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ABSTRACT

In this paper we discuss the issues of using inexact and in-
accurate ground truth in the context of supervised learning.
To leverage large amounts of Earth observation data for train-
ing algorithms, one often has to use ground truth which was
not been carefully assessed. We address both the problems of
training and evaluation. We first propose a weakly supervised
approach for training change classifiers which is able to de-
tect pixel-level changes in aerial images. We then propose a
data poisoning approach to get a reliable estimate of the ac-
curacy that can be expected from a classifier, even when the
only ground-truth available does not match the reality. Both
are assessed on practical land use and land cover applications.

Index Terms— Weakly supervised learning, noisy data,
Earth observation, change detection, data poisoning.

1. INTRODUCTION

Many of the recent advances in image understanding rely on
machine learning algorithms which require large amounts of
training data. More and more data are now online, but data
which can be used for learning are scarce! Indeed, training
data for learning a given task should be associated with infor-
mation which indicates the desired output. For several Earth
observation (EO) tasks, such as change detection or object
recognition, very large labelled datasets which go beyond aca-
demic efforts are not easily available, mainly because manu-
ally annotating images for a task such as semantic segmenta-
tion can be very time consuming, and therefore costly.

One line of work that has gained traction recently is the
field of weakly supervised learning, where the aim is to use la-
bels that are easier to obtain to learn a more complex task [1].
Many strategies have thus been proposed to leverage large
amounts of data at a cheaper cost. The first one is cross-
referencing open datasets in order to create ground truth la-
bels, such as mixing imagery with OpenStreetMap (crowd-
sourced) or land lot information. It usually results in inexact
supervision, because different sources imply different con-
cepts: true land cover, administrative partition (parcels), user-
oriented classes (see Fig. 1(c)). Second, another kind of inex-
act supervision is when one manually annotates datasets using
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Fig. 1. Image (a) and various types of reference data: visual
ground truth (b), parcels (c), objects detection boxes (d), and
noisy visual annotation (e).

labels that are simpler to obtain than the final desired task,
such as bounding boxes or image level tags for objects [2,
3, 4] (see Fig. 1(d)). Inaccurate supervision consists in us-
ing uncontrolled labels which might be noisy or false [5], for
instance the results of an automatic process (see Fig. 1(e)).
Actually, Earth observation questions the notion of defining
a ground-truth: precise geo-localised cartography and images
may differ due to incidence artefacts and ortho-rectification
processes. How can a reference be defined?

These methods result in datasets that are very challenging
in their usage for supervised learning. Automatically gener-
ated data and user provided data contain more noise than data
annotated by trained analysts. Simpler types of annotations
bring with them the challenge of training systems that under-
stand the provided information and go further than what the
given examples initially allowed.

In this paper we discuss these problems in the context of
remote sensing. The first method, presented in Section 3,
helps at training with inexact weak labels and is based on
data cleaning. We assess the approach on a change detec-



tion problem with automatically generated labels. Then, we
show in Section 4 how ideas from data poisoning can give
us insights into the effects of label noise, allowing us to es-
timate upper and lower bounds on the performance of algo-
rithms even when the only ground-truth available cannot be
trusted.

2. RELATED WORK

The sensitivity of deep learning to label noise (inaccurate
supervision) has been a topic of attention recently [5]. Lu
et al. [4] proposed a method that performs weakly super-
vised learning for semantic segmentation that is robust to
label noise by formulating the problem as a label noise re-
duction method based on L1 optimisation. Rolnick et al. [6]
have shown that deep learning algorithms are quite robust to
random label noise and proposed solutions to minimise the
effect of label noise on the training process, such as increas-
ing training batch size. Yet, this work has assumed unbiased
label noise which is not always a valid assumption. Muoz-
Gonzlez et al. [7] show that optimised noise can lead to large
accuracy gaps.

Recent advances have been made in performing seman-
tic segmentation from several types of weak labels (inexact
supervision): points labels [3], image labels [4], and bound-
ing box labels [2]. Khoreva et al. proposed in [2] recursive
training schemes and showed that a naive recursive training
scheme led to a decline in performance and obtained best re-
sults by applying problem heuristics to generate a training se-
mantic segmentation dataset directly using an image classifi-
cation network and class activation maps.

Supervised learning has a long history in remote sensing.
It was proven efficient for land use and land cover classifica-
tion [8]. Supervised learning techniques have been shown to
perform change detection when it is treated as a semantic seg-
mentation problem [9, 10]. In this context, open datasets are
either small compared to other computer vision datasets [11,
9] or large in size but containing noisy labels [10].

3. THE PROBLEMS WITH TRAINING

The dataset presented in [10] is the first large scale dataset in
the context of change detection. High resolution aerial image
pairs were combined with openly available land cover vector
data to generate pixel level labels for land cover maps and
change maps. Three main sources contribute to label noise:

• The polygons used for generating the ground truth
rasters are not true to the boundaries of the objects,
they mark the land lots inside which a change has
occurred (parcel case shown in Fig. 1(c)).

• There are mild discrepancies between the dates when
the pictures were taken and when the vector maps were

generated, and neither of these dates are available with
the data.

• There are inaccuracies already present in the Urban At-
las data, as only 80-85% accuracy is guaranteed.

Using these data directly to train a change detection net-
work works, but the output of the network consists of blobs
around detected changes as it implicitly attempts to predict
land lot information from the image [10]. With the aim of
making more accurate change detections, we propose an iter-
ative training scheme that builds upon the ideas proposed in
[2]. Khoreva et al. have shown that simply using the output
of the network as training data for itself results in a decrease
in performance, but using problem specific heuristics between
training iterations can lead to increases in performance. Many
of the heuristics originally proposed in [2] are not applicable
to the current problem as bounding box information is not
available. Another difference is that in the case of this dataset
a single polygon may contain several change objects while
that is not the case for bounding boxes, which are assumed to
contain a single object of a given class.

We propose an iterative training method that alternates
between 1) training a fully convolutional neural network
(FCNN) until convergence, and 2) using agreement between
predictions and labels to clean the training data. The FCNN
that was used here was the integrated terrain classification
and change detection architecture referred to as Strategy 4.2
in [10]. For the sake of simplicity, only the change detec-
tion branch of the network is discussed here. For cleaning
the data, three approaches were tested. If both the network
prediction and the initial ground truth information agree on
the pixel class, there is no reason to change it. If there is a
disagreement, it is necessary to choose how to combine these
sources of information.

1. Mark all disagreements - false positive (FP) and
false negatives (FN) - as no change (NC): the moti-
vation for this is the assumption that all disagreement
come from overestimation of changes by either the
ground truth or the current network (FP+FN7→NC).

2. Mark all disagreements as ignore (I): it aims to dis-
card all pixels where the network and the ground truth
disagree in order to perform training using only pixels
of whose labels we are confident (FP+FN7→I).

3. Mark false detections as no change and false neg-
atives as ignore: this hybrid strategy merges the
two previous ideas into a single policy that assumes
the network overestimates changes, but relies slightly
more heavily on the original ground truth information
(FP 7→NC, FN7→I).

Figure 2 shows results obtained by the iterative training
method for various scenarios. (a-b) and (h-i) are coregistered
image pairs that are about six years apart. (c) and (j) contain
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Fig. 2. Change detection results. (a)-(b) and (h)-(i): image pairs. (c) and (j): inaccurate ground truth labels. (d)-(g) and (k)-(n):
predictions of FCNNs trained using the proposed iterated training strategies overlaid on original ground truth.

the initial ground truth labels obtained from Urban Atlas vec-
tor maps. Note that while changes actually occurred inside the
marked areas, the boundaries are not precise and each region
contains different types of changes, i.e. buildings, parking
lots, roads, trees, etc.

Fig. 2 (d) and (k) display the change detection results from
the network trained until convergence, i.e. 100 epochs, using
only the initial ground truth labels. We then iterated the clean-
ing of the training dataset with further training of the network
for 100 more epochs, repeating this process four times. To
ensure an accurate comparison of methods, the same starting
point was used for the FCNN weights on all tests. The re-
sults for methods 1, 2, and 3 for cleaning the training set are
displayed in (e/l), (f/m), and (g/n) respectively. From these
images we can see that FP 7→NC, FN7→I, which combines the
usage of an ignore class while prioritising ground truth data
over network predictions, is able to learn through this itera-
tive learning method to more accurately detect changes. Note
in (g) how a patch of unchanged grass is no longer marked
as change despite being surrounded by true changes, and in
(n) how it was able to accurately mark the new pathway as
a change without marking its surroundings as change. These
results show clear improvements over the naive supervised
training method.

4. THE EVALUATION PROBLEM

Another important question is how can we evaluate algo-
rithms when only noisy data are available. For the evaluation
of an already trained model, the issue is that if the available
testing ground truth is not perfect, quantitative measures do
not really reflect a given classifier’s performance. For exam-
ple, in the semantic segmentation context, producing a perfect
visual prediction (e.g. Fig. 1(b)) will not lead to a 100% accu-
racy if ground truth is noised (e.g. Fig. 1(e)). More precisely,

if a classifier has a true accuracy of µ%, and if ρ% of pixels
have noisy labels in test set, then it follows that the measured
accuracy is bounded in [µ − ρ, µ + ρ]%. Of course, in some
semantic segmentation datasets it is standard for edge labels
to be discarded at testing time to calculate a fair metric, since
edge pixels’ labels are prone to being unreliable. Such ad hoc
corrections can not be trivially designed for change detection
based on a parcel ground truth (see Fig. 1(c)), and it may be
dangerous to conclude the superiority of some methods over
others using such quantitative metrics.

This problem is even more important when comparing
different models. Let us consider two feature extractors: 1)
a U-Net [12] cut before the last layer trained for semantic
segmentation on a different dataset, and 2) a U-Net trained
for auto encoding. In an attempt to know if one is better
than the other to train an SVM considering any possible value
of edge pixel labels, the minimal and maximal accuracies of
each feature-SVM pipeline can be approximated by modify-
ing edge pixel labels. We propose the application of data poi-
soning algorithms to estimate these bounds (see Fig. 3). The
bound is obtained by:

• Considering the best/worse reachable classifier, e.g. by
applying the training process to the testing data.

• Applying the best/worse classifier to the training data.

• Modifying training labels at the edges according to the
best/worse classifier.

• Training from modified training data and measuring ac-
curacy on testing data.

By modifying some training labels, we bend the energy land-
scape to make the training lead to a classifier closer to the best
or worse one, eventually approximating a bound on accuracy
of each feature-SVM pipeline according to edge pixel labels.



Fig. 3. Illustration of our procedure to bound accuracy gap
due to the label noise. Poisoning is computed using test set
and applied to training set, which leads to lower and upper
bounds of test accuracy.

We show the feasibility of this algorithm using data from
the Data Fusion Context 2015 [8]. We learn the last layer
of the pretrained U-Net by stochastic gradient descent on
image 315135 56865 where the labels of edge pixels are
modified. Then, we evaluate the resulting U-Net on image
315140 56865. By modifying the pixels close to boundaries
(4% of pixels), accuracy changes by as much as +4% to -6%,
yielding an approximate bounds of the features accuracy.

A limitation of the proposed method is that the computa-
tion of the quality of the bound approximation is not trivial.
Currently, state-of-the-art methods offer stronger ways to ap-
proximate such bounds only for convex and global classifiers.
Indeed, the computation of our bounds would likely be better
if the last layer were trained with state-of-the-art solvers like
liblinear rather than with SGD. Unfortunately, encoding even
only one these images leads to a 5 GB file intractable for these
solvers. Also, the question of computing bounds for a com-
plete deep network and not just for a feature-SVM pipeline
seems theoretically feasible but intractable in practice [7].

Even if currently limited to few use cases, we highlight
the usefulness of data poisoning tools to evaluate the impact
of the noise at training time for semantic segmentation and
the difficulty to quantify the performance of algorithms using
ground truth with very different natures than visual ground
truth. The calculated bounds contain not only an estimate
of an algorithm’s performance, but it also reflects our uncer-
tainty regarding the calculated metric, which prevents us from
being overconfident in the metrics when using them for com-
parisons or making decisions.

5. CONCLUSION

In this paper we discussed the problem of labelled data in the
context of Earth observation image understanding. We ana-
lysed the sensitivity of supervised learning systems to noise

in the data available for training and testing. We showed an
example of how using problem specific heuristics to improve
the training procedure can improve the obtained results. We
also proposed a method that allows us to estimate the upper
and lower bounds of the metrics used to evaluate and compare
such algorithms. These ideas are essential to go beyond su-
pervision and develop algorithms for EO data understanding.
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