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Abstract. The behaviour of the tails of the invariant distribution for
stochastic differential equations driven by an asymmetric stable Lévy pro-
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1. INTRODUCTION

The goal of this paper is to extend a result obtained by Samorodnitski and
Grigoriu in [8]. The authors consider the stochastic differential equation

(1.1) dXt = dLt − f(Xt)dt, X0 = x,

where f is a function which is regularly varying at infinity and L is a symmetric
Lévy motion and they study the exact rate of decay of the tail probabilities of the
random variables Xt, t > 0. The proof in [8] is technical and in Remark 3.2, p. 76,
the authors conjecture that their main result remains true without the assumption
of symmetry of the Lévy process. The present paper (Section 2) contains a proof
of this conjecture and we reduce the technical difficulties announced in the cited
remark by assuming that the Lévy process is α-stable. More precisely, we assume
that X is a solution of the stochastic differential equation

(1.2) dXt = d`t − f(Xt)dt, X0 = x,

where ` is the asymmetric α-stable Lévy process with its Lévy measure given by

(1.3) ν(dz) = |z|−1−α
[
a−1{z<0} + a+1{z>0}

]
dz.

Here α ∈ (0, 2) \ {1}, a+ 6= a− and x is a real number.
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Dynamics of some integrated processes driven by Lévy noises appears in fi-
nancial mathematics models or in physics. Moreover, diffusions in heterogeneous
materials or prices in finance could be modelled by using stochastic differential
equations driven by asymmetric Lévy noises (see for instance [9]). In [3] a scaling
limit of the position process whose speed satisfies a one-dimensional stochastic
differential equation driven by an α-stable Lévy process, multiplied by a small pa-
rameter ε > 0, in a potential of the form a power function of exponent β + 1 was
studied. Precisely, one considers the stochastic differential equation

(1.4) dvεt = εd`t − |vεt |βsgn(vεt )dt, vε0 = 0,

and assume that ` is an α-stable Lévy noise. It was proved that, when the driving
noise ` is a symmetric stable process and by taking a natural scaling of the position
process xεt =

∫ t
0
vεtdt, there is convergence in distribution toward a Brownian mo-

tion. One can wonder if this still stays true when ` is an asymmetric α-stable Lévy
noise. To get the limit in distribution as ε→ 0, of the position process one needs
to know the exact rate of decay of the tail probabilities for the speed process (see
also [2], §4, pp. 70-80).

Let us end this section by introducing some notations and by stating our re-
sults. In the following we will always assume that ` is the asymmetric α-stable
Lévy process having its Lévy measure given by (1.3), with α ∈ (0, 2) \ {1}, a+ 6=
a− and a+ 6= 0 and a− 6= 0.

Let f : R→ R be a non-decreasing function with f(0) = 0 which is regularly
varying at +∞ with exponent β > 1 : for all a > 0, lim

x→+∞
f(ax)
f(x) = aβ . The func-

tion f could be supposed equally regularly varying at −∞ with exponent β1 > 1,
but one can only assume, that for all x > 1, f(−x) 6 −κxβ1 , for some constants
κ > 0 and β1 > 1 (see also Remark 5 and Step 9 in the proof of Theorem 1 below).
Finally, we will assume furthermore that f is a locally Lipschitz function.

Recall that the process X satisfies

(1.5) Xt = x+ `t −
t∫
0

f(Xs)ds, t > 0.

Let us note that the existence and the uniqueness of a global solution for the equa-
tion (1.5) is justified in [8] for a general Lévy driven noise, and it is a consequence
of Theorem 6.2.11, p. 376 in [1] (see also Proposition 1.2.10, p. 27 in [2]). Our
main result is the following:

THEOREM 1. We assume all the previous hypotheses on the function f , and
we denote, for all u > 0,

(1.6) h(u) :=
+∞∫
u

ν((y,+∞))

f(y)
dy .
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Then we have

(1.7) lim
u→+∞

Px(Xt > u)

h(u)
= 1,

uniformly with respect to x ∈ R and t > 1.

As a consequence we obtain the behaviour of the tail for the invariant probabil-
ity measure. According to Proposition 0.1, p. 604 in [5], and under the assumptions
on the function f , the exponential ergodicity of the solution X of (1.1) is insured.
Moreover its unique invariant probability measure, denoted by mα,β , satisfies

(1.8) ∀x ∈ R, ‖Ptx −mα,β‖TV = O(exp(−Ct)), as t→∞,

where Ptx is the distribution of Xt under Px and ‖ · ‖TV is the norm in total varia-
tion. In other words, by using the definition of the norm in total variation

∀x ∈ R, sup
u>0
|Px(Xt > u)−mα,β((u,+∞))|

6 sup
B∈B(R)

|Px(Xt ∈ B)−mα,β(B)| 6 κe−Ct,

for some constants κ and C. Therefore, letting t→∞ in Theorem 1, we get:

COROLLARY 2. Under the same assumptions as in Theorem 1, we have

(1.9) lim
u→+∞

mα,β((u,+∞))

h(u)
= 1.

2. PROOF OF THEOREM 1

We split the proof of Theorem 1 in several steps.
Step 1. Introduce, for σ > 0 and for some c > 0 to be chosen, the Lévy process
`(σ) with the following small jumps prescribed by the Lévy measure

(2.1) ν(σ)(dz) = |z|−1−α
[
a−1{z<−σ} + a+1{z>cσ}

]
dz.

The process `(σ) has a finite number of jumps on each finite interval of time. Denote
by Tj the time when the j-th jump occurs (with the convention T0 = 0) and by
W

(σ)
j its size. The random variables (W (σ)

j ) are i.i.d. and, by using the underlying
compound Poisson process (see for instance Theorem 2.3.10, p. 93 in [1]), the
probability density of W (σ)

1 is given by
(2.2)

z 7→ 1

λσ
|z|−1−α

[
a−1{z<−σ} + a+1{z>cσ}

]
, with λσ :=

σ−α

α
(a− + a+c

−α).
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We will choose the constant c such that, for all y and σ,

E
(
W

(σ)
1 1{−y6W (σ)

1 6cy}) = 0.

Hence, by (2.2) we find 1
λσ

(
− a− + c1−αa+

)(
y1−α − σ1−α

)
= 0, for all y and σ.

We deduce that the only possible value of the constant is

(2.3) c =
(a−
a+

)1/(1−α)
.

Let us point out that, by the definition of ν(σ), for u > cσ > 0,

(2.4) ν(σ)
(
(u,+∞)

)
= ν

(
(u,+∞)

)
=: ρ(u).

Step 2. Let us denote

(2.5) X
(σ)
t = x+ `

(σ)
t −

t∫
0

f(X(σ)
s ) ds, t > 0.

According to Theorem 19.25 in [4], p. 385, X(σ) converges in distribution to X ,
as σ tends to 0. To get (1.7) it is enough to prove that there exists σ0, such that,

(2.6)
∣∣Px(X(σ)

t > u)

h(u)
− 1
∣∣ 6 o(1), as u→ +∞,

uniformly in x ∈ R, σ 6 σ0 and t > 1.

Step 3. The ordinary differential equation, starting from an arbitrary x > 0,

(2.7) x(t) = x−
t∫
f(x(s))ds, t > 0

has a unique solution. As in [8], p. 93, we introduce, for all u > 0

(2.8) g(u) :=
+∞∫
u

1

f(y)
dy .

This function is clearly finite, non-negative, continuous and strictly decreasing for
large u. Let us fix 1 6 s 6 t. It is no difficult to see that the solution of (2.7) is
non-increasing and satisfies g(x(t)) = g(x(s)) + t− s. In particular,

(2.9) ∀u > 0, if x(t) > u, then g(u) > g(x(t)) > t− s.

At this level let us recall an important result from [8] (see Lemma 5.1, p. 94).
LetA > 0 and denote by y, the solution of the deterministic equation (2.7) on each
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interval of the form (Si−1, Si) with 0 = S0 < · · · < Sn < A but with jumps at
time Si of a size ji. More precisely

(2.10) y′(t) = −f(y(t)) on (Si−1, Si), and y(Si) = y(S−i ) + ji, y(0) = x.

As previously, it is not difficult to see that y satisfies g(y(A)) = g(y(Sn)) + A−
Sn and in particular, for any u > 0, if y(A) > u, then A− Sn 6 g(u). Moreover,
one can compare the solution x of (2.7) with y:

− max
k=1,...,n

( n∑
i=k

ji
)
− 6 y(A)− x(A) 6 max

k=1,...,n

( n∑
i=k

ji
)
+
.

We set, for a > 0,N(a) = sup{i 6 n : ji+ · · ·+ jn > a} (=0 if the set is empty).

Therefore max
N(a)+16k6n

( n∑
i=k

ji
)
6 a. Let t ∈ [SN(a), A] be such that y(t) 6 b, then

the solution of (2.7) starting at t from y(t) satisfies x(A) 6 b, since x(·) is a non-
increasing function. We deduce that in this case

y(A) 6 x(A) + max
N(a)+16k6n

( n∑
i=k

ji
)
6 a+ b,

in other words,

(2.11) for t ∈ [SN(a), A] such that y(t) 6 b, we have y(A) 6 a+ b.

Step 4. For t > 1, denote by N (σ)
t the number of jumps of `(σ) during the interval

[0, t] and define, for all a < 0 and b > 0,
(2.12)
M

(σ)
1 (a, b) := sup{j 6 N (σ)

t :W
(σ)
j /∈ [a, b]}, and = 0 if the set is empty.

To simplify notations we will denote by τ1 := T
M

(σ)
1 (−εu,cεu) the time of the jump

with index M (σ)
1 (−εu, cεu). We can write

(2.13) Px(X
(σ)
t > u) = Px

(
X

(σ)
t > u, τ1 < t− g(δu)

)
+ Px

(
X

(σ)
t > u, τ1 ∈ [t− g(δu), t]

)
:= p1(u) + p2(u).

Let us fix s 6 t and for ε, γ, δ > 0 and u > 0, introduce the event

(2.14) Aε,γ,δ,u,s :=

 sup
16i6N(σ)

t
s−g(δu)6Ti6s

∑
i6j6N(σ)

t

W
(σ)
j 1{−εu6W (σ)

j 6cεu} > γu

 .

We can state the following lemma:
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LEMMA 3. If (1 ∨ c)ε 6 γ/4 then there exist u0(ε, γ, δ), σ0 and a positive
constant C(ε, γ) such that, for all u > u0(ε, γ, δ) and σ 6 σ0,

(2.15) Px(Aε,γ,δ,u,s) 6 C(ε, γ)g(δu)ρ(u)
γ/(4ε(1∨c)).

REMARK 4. Let us point out that the constants in (2.15) do not depend on t.

We postpone the proof of Lemma 3 and we proceed with the proof of our main
result.

Step 5. To begin with, we study the term p1 in (2.13). We can write

(2.16) p1(u) 6 Px(Aε,γ,δ,u,t) + Px(A
c
ε,γ,δ,u,t ∩ {X

(σ)
t > u, τ1 < t− g(δu)}).

By performing a similar reasoning as for(2.11) (see also (2.9)), we get,

X
(σ)
t 6 δu+ γu on the event Acε,γ,δ,u,t ∩

{
τ1 < t− g(δu)

}
.

By choosing δ + γ 6 1, the second term on the right hand side of (2.16) is equal to
0. Furthermore, assuming that (1 ∨ c)ε 6 γ/4, using Lemma 3, we see that there
exist u0(ε, γ, δ) and σ0 such that, for all u > u0(ε, γ, δ) and σ 6 σ0,

(2.17) p1(u) 6 Px(Aε,γ,δ,u,t) 6 C(ε, γ)g(δu)ρ(u)
γ/(4ε(1∨c)).

We analyse now the term p2 in (2.13). Let us introduce, for all a < 0 and b > 0,

(2.18) M
(σ)
2 (a, b) := sup{j < M

(σ)
1 (a, b) :W

(σ)
j /∈ [a, b]},

and again, to simplify, we set τ2 := T
M

(σ)
2 (−εu,cεu) the time of the jump with index

M
(σ)
2 (−εu, cεu). We can write

(2.19) p2(u) = Px
(
X

(σ)
t > u, τ1 ∈ [t− g(δu), t]

)
6 P

(
t− τ1 6 g(δu), τ1 − τ2 6 g(δu)

)
+ Px

(
X

(σ)
t > u, t− τ1 6 g(δu), τ1 − τ2 > g(δu)

)
=: p21(u) + p22(u).

Step 6. First, we estimate p21. SinceN (σ)
g(δu) has the same distribution as the number

of jumps of `(σ) in the interval [t− g(δu), t], we get

P(τ1 6 t− g(δu)) = P
(
∀ j ∈ {1, . . . , N (σ)

g(δu)}, −εu 6W
(σ)
j 6 cεu

)
.

By using the fact that N (σ)
g(δu) is a Poisson distributed random variable of parameter

λσg(δu) and is independent of the W (σ)
i , we deduce

P(τ1 6 t− g(δu)) = e−λσg(δu)
+∞∑
n=0

(λσg(δu))
n

n!
P(−εu 6W (σ)

1 6 cεu)n
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= exp
{
− λσg(δu)(1− P(−εu 6W (σ)

1 6 cεu))
}

= exp
{
− λσg(δu)P(W (σ)

1 /∈ [−εu, cεu])
}
.

Since

P
(
W

(σ)
1 /∈ [−εu, cεu]

)
=
c1−α + c−α

λσ
ρ(εu),

we get
P(τ1 6 t− g(δu)) = e−(c

1−α+c−α)g(δu)ρ(εu).

Since t− τ1 and τ1 − τ2 are independent and have the same distribution, we obtain

(2.20) p21(u) = P
(
t− τ1 6 g(δu), τ1 − τ2 6 g(δu)

)
=
(
1− e−(c1−α+c−α)g(δu)ρ(εu)

)2
6 (c1−α + c−α)2ρ(εu)2g(δu)2.

To estimate p22, we fix η that will be chosen later. We can write

(2.21) p22(u) 6 Px
(
X

(σ)
t > u, t− τ1 6 g(δu), X(σ)

τ1− 6 ηu
)

+Px
(
t− τ1 6 g(δu), X(σ)

τ1− > ηu, τ1 − τ2 > g(δu)
)
=: p221(u) + p222(u).

Step 7. We begin with the study of p221. We have

(2.22) p221(u) 6 Px(Aε,γ,δ,u,t)

+ Px
(
Acε,γ,δ,u,t ∩

{
X

(σ)
t > u, t− τ1 6 g(δu), X(σ)

τ1− 6 ηu
})

:= Px(Aε,γ,δ,u,t) + pmain(u).

By using Lemma 3, for all u > u0(ε, γ, δ) and σ 6 σ0,

(2.23) Px(Aε,γ,δ,u,t) 6 C(ε, γ)g(δu)(ρ(u))
γ/(4ε(1∨c)).

At this level let us call by xt the deterministic solution of (2.7) with initial value
X

(σ)
τ1− +W

(σ)

M
(σ)
1 (−εu,cεu)

. Therefore, g(xt) = g
(
X

(σ)
τ1− +W

(σ)

M
(σ)
1 (−εu,cεu)

)
+ t− τ1.

Moreover, for all u > u0, on the event

(2.24) Acε,γ,δ,u,t ∩
{
X

(σ)
t > u, t− τ1 6 g(δu), X(σ)

τ1− 6 ηu
}
,

we find, since g is decreasing, g(xt) 6 g
(
ηu+W

(σ)

M
(σ)
1 (−εu,cεu)

)
+ t− τ1. By using

(2.11), for all u > u0 on the same event (2.24), we get

u < X
(σ)
t < xt + γu, hence (1− γ)u < xt.
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Therefore, for all u > u0, on the event (2.24), the magnitudeW (σ)

M
(σ)
1 (−εu,cεu)

of the

jump at time τ1 should satisfy

t− τ1 + g
(
ηu+W

(σ)

M
(σ)
1 (−εu,cεu)

)
6 g((1− γ)u).

Hence, since g is positive and decreasing, we get

t− τ1 6 g((1− γ)u) and W (σ)

M
(σ)
1 (−εu,cεu)

> g−1(g((1− γ)u)− (t− τ1)− ηu).

At this level we assume that (1 ∨ c)ε+ γ + η < 1. For all s ∈ (0, g((1− γ)u)),

P
(
W

(σ)

M
(σ)
1 (−εu,cεu)

> g−1(g((1− γ)u)− s− ηu)
)

= P
(
W

(σ)
1 > g−1(g((1− γ)u)− s− ηu) | W (σ)

1 /∈ [−εu, cεu]
)

=
P
(
W

(σ)
1 > g−1(g((1− γ)u)− s− ηu)

)
P
(
W

(σ)
1 /∈ [−εu, cεu]

)
=
ρ(g−1(g((1− γ)u)− s)− ηu))

(c1−α + c−α)ρ(εu)
.

Since t− τ1 andW (σ)

M
(σ)
1 (−εu,cεu)

are independent and recalling that the distribution

of t− τ1 is exponential with parameter (c1−α + c−α)ρ(εu), we obtain

pmain(u) = Px
(
Acε,γ,δ,u,t ∩

{
X

(σ)
t > u, t− τ1 6 g(δu), X(σ)

τ1− 6 ηu
})

6
g((1−γ)u)∫

0

e−(c
1−α+c−α)ρ(εu)sρ(g−1(g((1− γ)u)− s)− ηu))ds

6
g((1−γ)u)∫

0

ρ(g−1(g((1− γ)u)− s)− ηu))ds.

We perform the change of variable y = g−1(g((1− γ)u)− s) and we get

(2.25) pmain(u) 6
+∞∫

(1−γ)u

ρ(y − ηu)
f(y)

dy 6
+∞∫

(1−γ)u

ρ(y(1− η/(1− γ)))
f(y)

dy

=

(
1− η

1− γ

)−α +∞∫
(1−γ)u

ρ(y)

f(y)
dy =

(
1− η

1− γ

)−α
h((1− γ)u).

Putting together (2.22), (2.23) and (2.25), we deduce, for all u > u0(ε, γ, δ) and
σ 6 σ0,
(2.26)

p221(u) 6

(
1− η

1− γ

)−α
h((1− γ)u) + C(ε, γ)g(δu)(ρ(u))γ/(4ε(1∨c)).
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It remains to estimate p222. Since τ1 − τ2 and t− τ1 are independent, we can split

p222(u) = P(t− τ1 6 g(δu)) · Px
(
X

(σ)
τ1− > ηu, τ1 − τ2 > g(δu)

)
.

We can write

Px
(
X

(σ)
τ1− > ηu, τ1 − τ2 > g(δu)

)
6 Px(Aε,γ,δ,u,τ1)

+ Px
(
Acε,γ,δ,u,τ1 ∩

{
X

(σ)
τ1− > ηu, τ1 − τ2 > g(δu)

})
.

By choosing γ, δ and ε small enough, we can assume that δ+ γ < η. By employing
the same argument used to estimate p1, we deduce

Px
(
Acε,γ,δ,u,τ1 ∩

{
X

(σ)
τ1− > ηu, τ1 − τ2 > g(δu)

})
= 0.

We use again Lemma 3 and the exponential distribution of t − τ1 with parameter
(c1−α + c−α)ρ(εu) to obtain that, for all u > u0(ε, δ, γ) and σ 6 σ0,

(2.27) p222(u) 6 C(ε, δ, γ, η)ρ(u)
(1+γ/(4(1∨c)ε))g(u)2.

Step 8. Finally, summarizing the inequalities (2.17), (2.20), (2.26) and (2.27), for
ε, γ, δ and η such that δ + γ < η < 1, (1 ∨ c)ε < γ/4 and (1 ∨ c)ε+ γ + η < 1,
there exist u0(ε, γ, δ, η) and σ0 such that, for all u > u0(ε, γ, δ, η) and σ 6 σ0,

Px(X
(σ)
t > u) 6

(
1− η

1− γ

)−α
h((1− γ)u)

+ (c1−α + c−α)2ρ(εu)2g(δu)2 + C(ε, γ, δ, η)g(u)ρ(u)γ/(4(1∨c)ε).

Since h is regularly varying at infinity with exponent 1 − α − β, g is regularly
varying at infinity with exponent 1 − β and ρ(u) is regularly varying at infinity
with exponent −α, choosing ε, γ, δ and η small enough, we get that for all ξ > 0,
there exists u0(ξ) such that, for all u > u0(ξ), all x ∈ R and all t > 1,

Px(X
(σ)
t > u)

h(u)
6 1 + ξ,

hence we have established the upper bound of the main result.

REMARK 5. At this level we note that, if instead of the regular variation at
infinity of the function f , we made only the assumption f(x) > f̂(x) for all x > A
for some function f̂ which is regularly varying at infinity with exponent greater
than one, we would still have the upper bound, for all ξ > 0, there exists u0(ξ)
such that, for all u > u0(ξ), all x ∈ R and all t > 1,

Px(X
(σ)
t > u)

ĥ(u)
6 1 + ξ with ĥ(u) =

+∞∫
u

ν((y,+∞))

f̂(y)
dy.
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Step 9. We proceed with the proof of the lower bound. For all ε < 1, δ < 1 and
η < 1, we get, by the strong Markov property and (2.11)

Px(X
(σ)
t > u) > Px

(
X

(σ)
t > u, τ1 > t− g(u(1 + δ)), X

(σ)
τ1− > −ηu

)
>

g(u(1+δ))∫
0

(c1−α + c−α)ρ(εu)e−(c
1−α+c−α)ρ(εu)sPx(X

(σ)
(t−s)− > −ηu)

×
+∞∫
cεu

Py−ηu(X
(εu)
s > u)

ν(dy)

(c1−α + c−α)ρ(εu)
ds.

Let us observe that X(σ) has, under Px, the same distribution as −X(σ) under the
distributionP−x, but with a drift f̂(x) = −f(−x) and an asymmetric driving noise
where the coefficients a+, a− in the expressions of its Lévy measure are inverted.
By using the hypothesis on f and Remark 5, we obtain that for all u > u0, for all
σ 6 σ0, all x ∈ R and all s < g(u(1 + δ)),

Px(X
(σ)
(t−s)− > −ηu) > 1− r(u),

where r is a function converging to zero. In the sequel, the function r can change
from line to line. Observe that, according to (2.11), in a similar manner as we
studied p1, if

(2.28) y > ηu+ g−1(g(u(1 + δ))− s)

then, under the distributionPy−ηu, the event
{
X

(εu)
s > u

}
contains, up to an event

of probability zero, the event Acε,δ,1+δ,u,t. Hence, for all s and y satisfying (2.28),
we get

Py−ηu(X
(εu)
s > u) > 1− Px(Aε,δ,1+δ,u,t).

Therefore, by using Lemma 3, for all σ 6 σ0 and u > u0(ε, δ),

Py−ηu(X
(εu)
s > u) > 1− r(u),

for all s and y satisfying (2.28), as long as ε is small relatively to δ. So, for all
ε < 1, δ < 1 and η < 1 such that ε is small relatively to δ, for all σ 6 σ0 and all
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u > u0(ε, δ),

Px(X
(σ)
t > u) >

g(u(1+δ))∫
0

e−(c
1−α+c−α)ρ(εu)sPx(X

(σ)
(t−s)− > −ηu)

×
+∞∫

ηu+g−1(g(u(1+δ))−s)
Py−ηu(X

(εu)
s > u)ν(dy)ds

> (1− r(u))2
g(u(1+δ))∫

0

e−(c
1−α+c−α)ρ(εu)sρ(ηu+ g−1(g(u(1 + δ))− s))ds

> (1− r(u))2e−(c1−α+c−α)ρ(εu)g(u(1+δ))
+∞∫

u(1+δ)

ρ(ηu+ y)

f(y)
dy

> (1− r(u))3
+∞∫

u(1+δ)

ρ(y(1 + η/(1 + δ)))

f(y)
dy

= (1− r(u))3
(
1 +

η

1 + δ

)−α
h(u(1 + δ)).

We conclude that, for all ξ > 0, choosing η, ε and δ small enough, there exist u0(ξ)
and σ0(ξ) such that

Px(X
(σ)
t > u)

ĥ(u)
> 1− ξ,

for all u > u0(ξ), all σ 6 σ0(ξ), all x ∈ R and t > 1. �

Proof of Lemma 3. Recall that we denoted ρ(u) = ν
(
(u,+∞)

)
and

λσ =
σ−α

α
(a− + a+c

−α).

Set q := a−
a−+a+c−α

. For all ε, u and σ, 0 is a quantile of order q for the random

variable W (σ)
1 1{W (σ)

1 ∈[−εu,cεu]} since, by using (2.2),

P(W
(σ)
1 1{W (σ)

1 ∈[−εu,cεu]} < 0) = P(W
(σ)
1 ∈ [−εu,−σ])

=
1

λσα
(a−σ

−α − a−(εu)−α) =
q

σ−α
(σ−α − (εu)−α) 6 q,

and

P(W
(σ)
1 1{W (σ)

1 ∈[−εu,cεu]} 6 0) = P(W
(σ)
1 6 −σ) + P(W (σ)

1 > cεu)

=
1

λσα
(a−σ

−α + a+c
−α(εu)−α) >

a−σ
−α

λσα
= q.
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Recall that N (σ)
g(δu) has the same distribution as the number of jumps of `(σ) in

[s− g(δu), s]. By using Theorem 2.1 p. 50 in [6], we get

Px(Aε,γ,δ,u,s) 6
1

q
P
(N(σ)

g(δu)∑
i=1

W
(σ)
i 1{W (σ)

i ∈[−εu,cεu]} > γu
)
.

Again we use the fact that N (σ)
g(δu) is a Poisson distributed random variable of pa-

rameter λσg(δu) and is independent of the W (σ)
i . By conditioning, we obtain

(2.29) Px(Aε,γ,δ,u,s) 6
1

q
exp(−λσg(δu))

×
∑
n>1

(
λσg(δu)

)n
n!

P
( n∑
i=1

W
(σ)
i 1{W (σ)

i ∈[−εu,cεu]} > γu
)
.

Recall that W (σ)
i 1{W (σ)

i ∈[−εu,cεu]} are i.i.d. random variables with expectation 0,

bounded by (1 ∨ c)εu, we can use Theorem 1 in [7], p. 201. We get

P
( n∑
i=1

W
(σ)
i 1{W (σ)

i ∈[−εu,cεu]} > γu
)

6 exp

− γ

2ε(1 ∨ c)
arcsinh

( γu2ε(1 ∨ c)
nVar

(
W

(σ)
1 1{W(σ)

1 ∈[−εu,cεu]}

))
 .

Furthermore, we can estimate

Var
(
W

(σ)
1 1{W(σ)

1 ∈[−εu,cεu]}

)
= E

(
(W

(σ)
1 )21{W(σ)

1 ∈[−εu,cεu]}

)
=

1

λσ

(
−σ∫
−εu

a−|z|1−αdz +
cεu∫
cσ

a+z
1−αdz

)
6
α(c1−α + c2−α)

λσ(2− α)
ε2−αu2ρ(u).

Setting Ĉ := (1∨c)(2−α)
α(c1−α+c2−α) , we can write

P
( n∑
i=1

W
(σ)
i 1{W (σ)

i ∈[−εu,cεu]} > γu
)

6 exp

[
− γ

2ε(1 ∨ c)
arcsinh

( Ĉεα−1γλσ
nρ(u)

)]
.
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Since arcsinh(x) ∼ log(x) when x → +∞, there exists a > 0 such that for all
x > a, arcsinh(x) > 1

2 log(x). Therefore, if n 6 Ĉεα−1γλσ
a ρ(u) , we get

Px
( n∑
i=1

W
(σ)
i 1{W (σ)

i ∈[−εu,cεu]} > γu
)

6 exp
[
− γ

4ε(1 ∨ c)
log
( Ĉεα−1γλσ

nρ(u)

)]
=
( nρ(u)

Ĉεα−1γλσ

)γ/(4ε(1∨c))
.

By injecting this result in (2.29), we obtain

(2.30) Px(Aε,γ,δ,u,s) 6
1

q

( ρ(u)

Ĉεα−1γλσ

)γ/(4ε(1∨c))
E
(
(N

(σ)
g(δu))

γ/(4ε(1∨c)))
+

1

q
P
(
N

(σ)
g(δu) >

Ĉεα−1γλσ
aρ(u)

)
.

It is no difficult to see that, if ξ is a Poisson distributed random variable, for all
p > 1, there exists Cp such that

Eξp 6 Cp
(
Eξ + (Eξ)p

)
.

Since (1 ∨ c)ε 6 γ/4, we can apply this result to N (σ)
g(δu) and we deduce

E
(
(N

(σ)
g(δu))

γ/(4ε(1∨c))) 6 C ′ε,γ(λσg(δu) + (λσg(δu))
γ/(4ε(1∨c))).

We obtain an estimate for the first term on the right hand side of (2.30): there exists
C(ε, γ) such that
(2.31)
1

q

( ρ(u)

Ĉεα−1γλσ

)γ/(4ε(1∨c))
E
(
(N

(σ)
g(δu))

γ/(4ε(1∨c))) 6 C(ε, γ)g(δu)ρ(u)γ/(4ε(1∨c)) .
To study the second term on the right hand side of (2.30), we set

ϑ := log
( εα−1γ

g(δu)ρ(u)

)
.

There exists u0(ε, γ, δ) such that for all u > u0(ε, γ, δ), ϑ is strictly positive. We
get, for all u > u0(ε, γ, δ),

P
(
N

(σ)
g(δu) >

Ĉεα−1γλσ
aρ(u)

)
= P

(
e
ϑN

(σ)
g(δu) > exp

(
ϑ
Ĉεα−1γλσ
aρ(u)

))
6 exp

(
(eϑ − 1)λσg(δu)− ϑ

Ĉεα−1γλσ
aρ(u)

)
,
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by using Markov’s inequality. By choosing C(ε, γ) and u0(ε, γ, δ) large enough,
we obtain, using the expression of ϑ,

(2.32) P
(
N

(σ)
g(δu) >

Ĉεα−1γλσ
aρ(u)

)
6 C(ε, γ) (g(δu)ρ(u))C(ε,γ)λσ/ρ(u) .

Replacing (2.31) and (2.32) in (2.30), we get (2.15). �
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