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ABSTRACT

A wide range of machine learning and signal processing ap-
plications involve data discrimination through covariance ma-
trices. A broad family of metrics, among which the Frobe-
nius, Fisher, Bhattacharyya distances, as well as the Kullback-
Leibler or Rényi divergences, are regularly exploited. Not
being directly accessible, these metrics are usually assessed
through empirical sample covariances. We show here that,
for large dimensional data, these approximations lead to dra-
matically erroneous distance and divergence estimates.

In this article, based on advanced random matrix con-
siderations, we provide a novel and versatile consistent es-
timate for these covariance matrix distances and divergences.
While theoretically developed for both large and numerous
data, practical simulations demonstrate its large performance
gains over the standard approach even for very small dimen-
sions. A particular emphasis is made on the Fisher infor-
mation metric and a concrete application to covariance-based
spectral clustering is investigated.

Index Terms— Covariance distance, random matrix the-
ory, Fisher information metric.

1. INTRODUCTION

Similarities between covariance matrices are objects of inter-
est for many engineering applications, among which machine
learning problems (for instance, covariance-based data clus-
tering regularly used in synthetic aperture radar, hyperspectral
imaging [1], or EEG datasets [2]), dimensionality reduction
[3], portfolio-optimization and asset clustering in finance
[4], etc. Depending on context and application, various met-
rics are available in the literature to compare semi-definite
positive matrices (the Frobenius norm, the Fisher Informa-
tion metric [5], the Bhattacharyya distance [6], the Rényi
or Kullback-Leibler divergence, etc.). Many of these metrics
(here all of the aforementioned except the Frobenius distance)
can be written under a common functional form involving the
distribution of the eigenvalues of C−1

1 C2, where C1 and C2

are the two matrices to be compared. Based on a simple
law-of-large-numbers argument, these metrics are commonly
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estimated from a simple replacement of the genuine p × p-
dimensional matrices C1 and C2 by their sample covariance
estimates Ĉ1 and Ĉ2. Such estimates, as shall be shown next,
are however bound to sometimes extremely severe errors,
particularly when the respective numbers n1 and n2 of sam-
ples to estimate C1 and C2 are not large compared to p. This
scenario is however frequently met in practice (short-time
brain activity scans with high resolution EEG, large number
of shortly-stationary assets in finance, high-resolution hyper-
spectral imaging, etc.) and therefore induces possibly weak
data processing performances.

To tackle these problems, in this paper, we introduce a
new estimate for a broad family of covariance matrix met-
rics, with an exemplary emphasis on the Fisher information
metric. More results involving other metrics, along with ad-
vanced technical details and comments, are reported in the
extended article [7]. This estimate is n1, n2, p-consistent in
the sense that it (almost surely) converges to the sought-for
metric as n1, n2, p grow simultaneously large. Yet, simula-
tion results will show that even for very small dimensional
settings, the proposed method largely outperforms the tradi-
tional sample covariance “plug-in” estimator.

Technically speaking, our results rely on the following
approach. We express a generic form of the metric under
study under the form of a complex integral involving the
Stieltjes transform of the (population) eigenvalue distribution
of C−1

1 C2 . As the latter distribution is not accessible, we
then link it to the (sample) eigenvalue distribution of Ĉ−1

1 Ĉ2,
through a functional equation relating the Stieltjes transforms
of population and empirical eigenvalue distribution. This re-
sults, through an appropriate change of variable, to a complex
integral involving only the eigenvalues of Ĉ−1

1 Ĉ2, which may
finally be evaluated using complex analysis techniques.

This approach is notably inspired by the seminal work of
Mestre [8] (see also [9]) where functional estimates of the
eigenvalue distribution of a single covariance matrix C is per-
formed similarly from the corresponding eigenvalue distribu-
tion of the sample estimate Ĉ. Aside from the more involved
statistical model Ĉ−1

1 Ĉ2, the originality of the present work
mostly lies in that the family of metrics involve non-smooth
complex functionals (in particular logarithms) that result in
more advanced technical considerations from real and com-
plex analysis than in [8].



The remainder of the article is organized as follows. In
Section 2, we introduce the main model and assumptions. In
Section 3, our main result providing the generic consistent es-
timate in complex integral form is introduced. Section 4 then
proposes an application of this result to the Fisher informa-
tion metric, which are then simulated and compared to the
traditional method in Section 5.

2. MODEL AND ASSUMPTIONS

For a ∈ {1, 2}, we consider na vectors x(a)
1 , . . . , x

(a)
na in-

dependent and identically distributed, with x(a)
i = C

1
2
a x̃

(a)
i

where x̃(a)
i ∈ Rp has zero mean, unit variance and finite

fourth order moment entries. In addition, we shall make the
following growth rate assumption:

Assumption 1 (Growth Rates). As na → ∞, p/na → ca ∈
(0, 1) and lim supp max{‖C−1

a ‖, ‖Ca‖} < ∞ for ‖ · ‖ the
operator norm.

The object under investigation in this article is any metric
of (C1, C2) expressible under the form:

D(C1, C2) =
1

p

n∑
i=1

f
(
λi(C

−1
1 C2)

)
with λi(X) the i-th eigenvalue of X and f : R → R a given
function. For instance, letting f(t) = log2(t), D(C1, C2) is
the Fisher distance between C1 and C2 (more in Section 4);
for f(t) = 1

2 t −
1
2 + 1

2 log(t), D(C1, C2) is the Kullback-
Leibler divergence; for f(t) = 1

2 log(1 + t) − 1
4 log(t) −

1
2 log(2), D(C1, C2) is the Bhattacharrya distance, etc.

Our main theoretical result, rooted in random matrix tech-
niques, involves the Stieltjes transform of probability mea-
sures defined, for a measure θ as mθ : C \ supp(θ)→ C,

mθ(z) =

∫
dθ(λ)

λ− z
.

Specifically we will relate the Stieltjes transform of the
population and empirical eigenvalue distributions:

µp =
1

p

p∑
i=1

δλi(Ĉ−1
1 Ĉ2), νp =

1

p

p∑
i=1

δλi(C−1
1 C2).

With these notations, we are in position to introduce our
main theoretical result.

3. MAIN RESULT

Our main result is as follows:

Theorem 1. Let f : C → C be analytic on a (positively
oriented) contour Γ ⊂ {z ∈ C,R[z] > 0} surrounding
∪∞p=1supp(µp). Then,∫
fdνp−

1

2πi

∮
Γ

f

(
ϕp(z)

ψp(z)

)[
ψ′p(z)

ψp(z)
−
ϕ′p(z)

ϕp(z)

]
ψp(z)dz

c2

a.s.−→ 0

with ϕp(z) = z(1 + c1zmµp(z)), ψp(z) = 1 − c2 −
c2zmµp(z).

The result of Theorem 1 has the strong advantage to be
flexible to any smooth function f over {z ∈ C,R[z] > 0},
so in particular to f(z) = logk(z) or f(z) = logk(1 + αz),
which commonly appear in covariance distances and diver-
gences. The constraint c2 < 1 is however mandatory and
cannot be relaxed, unless f is analytic on all C (which fails
for logarithm functions); see [7] for details.

Before getting to the proof, note that the formulation of
Theorem 1 exhibits two important quantities, the functions
ϕp and ψp, which both relate to the eigenvalue distribution of
Ĉ−1

1 Ĉ2 respectively through c1 and c2; each function there-
fore emphasizes the impact of the restricted number of data
with respect to the dimension p.

We subsequently provide a sketch of proof of Theorem 1.

Sketch of proof. The main observation arises from Cauchy’s
integral formula by which:∫

f(t)dνp(t) =
1

2πi

∫ [∮
Γν

f(z)

z − t
dz

]
dνp(t)

=
−1

2πi

∮
Γν

f(z)mνp(z)dz (1)

with Γν a contour surrounding the support of νp.
The next step is to link the Stieltjes transform mνp(z) to

the Stieltjes transform mµp(z). The latter being a random
quantity, we first resort to an asymptotic estimation. A first
important remark is that, since only the eigenvalues of Ĉ−1

1 Ĉ2

are involved, the problem is unchanged if x(1)
i had identity

covariance while x(2)
i had covariance C−

1
2

1 C2C
− 1

2
1 . With this

change of notation, Ĉ−1
1 Ĉ2 is the product of two independent

sample covariance matrices and, following the seminal works
of Bai and Silverstein [10], one may successively relate the
(almost sure) limiting eigenvalue distribution µ of Ĉ−1

1 Ĉ2 to
the (almost sure) limiting eigenvalue distribution ζ2 of Ĉ2 (by
conditioning on the latter) before next relating ζ2 to the eigen-
value distribution νp (which can be asked to coincide its limit)

of C−
1
2

1 C2C
− 1

2
1 . All calculus made, we obtain the coupled

fundamental equations:

mµ(z) = z(1 + c1zmµ(z))mζ2 (z(1 + c1zmµ(z))) (2)

mν

(
z

1− c2 − c2zmζ2(z)

)
= mζ2(z) (1− c2 − c2zmζ2(z)) .

(3)

Successively plugging (2)–(3) in (1) in two successive ap-
propriate changes of variables, we obtain an exact equality
for Theorem 1 with µp replaced by µ, and Γ the pre-image
of Γν by ϕ/ψ. Since µp → µ uniformly on the bounded Γ,
the result unfolds. A remaining non-trivial hidden difficulty
though is to ensure that there does indeed exist a Γ such that



(ϕ/ψ)(Γ) leads to a valid contour Γν . In [7], we show that
this is in general only possible if c2 < 1 (c1 < 1 is mandatory
for the existence of µp).

4. APPLICATION: THE FISHER DISTANCE

Theorem 1 requires to evaluate numerically a complex inte-
gral. This may be inefficient and particularly inaccurate as
it numerically depends on the chosen contour and integration
step size. Besides, an integral formula leaves little room to
interpretation. In this section, letting f(t) = log2(t), we es-
tablish a closed form expression for Theorem 1 adapted to the
Fisher distance DF. Indeed, the latter is defined through [11]

DF (C1, C2)2 =
1

p

p∑
i=1

log2
(
λi(C

−1
1 C2)

)
=

∫
log2(t)νp(dt).

For this distance, we have the following corollary of The-
orem 1.

Theorem 2. For λ = (λ1, . . . , λp)
T (ordered) and Λ =

diag(λ), let η ∈ Rp be the (ordered) eigenvalues of Λ +
1

n1−p

√
λ
√
λ
T

and ζ ∈ Rp the (ordered) eigenvalues of

Λ− 1
n2

√
λ
√
λ
T

. Then, under Assumption 1, we have

∫
log2(t)νp(dt)−

[
1

p

p∑
i=1

log2((1− c1)λi)−
2

p

(
∆η
ζ

)T
N1p

+2
c1 + c2 − c1c2

c1c2

{(
∆η
ζ

)T
M (∆η

λ) + (∆η
λ)

T
r

}
−2

1− c2
c2

{
1

2
log2((1− c1)(1− c2)) + (∆η

ζ )Tr

}]
a.s.−→ 0

where we defined 1p ∈ Rp the vector of all ones, ∆b
a the

vector with (∆b
a)i = bi − ai and, for i, j ∈ {1, . . . , p},

Mij =


λi
λj
−1−log

(
λi
λj

)
(λi−λj)2 , i 6= j

1
2λ2
i

, i = j
,

Nij =

 log
(
λi
λj

)
λi−λj , i 6= j
1
λi

, i = j.
, and ri =

log((1− c1)λi)

λi
.

A few remarks are in order before proving this result.
First, despite the seemingly involved formulation of Theo-
rem 2, the latter shows that the proposed estimate is some-
what related to the classical one (through the leading term
1/p

∑
i log2((1 − c1)λi) to which a bias term is added. It

is also worth noting that, if C1 were perfectly known, then
Theorem 2 holds by taking the limit where c1 → 0; this en-
larges the practical perspective of the estimator in applications
where one aims at evaluating the distance of an unknown co-
variance matrix to a reference point (for instance when track-
ing the centroid of multiple covariance matrices [12]).

Fig. 1. Analysis of ϕp and ψp close to the real axis. A branch
cut appears where ϕp/ψp < 0.

Fig. 2. Integration contour and the logarithm branch cuts.

Sketch of proof. For functions f analytical inside the contour
Γ, the evaluation of the complex integral in Theorem 1 fol-
lows from a mere residue theorem. For the Fisher distance,
this would hold if log2(ϕp(z)/ψp(z)) were analytical inside
Γ. This is however not the case, as a precise analysis of the
latter reveals branch cuts in the complex logarithm arising in
the real segments [ζi, ηi], i = 1, . . . , p, with ζi the zeros of
ψp(z) and ηi those of ϕp(z); see Figure 1 for a visualization.

To evaluate the complex integral, we thus resort to a con-
tour deformation carefully avoiding branch cuts and singu-
larities as depicted in Figure 2 (see e.g., [13] for details on
complex analysis integration methods). Of utmost interest
here are the resulting (limiting) real integrals right above and
under branch cuts. These involve real integrals of the type∫ d
c

log(x−a)
x−b dx, for a, b, c, d > 0, which do not have a closed

form in general but can be written as function of dilogarithms
Li2(x) = −

∫ x
0

log(1−u)
u du [14]. Using functional relations

of the latter (e.g., to relate Li2(x) to Li2(1/x)), the sum-
mation of all real integrals then simplifies to reach a com-
pact closed-form formula. This formula however involves the
time-consuming evaluation of O(p2) values for Li2. Observ-
ing that λi = ζi+O( 1

p ) and ηi = λi+O( 1
p ), a Taylor expan-

sion of the latter finally brings the desired expression.

5. NUMERICAL EXPERIMENTS

In this section, we compare the Fisher distance estimate from
Theorem 2 to the classical “plug-in” estimator 1

p

∑p
i=1 log2(λi).

We first report in Table 1 the genuine versus estimated
values of the Fisher distance on a synthetic setting (details
in caption). A first surprising observation is that the plug-in
estimator is extremely unfit to large values of p/n1, p/n2,
bringing up to 500% error figures for n1 = 2p; the proposed



estimator is instead resilient to large p. Possibly more surpris-
ingly, while Theorems 1–2 provably hold for asymptotically
large p, n1, n2, our estimator already outperforms the stan-
dard approach for p = 2. This may be explained by the fact
that the proposed approach essentially exploits randomness
both from the size and the number of the dataset, with accu-
racies provably of order O(1/

√
pn) thereby already reaching

accurate values for not too large p (note that this in particu-
lar implies central limit theorems and thus convergence speed
quadratically faster than in the large-n1, n2 alone setting).

p DF(C1, C2) Classical Proposed
2 0.0980 0.1002 0.0973
4 0.1456 0.1520 0.1461
8 0.1694 0.1820 0.1703

16 0.1812 0.2081 0.1845
32 0.1872 0.2363 0.1886
64 0.1901 0.2892 0.1920

128 0.1916 0.3955 0.1934
256 0.1924 0.6338 0.1942
512 0.1927 1.2715 0.1953

(error > 50%) (error > 100%) (error > 500%)

Table 1. Proposed versus classical estimator for the Fisher
distance between C1 and C2 with [C

− 1
2

1 C2C
− 1

2
1 ]ij = .3|i−j|,

x
(a)
i ∼ N (0, Ca); n1 = 1024 and n2 = 2048 for different

values of p. Averaged over 10 000 trials.

In a second experiment, we perform the unsupervised
classification, based on kernel spectral clustering [15], of
m = 200 independent generations of zero mean Gaussian
samples Xi = [x

(i)
1 , . . . , x

(i)
ni ] ∈ Rp×ni , half with covariance

C1 and half with covariance C2 (say, E[x
(i)
j x

(i)
j

T] = C1

for i ≤ m/2 and E[x
(i)
j x

(i)
j

T] = C2 for i > m/2).
The chosen kernel K ∈ Rm×m is defined by Kij =

exp(− 1
2D̂F(Xi, Xj)

2) with D̂F either the classical or our
proposed estimator. A first interesting surprising outcome
is that, for all tested (rather large) values of p, m and
n1 = . . . = nm, spectral clustering based on either algorithm
perform equally well with often extremely similar eigen-
vectors; this can be understood by the fact that non-trivial
clustering tasks occur for very similar C1 and C2 matrices for
which the standard estimator of DF is almost equally biased
on all data realizations, thereby solely inducing a constant
shift for the entries of K (thus loosely interfering with the
informative eigenvectors).

However, this observation breaks down for differing val-
ues of ni. Figure 3 (top) displays a scatter plot of the two
leading eigenvectors of K for the same setting as above, but
now with ni chosen uniformly at random in [2p, 4p], p = 128,
m = 200, C1 = Ip, [C2]ij = .05|i−j|. There, we observe
both a large spread of the eigenvectors for the classical esti-
mator and a smaller inter-class spacing, suggesting poor clus-

tering performance, as opposed to the well-centered eigenvec-
tors achieved by the proposed estimator. In a possibly more
realistic setting, Figure 3 (bottom) displays the result obtained
for n1 = . . . = nm−1 = 512 and nm = 256 (simulating a
data retrieval failure for one observation). As expected, the
classical estimator brings an isolated outlier in the eigenvec-
tor scatter plot, but more surprisingly, this very outlier also
starkly contaminates the resolution power of the rest of the
data; this effect is exacerbated when adding more outliers and
is likely due to a competing effect between the outliers and
the genuine clusters to “drive” the dominant eigenvectors.

eigv 1

eigv 2 Class 1 (proposed)
Class 2 (proposed)
Class 1 (classical)
Class 2 (classical)

far outlier

eigv 1

eigv 2

Fig. 3. First and second eigenvectors of K for the traditional
estimator (red circles) versus the proposed one (blue crosses);
(top) random number of snapshots ni; (bottom) n1 = . . . =
nm−1 = 512 and nm = 256.

6. CONCLUDING REMARKS

The present study has revealed a strong lack of consistency for
the traditional “plug-in” covariance matrix-distance (and di-
vergence) estimators, when the data dimension p is not small.
This is particularly dramatic as p and the number of snapshots
n are close. We provided a consistent solution to recover con-
sistency, exploiting random matrix tools. Yet, our proposed
estimator still suffers from the need n > p, which may not
be met in practice; further investigations and more elaborate
tools to cover the case p > n are needed.

Importantly, by exploiting both randomness in p and n,
our estimator converges as fast asO(1/

√
pn), but a more pre-

cise central limit analysis is required to exactly assess confi-
dence intervals, which is yet another avenue of research.

But the real strength and robustness of the proposed es-
timator will only be demonstrated when applied to real (non
Gaussian) datasets and more exotic applications. Brain signal
processing (or human-machine interaction) and radar imag-
ing (SAR or hyperspectral) are both interesting application
candidates that shall be investigated in the future.
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measure,” Sankhyā: The Indian Journal of Statistics,
Series A, pp. 345–365, 1981.

[12] Marco Congedo, Alexandre Barachant, and Anton An-
dreev, “A new generation of brain-computer inter-
face based on riemannian geometry,” arXiv preprint
arXiv:1310.8115, 2013.

[13] Steven G Krantz, Handbook of complex variables,
Springer Science & Business Media, 2012.

[14] Don Zagier, “The dilogarithm function,” in Frontiers
in number theory, physics, and geometry II, pp. 3–65.
Springer, 2007.

[15] Romain Couillet, Florent Benaych-Georges, et al.,
“Kernel spectral clustering of large dimensional data,”
Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393–
1454, 2016.


