identified using MarsaTag [16].

Different gestures of both doctors and patients have been anno-
tated: head movements, posture changes, gaze direction, eyebrow
expressions, hand gestures, and smiles. More details on the corpus
are presented in [13]. Three annotators - paid graduate students in
linguistics - coded the corpus, with 5% double-checked for valida-
tion (Cohen’s Kappa=0.63).

2.2 Segmentation and sequence extraction

Turn-taking is of great relevance to improving human-machine
interaction [6] and often used to used to segment conversations. As
such, we consider Inter-Pausal Units (IPU) as relevant for measuring
speech production of speakers in a dialog. It corresponds to the
speech of each speaker bounded by silent pauses. Thus, the videos
were segmented into IPUs, supposing that the end of an IPU can be
a potential completion of a turn where the interlocutor can provide
a feedback response. In our corpus, there are 3882 doctor’s IPUs,
from the 11 dyads.

Each doctor’s IPU may contain zero or many feedbacks from
the patient. Thus, we considered the patient’s feedbacks inside the
IPUs to build sequences of signals by going through all the IPUs and
considering : 1) all the doctor’s signals that started during the IPU
timespan, 2) all the doctor’s signals that started before and ended
after the IPU, 3) all patient’s signals that started during the IPU and
all patient’s signals that occurred until 1s after the end of the IPU
(derived from [7]). As some IPUs can be very long, we limited the
total number of verbal tokens to the last five ones (cf. [15]) — the
non-verbal signals did not present this limitation. As a result, we
had a database of sequences, composed by a set 5547 sequences.

Each sequence, used here as unit of analysis, is therefore com-
posed by a set of ordered doctor’s verbal and non-verbal signals
that can end by a patient’s feedback. Based on studies on feedbacks,
both in linguistics and in the domain of virtual agents [4, 6, 10], we
have focused on the following feedback types: head movements,
hand gestures, eyebrows movements, smiles, posture changes and
gaze direction. Concerning the verbal feedbacks, we base our work
on [14] that have constituted a list of French verbal expressions fre-
quently used as feedback (e.g. “oui” (yes), “hmm”, “euh”, “d’accord”
(ok), “non” (no) ...). Note that a sequence may have “no feedback”
at all. Following Bertrand et al. [1], we only retained nouns, verbs,
adjectives, and adverbs. We also added medical specific terms (iden-
tified based on a dictionary of French medical termsz). In this work,
only the category of the words were used (nouns, verbs, adjectives,
adverbs, medical terms), not its actual value.

2.3 Features creation

2.3.1 Feature representation. To capture the nuances regarding the
temporal aspects, we developed a structured model, considering the

IFor ethical reasons, it is not possible to videotape real breaking bad news situations.
2 https://www.vocabulaire-medical fr/

following summarized features: 1) the last doctor’s silent pause, 2)
the first and last signals in the sequence. We chose these relational
features because the sequences had variable lengths (avg. 4 signals,
sd: 4.1), rendering difficult to model absolute positions properly. In
some cases, where there is only one signal in the sequence, both
carry the same values. For each of these features, we collected: its
duration, the relative difference between its start and the feedback’s
start, the relative difference between its end and the feedback start,
and the label of the signal (eg.: ‘head movement’, ‘posture’, etc.).
The silent pause is an important cue for feedbacks [7] and it is
also relatively a simple feature to detect automatically, in a rea-
sonably controlled environment, so we also used it. In addition,
we also considered information regarding the occurrence of the
last patient’s feedbacks, in two conditions: the last feedback that
already ended and the last feedback that started. Both of them may
refer to the same feedback, but there are sometimes, where there is
multimodal feedback, where two or more feedbacks are elicited in
conjunction (i.e. feedback may have started close to the reference
feedback, but ended after). These features were selected due to the
empirical observation that some feedbacks occur more spaced than
others, which may occur in ‘bursts’, i.e., multiple times in a short
period of time.

2.3.2  Features selection. A single feedback category is associated
with each sequence (multiclass classification): verbal feedback, hand
gesture, gaze direction, head movement, posture, eyebrows expres-
sion, smile, no feedback. In order to select the set of optimal features,
we applied an iterative backward selection procedure, based on the
accuracy, by removing the feature with the lowest attribute impor-
tance value given by the random forest algorithm in each iteration,
until no more improvement is observed in the accuracy.
The optimal set of features comprised five features:

(1) The duration (in seconds) of the last doctor’s silent pause;

(2) Time (s) since the last doctor’s silent pause ended, relative
to the start of the feedback;

(3) Time (s) since the last doctor’s silent pause started, relative
to the start of the feedback;

(4) Time (s) since the last patient’s feedback started;

(5) Time (s) since the end of the last patient’s feedback;

3 FEEDBACK PREDICTION BASED ON
TEMPORAL FEATURES

We used three baselines to evaluate the model built in the previ-
ous section. Firstly, a baseline which always outputs the majority
class (head movement, 48,4% of instances). In the second case, we
consider only the presence or absence, encoded as 0 or 1, of the cat-
egories of doctor’s signals in the sequence (11 categories). The third
baseline considered the same modalities as columns, but for each
one of them we considered continuous values for i) the duration of
the signal, ii) the relative timespan from its start and the start of
the sequence’s feedback and iii) the relative timespan from its end
and the start of the sequence’s feeback (a total of 33 columns). The
modalities not present in the sequence received null values.

For classification, Random Forest was applied equally to all cases
(except for the majority class baseline) since it performs well in
similar tasks, with multivariate data from symbolic time sequences



[8]. The proposed model and the baseline were cross-validated by
10 folds, independently of the dyads.

The corpus was very unbalanced. In this regard, we also tested a
balanced version of the dataset, by considering a technique of cost-
sensitive classifier, justified because we did not want to oversample
or downsample the original corpus since it is already small.

Table 1 shows the performance of the proposed method and
the baselines over the multimodal corpus. The selected features,
in conjunction with the random forest classifier, improved sig-
nificantly the results. The balancing of the corpus did not show
improvements on the performance metrics, evidencing the ability
of random forests to handle the unbalanced dataset.

Table 1: Cross-validation evaluation of the proposed method
and the baseline ones on the human-human corpus.

Accuracy | Precision | Recall | Kappa
Majority class 0.484 - - 0
Presence-based 0.447 0.303 0.447 0.01
Rel. timespans 0.478 3 0478 | 0.03
Prop. model 0.705 0.700 0.705 0.55
Prop. method + 0.518 0.593 0.518 0.45
balancing

The results show that the model proposed in this study can
capture the variability of the feedbacks with reasonable accuracy
(an improvement in accuracy of 57.7% over the presence-based
algorithm and 45.6% over the majority class classifiers). This a good
result considering the number of classes to be predicted (eight).
However, some feedbacks were better predicted than others. In
particular, the smile feedback and the 'no feedback’ need further
improvements in future works.

4 DISCUSSION

The main contribution of this study is to provide a set of simple
and robust features for the prediction of virtual patient’” feedbacks
in breaking bad news. The selected features do not require complex
processing for real-time detection, which depends a lot on the
accuracy of the recognition algorithms and their execution time.
Although not directly comparable, the performance of the method
proposed outperforms the existing ones, in simpler settings of clas-
sification. For example, Kawahara et al [9] reported precision and
recall values of 0.643 to predict, using more complex linguistic and
prosodic features for five classes. Meena et al [11] obtained 84.64%
of accuracy in a binary classification (feedback or not) in an arti-
ficial task, using a large set of prosodic, syntactic and contextual
features. The same classes were predicted, in the context of tele-
phone conversations, with an F1-score of 0.375. These studies used
the IPUs segmentation for the prediction of the feedback (binary or
multiclass), using verbal feedbacks at the end of it. In this work we
used a more fine-grained method, considering not only the IPUs
but sequences inside it, which capture verbal and non-verbal cues
which occur while the doctor is speaking. In this setting, we ob-
tained an accuracy of 70.5% (precision: 0.7 and recall: 0.705, F-1
score: 0.691) in our multimodal corpus of natural interactions in
the context of doctor-patient dialogue. To our knowledge, this is

the first study that explores the temporality of the cues to predict
the feedbacks. As future work, we plan to integrate the model into
the virtual agent to test its performance during interactions, i.e. to
ensure that the predictive model provides believable feedbacks be-
havior to the agent according to the user involved in an interaction
with the virtual agent.
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