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Abstract
We study the existence of global weak solutions in a three-dimensional
time-dependent bounded domain for the incompressible Vlasov-Navier-
Stokes system which is coupled with two convection-diffusion equations
describing the air temperature and its water vapor mass fraction. This
newly introduced model describes respiratory aerosols in the human air-
ways when one takes into account the hygroscopic effects, also inducing
the presence of extra variables in the aerosol distribution function, tem-
perature and size. The mathematical description of these phenomena
leads us to make the assumption that the initial distribution of particles
does not contain arbitrarily small particles. The proof is based on a reg-
ularization and approximation strategy that we solve by deriving several
energy estimates, including ones with temperature and size.

1 Introduction
The motion of a dispersed phase made of small particles inside a fluid can be

described through a fluid-kinetic model (see [26]). The unknowns corresponding
to the fluid are the usual macroscopic quantities such as the velocity and pressure
while the dispersed phase is described by a distribution function. Under the so-
called thin spray hypothesis, [11] proposes a model in which the fluid and kinetic
equations are coupled through a drag term. It depends on the fluid unknowns
as well as the distribution function and describes the energy and momentum
exchanges between the two phases.

Here, we focus on the variation of the size of the particles due to the evapo-
ration of the water they contain or, on the contrary, to the condensation of the
water vapor in the air around the particle. As in [21], we consider a fluid-kinetic
model that takes into account the variation of temperature of the fluid due to
the transport of the particles, whose own temperature can also vary. In the
kinetic part of the model, the aerosol distribution function has then not only
the usual time, space and velocity variable set, but also the particle size and
temperature, inducing new difficulties to be dealt with.
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The model studied in this article describes the transport and deposition of
a therapeutic aerosol evolving in a Newtonian viscous incompressible fluid, the
air, in the first generations of the human bronchial tree. The study of this
phenomenon related to respiration began with [2] and [15] and the system we
analyze in this paper was presented in [6] in a fixed domain. Numerous works
have contributed to this study for several decades while taking into account var-
ious parameters and physical processes such as the compressibility or viscosity
of the fluid, the transport of the particles, the interaction between the particles
and the fluid or the walls, etc. But, up to our knowledge, the existence of a
solution taking into account the variation of the size and temperature of the
particles has not been studied yet.

Indeed, the following contributions all assume that the effects of the variation
of the size of the particles are negligible. In a first contribution to the case of a
compressible fluid, the local-in-time existence of classical solutions is proven in
[3]. The same kind of result is obtained by [22] for the Euler-Vlasov-Boltzmann
system. In [23], the authors prove the global existence of weak solutions to the
compressible Navier-Stokes-Vlasov-Fokker-Planck system. The global existence
of solutions around the equilibrium is studied in [9] and [20] and an asymptotic
analysis is conducted in [24]. More recently, under the assumption of existence
of local weak solutions, the study of a hydrodynamic limit for a system of the
type Navier-Stokes-Vlasov-Fokker-Planck in the compressible case is conducted
in [10].

The study of the Vlasov-Navier-Stokes system in the case of an incompress-
ible fluid began with [1] and [17]. Existence of weak solutions is proven in [5]
in a periodic framework. This result is extended to a bounded domain by [27]
and then to a time-dependent bounded domain by [8]. In dimension two, [16]
proves the existence and stability of regular equilibria for the Vlasov-Navier-
Stokes system, and the uniqueness of weak solutions in the whole space or a
periodic domain is obtained in [18]. More recently, the asymptotic behavior of
the weak solutions of the Vlasov-Navier-Stokes system in a periodic framework
in two or three dimensions is studied in [19].

In [13], the authors propose to simulate the variation of the particle size due
to the evaporation or condensation of the water thanks to a multi-fluid model
which relies on equations for the first and second moments of the distribution
function. Another static point of view is assumed in [21] to tackle these hy-
groscopic effects: they are considered globally in space and are described by a
differential equation on the mass fraction of the water vapor in the air. This
model is made more precise in [6] by taking into account the fact that these
effects are local and time-dependent, and leads to the present study.

The current work is hence a natural continuation of the contributions above,
and especially of [8]. We follow the same penalization strategy (though another
classical approximation strategy) to account for the time-dependence of the do-
main when dealing with the Navier-Stokes equations. For the Vlasov equation,
we apply existence and stability results of DiPerna-Lions type (see [12]) which
the authors of [8] obtain. The approximation procedure requires to prove ex-
istence and uniqueness for convection-diffusion equations in a time-dependent
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domain using strong compactness results from [25]. As opposed to [8], we were
not able to prove interpolation estimates on the moments of the distribution
function and therefore we have to assume that there exists a minimal radius
for the particles. This hypothesis consists in considering that all the spherical
particles are composed of a dry core with common radius (containing the drug)
that is surrounded by water. We prove that if all the particles at initial time
have this property, then the evaporation of water is not complete and the ra-
dius of any given particle remains greater than that of the dry core. It allows
to derive fruitful energy estimates linking all the unknowns and to use the same
arguments as in [8].

This article is organized as follows. We begin by presenting the model and
the main result, and describing the approximation strategy we implement. In
Section 3, we recover existence for the approximated system by a fixed-point
method, using the Schauder theorem. In order to invoke the latter, we recall
results on the Vlasov and Navier-Stokes equations and prove the existence and
uniqueness of the global solution to a convection-diffusion equation with Neu-
mann boundary condition in a time-dependent domain. Finally, the last section
consists in passing to the limit in the approximated problem in order to obtain
a solution to the initial one.

2 Presentation of the model
Let us first present the model we investigate in this paper. It extends the

model proposed in [6] to a time-dependent domain. Let τ > 0 and Ω0 ⊂ R3 be
an open bounded domain with Lipschitz boundary. The variation of the spatial
domain is taken into account by means of a mapping A ∈ C 2(R+ × R3;R3),
(t,x) 7→ A(t,x) = At(x) such that, for all t ≥ 0, At is a C 1-diffeomorphism
and A0 = IdR3 . For every 0 ≤ t ≤ τ , we set Ωt = At(Ω0) the bounded domain
at time t and

Ω̂t =
⋃

0<s<t

{s} × Ωs.

For t = τ , we simply write Ω̂ = Ω̂τ . Furthermore, let

Γ̂ =
⋃

0<t<τ

{t} × ∂Ωt

and, for all t ∈ [0, τ ], nt be the outgoing unit normal vector field of ∂Ωt. We
also use the Eulerian velocity w associated to the flow t 7→ At, defined by

∀(t,x) ∈ [0, τ ]× R3, w(t,At(x)) = ∂tA(t,x).

Without loss of generality, we assume that divxw = 0, so that the Jacobian
of the transformation At does not depend on t and is therefore constant equal
to 1. Finally, we need to consider the phase space and its boundaries. For any
t ∈ [0, τ ], let us set

Πt = Ωt × R3 × R∗+ × R∗+, Π̂t = Ω̂t × R3 × R∗+ × R∗+,
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Σt = ∂Ωt × R3 × R∗+ × R∗+, Σ̂t =
⋃

0<s<t

{s} × ∂Ωs × R3 × R∗+ × R∗+,

Π̂ = Ω̂× R3 × R∗+ × R∗+, Σ̂ = Γ̂× R3 × R∗+ × R∗+.

and
Σ̂± = {(t,x,v, r, T ) ∈ Σ̂, ±(v −w(t,x)) · nt(x) > 0},

Σ̂0 = {(t,x,v, r, T ) ∈ Σ̂, (v −w(t,x)) · nt = 0},
The particles are composed of an active substance and water. More precisely,

we suppose that the active substance lies in a ball the radius of which, denoted
by rdrug > 0, does not change. We assume that this ball is surrounded by water
and the whole creates a ball of radius r. In particular, all the particles have a
radius greater than rdrug. If we denote by, respectively, ρ, ρw and ρdrug the mass
densities of a particle, water and drug, the mass conservation at the microscopic
level writes

ρr3 = ρw(r3 − r3
drug) + ρdrugr

3
drug.

In the rest of this work, we choose ρw = 1 and ρdrug = 2. Consequently, the
radius dependent mass of a particle becomes, up to a multiplication by a positive
constant,

m(r) = r3 + r3
drug. (1)

In addition to the variation of radius, we consider that the temperature of the
particles may vary. Therefore, a particle is characterized at time t ≥ 0 by its po-
sition x ∈ Ωt, its velocity v ∈ R3, its radius r > rdrug and its temperature T > 0.
Consequently, we describe the aerosol by a density function f(t,x,v, r, T ) which
solves the Vlasov-like equation

∂tf + v · ∇xf + divv (Af) + ∂r(af) + ∂T (bf) = 0 in Π̂,

where A is the drag acceleration exerted by the air on the particles, a describes
the variation of the radii of the particles and b describes the variation of their
temperatures. We prescribe the following absorption condition:

f = 0 on Σ̂−,

which means that all the particles reaching the physical boundary are deposited.
We classically assume the air to be a viscous Newtonian incompressible fluid

[7]. It can therefore be described by its pressure p(t,x) and velocity u(t,x),
which satisfy the incompressible Navier-Stokes equations, with constant mass
density and viscosity both taken equal to 1,

∂tu+ (u · ∇x)u+∇xp−∆xu = F in Ω̂,

divx u = 0 in Ω̂,

where F is the force applied by the aerosol on the fluid. We prescribe the
Dirichlet boundary condition:

u = w on Γ̂.
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The coupling terms A and F are given by the Stokes law [7] as

A(t,x,v, r) =
r

r3 + r3
drug

(u(t,x)− v)

and
F (t,x) = −

ˆ
R3×R∗+×R∗+

r(u(t,x)− v)f(t,x,v, r, T ).

The variation of the radius of a particle stems from the evaporation of the
water it contains or the condensation of the water vapor from the surrounding
air. If the water vapor mass fraction at the surface of the particle Yv,surf(r, T ) is
smaller than the water vapor mass fraction in the air Y (t,x), then a part of the
surrounding vapor condensates and the radius of the particle increases. In the
opposite case, a part of the water contained in the particle evaporates and the
radius decreases. More precisely, [6, formulas (6)–(13)] provide the following
expression for the function a, when all physical parameters are normalized:

a(t,x, r, T ) =
Y (t,x)− Yv,surf(r, T )

r
.

Note that, given the expression for Yv,surf in [6], we have Yv,surf(rdrug, ·) = 0.
The evaporation and condensation of water also give rise to heat fluxes

between the air and the particles, which result in temperature variation. There
is also a convective heat flux. Again, [6] gives the following expression for b:

b(t,x, r, T ) =
Y (t,x)− Yv,surf(r, T )

r2
+

Θ(t,x)− T
r2

,

where Θ is the air temperature.
The water vapor in the air is subject to transport phenomena and diffusion

and also interacts with the particles. Therefore, we assume that Y solves the
following convection-diffusion equation in Ω̂

∂tY + u · ∇xY − divx (Dv(Θ)∇xY ) = −
ˆ
R3×R∗+×R∗+

r2af,

where Dv(Θ) is the diffusion coefficient of water vapor in the air at temperature
Θ. In fact, we can assumeDv ≡ 1. Indeed, the following analysis remains true as
long asDv ∈ L∞(R+) andDv is bounded from below by a positive constant, and
those assumptions are physically relevant in the temperature range for which
the model is expected to hold. Note that in [6], the numerical simulations lead
to a variation of Dv of only 2%. We prescribe the Neumann boundary condition.

∇xY · nt = 0 on Γ̂.

The variation of the air temperature is also described by a convection-
diffusion equation in Ω̂:

∂tΘ + u · ∇xΘ−∆xΘ =

ˆ
R3×R∗+×R∗+

r(T −Θ)f,
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with the Neumann boundary condition:

∇xΘ · nt = 0 on Γ̂.

To summarize, the system under study in this article is the following one:

∂tf + v · ∇xf + divv

(
r

r3 + r3
drug

(u− v)f

)
+ ∂r

(
Y − Yv,surf

r
f

)
+ ∂T

((
Y − Yv,surf

r2
+

Θ− T
r2

)
f

)
= 0 in Π̂, (2)

f = 0 on Σ̂−, (3)

∂tu+ (u · ∇x)u+∇xp−∆xu = −
ˆ
R3×R∗+×R∗+

r(u− v)f in Ω̂, (4)

divx u = 0 in Ω̂, (5)

u = w on Γ̂, (6)

∂tY + u · ∇xY −∆xY +

(ˆ
R3×R∗+×R∗+

rf

)
Y =

ˆ
R3×R∗+×R∗+

rYv,surff, (7)

∇xY · nt = 0 on Γ̂. (8)

∂tΘ + u · ∇xΘ−∆xΘ +

(ˆ
R3×R∗+×R∗+

rf

)
Θ =

ˆ
R3×R∗+×R∗+

rTf, (9)

∇xΘ · nt = 0 on Γ̂. (10)

It is supplemented with initial conditions for f , u, Y , and Θ:

f(0, ·, ·, ·) = f in in Π0, (11)

u(0, ·) = uin in Ω0, (12)

Y (0, ·) = Y in in Ω0, (13)

Θ(0, ·) = Θin in Ω0. (14)

Remark 2.1. Note that, since f is nonnegative, solutions Y and Θ to the previ-
ous convection-diffusion equations satisfy, at least formally, the weak maximum
principle. Since 0 ≤ Yv,surf ≤ 1, we obtain 0 ≤ Y ≤ 1 and Θ ≥ 0 for all time
t ∈ [0, τ ] if we assume 0 ≤ Y in ≤ 1 and Θin ≥ 0.
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Let us now formally compute an energy equality relating the energy dissipa-
tion and the exchanges between the air and the particles. Recall the Reynolds
formula, for any real-valued function k : Ω̂→ R,

d

dt

ˆ
Ωt

k =

ˆ
Ωt

∂tk +

ˆ
∂Ωt

kw · nt.

Following the argument in [8], we multiply (4) by u − w and integrate by
parts over Ω̂t for a fixed value of t ∈ [0, τ ]. Similarly, we multiply (2) by
m(r)|v|2/2 and integrate by parts over Π̂t. Using (1), (5), (6), (11), and (12),
we obtain

1

2

ˆ
Ωt

|u|2 +
1

2

¨
Πt

(r3 + r3
drug)|v|2f +

¨
Ω̂t

|∇xu|2 +

˚
Π̂t

r|u− v|2f

=
1

2

ˆ
Ω0

|uin|2 +
1

2

¨
Π0

(r3 + r3
drug)|v|2f in +

ˆ
Ωt

u(t) ·w(t)−
ˆ

Ω0

uin ·w(0)

−
¨

Ω̂t

u · ∂sw −
¨

Ω̂t

((u · ∇x)w) · u+

¨
Ω̂t

∇xu : ∇xw

+

˚
Π̂t

rw · (u− v)f +
3

2

˚
Π̂t

r(Y − Yv,surf)f

+
1

2

˚
Σ̂t

(r3 + r3
drug)|v|2f(w − v) · nt,

We assume that the water surrounding the active substance does not entirely
evaporate. Therefore, the radii of the particles are bounded from below by rdrug.
This translates into the following assumption:

f(·, ·, ·, r, ·) = 0, a.e r < rdrug. (15)

Therefore, if f is nonnegative, since 0 ≤ Yv,surf , Y ≤ 1, we have

˚
Π̂t

rw · (u− v)f +

˚
Π̂t

r(Y − Yv,surf)f

≤ 1

2

˚
Π̂t

r|u− v|2f +
‖w‖L∞(Ω̂) + 2

r2
drug

˚
Π̂t

r3f.

But, if we multiply (2) by r3 and integrate over Π̂t, thanks to the absorption
condition (3) and the Grönwall lemma, we obtain

¨
Πt

r3f . 1, (16)

where the notation . indicates that the inequality holds up to a multiplicative
constant which can depend on τ , w, rdrug and the initial data. Using again
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the absorption condition (3), we deduce from the previous estimations and the
Grönwall lemma again that

1

2

ˆ
Ωt

|u|2 +

¨
Πt

(r3 + r3
drug)|v|2f +

¨
Ω̂t

|∇xu|2 +

˚
Π̂t

r|u− v|2f . 1. (17)

Let us now derive an estimate relating the air temperature and the particle
distribution. We multiply (9) by Θ and integrate by parts over Ω̂t, for fixed
t ∈ (0, τ). Similarly, we multiply (2) by r3T 2/2 and integrate by parts over Π̂t.
Using (5), (6), (10), (11), and (14), we get

1

2

ˆ
Ωt

|Θ|2 +
1

2

¨
Πt

r3T 2f +

¨
Ω̂t

|∇xΘ|2 +

˚
Π̂t

r|Θ− T |2f

≤ 3

˚
Π̂t

rT 2f +

˚
Π̂t

rTf +

ˆ
Ω0

|Θin|2 +

¨
Π0

r3T 2f in.

Thanks to (15), the Cauchy-Schwarz inequality, and(16), the Grönwall lemma
yields

1

2

ˆ
Ωt

|Θ|2 +
1

2

¨
Πt

r3T 2f +

¨
Ω̂t

|∇xΘ|2 +

˚
Π̂t

r|Θ− T |2f . 1.

The previous estimates and the boundary conditions motivate the introduc-
tion of the following functional spaces. For p, q ∈ [1,+∞] and m ∈ N, denote

Lp(0, τ ;Wm,q(Ωt)) =
{
ζ measurable, ‖ζ‖Lp(0,τ ;Wm,q(Ωt))

<∞
}

where we set

‖ζ‖Lp(0,τ ;Wm,q(Ωt))
=
∥∥∥t 7→ ‖ζ(t)‖Wm,q(Ωt)

∥∥∥
Lp(0,τ)

,

and

V0 = {ϕ ∈ L2(0, τ ;H1(Ωt)), divxϕ = 0, ϕ = 0 on Γ̂},
V = {ϕ ∈ C 1(Ω̂), divxϕ = 0 in Ω̂, ϕ = 0 on Γ̂, ϕ(τ) = 0},
X = {ζ ∈ C 1(Ω̂), ζ = 0 on Γ̂, ζ(τ) = 0},

and, denoting by g the extension on [0, τ ] × R3 by zero of a function g defined
on Ω̂, let

L∞(0, τ ;Lp(Πt)) = {f measurable, f ∈ L∞(0, τ ;Lp(R3 × R3 × R∗+ × R∗+))},

W = {ψ ∈ C 1
c (Ω̂× R3 × R∗+ × R∗+), ψ = 0 on Σ̂+ ∪ Σ̂0, ψ(τ) = 0}.

Let us now state the assumptions on the initial data.

Assumption 1. Y in ∈ L2(Ω0) and 0 ≤ Y in ≤ 1 in Ω0.
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Assumption 2. uin ∈ L2(Ω0) and divx u
in = 0.

Assumption 3. Θin ∈ L2(Ω0) and Θin > 0 in Ω0.

Assumption 4. f in ∈ L∞(Π0) is nonnegative, and for almost every r ≤ rdrug,
f in(·, ·, r, ·) = 0, and(

1 + r3 + r3|v|2 +
∣∣Y in − Yv,surf

∣∣ (1

r
+

1

r2

)
+
|Θin − T |

r2

)
f in ∈ L1(Π0).

Let us now define the notion of weak solution of the problem.

Definition 2.2. We say that a 4-tuple (u, Y,Θ, f) is a weak solution of the
system (4)–(10) with initial data (uin, Y in,Θin, f in) if the following conditions
are satisfied. The distribution function must verify:

• f ∈ L∞((0, τ)×R3×R3×R∗+×R∗+)∩C 0([0, τ ];Lp(R3×R3×R∗+×R∗+))
for all p ∈ [1,∞),

• (1 + r3 + r3|v|2)f ∈ L∞(0, τ ;L1(Πt)),

• (Y − Yv,surf)

(
1

r
+

1

r2

)
f ∈ L1

loc(Π̂),

• Θ− T
r2

f ∈ L1
loc(Π̂).

The fluid quantities must satisfy:

• u ∈ L∞(0, τ ;L2(Ωt)) ∩ L2(0, τ ;H1(Ωt)),

• u−w ∈ V0,

• Y ∈ L∞(0, τ ;L2(Ωt)) ∩ L2(0, τ ;H1(Ωt)),

• Θ ∈ L∞(0, τ ;L2(Ωt)) ∩ L2(0, τ ;H1(Ωt)).

Finally, the following weak formulations must hold for any ψ ∈ W , ϕ ∈ V , and
ζ ∈X :

˚
Π̂

f

∂tψ + v · ∇xψ +
u− v

r2 +
r3
drug

r

· ∇vψ


+

˚
Π̂

f

(
Y − Yv,surf

r

(
∂rψ +

1

r
∂Tψ

)
+

Θ− T
r2

∂Tψ

)
= −
¨

Π0

f inψ(0, ·), (18)
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¨
Ω̂

(u · ∂tϕ+ (u⊗ u) : ∇xϕ−∇xu : ∇xϕ)

= −
¨

Ω̂

(ˆ
R3×R∗+×R∗+

r(v − u)f

)
·ϕ−

ˆ
Ω0

uin ·ϕ(0, ·), (19)

¨
Ω̂

(−Y ∂tζ + ζu · ∇xY +∇xY · ∇xζ)

=

¨
Ω̂

(ˆ
R3×R∗+×R∗+

r(Yv,surf − Y )f

)
ζ +

ˆ
Ω0

Y in ζ(0, ·), (20)

¨
Ω̂

(−Θ∂tζ + ζu · ∇xΘ +∇xΘ · ∇xζ)

=

¨
Ω̂

(ˆ
R3×R∗+×R∗+

r(T −Θ)f

)
ζ +

ˆ
Ω0

Θin ζ(0, ·). (21)

The main result of this paper can now be properly stated.

Theorem 2.3. Under Assumptions 2–4, there exists a weak solution to Problem
(4)–(10) in the sense of Definition 2.2

We follow the same strategy as in [8]. Namely, we solve an approximated
system by a fixed-point procedure and recover a solution to the initial problem
through compactness properties.

In order to obtain similar estimates as the ones we formally derived above,
we need to ensure that f vanishes for radii below some positive value. Therefore,
we introduce a function η ∈ C∞(R+) such that η ≡ 0 on [0, rdrug/2] and η ≡ 1
on [rdrug,+∞), with η′ ≥ 0.

To solve the Navier-Stokes equations in a cylindrical domain, we follow a
penalization procedure. We then use the Friedrichs approximation to solve the
equation. Let πL : L2(R3)→ {u ∈ L2(R3), divx u = 0} be the Leray projection.
We choose N ∈ N and let PN be the orthogonal projection

PN : L2(R3)→ FN = {u ∈ L2(R3)3, û(ξ) = 0, ∀|ξ| ≥ N},

where û denotes the Fourier transform of u. We also need to truncate the
right-hand side of (4), as in [8], to apply standard results for the Friedrichs
approximation. To preserve the energy estimate (17), we perform the same
truncation in (2). Let χ ∈ C∞(R) be an odd, increasing, bounded function,
with 0 ≤ χ(v) ≤ v for all v ≥ 0. We write χ(v) = (χ(v1), χ(v2), χ(v3)) for any
v ∈ R3. Furthermore, we also need to truncate the variation of temperature
that appears in (2) in order to solve this equation.

Unfortunately, the penalization strategy used for solving the Navier-Stokes
equation does not preserve the boundary condition u = w. Therefore, we have
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to modify the velocity field for the convection-diffusion equations solved by Y
and Θ. For t ∈ [0, τ ], define the projection

πΩt : L2(Ωt)→
{
u ∈ H1(Ωt), divx u = 0, u ∂Ωt = 0

}
.

We also need the sets

KN =
{

(t,x) ∈ Ω̂, d((t,x), Γ̂) < 1/N
}
,

where d(·, Γ̂) denotes the Euclidean distance to the boundary Γ̂, defined on
R+ × R3.

We can then consider the following approximated problem:

∂tf + v · ∇xf + divv (G1f) + ∂r (G2f) + ∂T (G3f) = 0 in Π̂, (22)

∂tu+ PNπL(divx(u⊗ u))−∆xu

+NPNπL
(
(u−w)1Ω̂c

)
= PNπLF in (0, τ)× R3, (23)

divx u = 0 in (0, τ)× R3, (24)

∂tY + zN · ∇xY −∆xY + cY = SY in Ω̂, (25)

∂tΘ + zN · ∇xΘ−∆xΘ + cΘ = ST in Ω̂, (26)

where

F =

ˆ
R3×R∗+×R∗+

χ(v − u)rηf, zN = w + πΩt
((u−w)1KN

) ,

c =

ˆ
R3×R∗+×R∗+

rηf, SY =

ˆ
R3×R∗+×R∗+

Yv,surf rηf

ST =

ˆ
R3×R∗+×R∗+

rTηf, G1 = χ(u− v)
η

r2 +
r3
drug

r

,

G2 =
Y − Yv,surf

r
η, G3 =

1

r
G2 +

χ(Θ− T )

r2
η.

This system is completed with the boundary conditions (3) for f , (8) for Y ,
and (10) for Θ. Furthermore, f , Y , Θ and u satisfy, respectively, the initial
conditions (11), (13), (14), and u(0) = PNuin.

We make the same Assumption 2 on uin but need stronger assumptions on
the other initial data.

Assumption 5. f in ∈ L∞(Π0) is nonnegative and compactly supported and,
for almost every r < rdrug, f in(·, ·, r, ·) ≡ 0, and(

1 + r3 + r3|v|2 +
∣∣Y in − Yv,surf

∣∣ (1

r
+

1

r2

)
+
|Θin − T |

r2

)
f in ∈ L1(Π0).
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Assumption 6. Y in ∈ H1(Ω0) and 0 ≤ Y in ≤ 1 in Ω0.

Assumption 7. Θin ∈ H1(Ω0) and Θin ≥ 0 in Ω0.

Existence of a solution for (22)–(26) with conditions (3), (8) and (10), and
initial data satisfying Assumptions 2 and 5–7 is obtained thanks to the Schauder
fixed-point theorem that we recall here in an appropriate setting [4].

Theorem 2.4. Let E be a real normed vector space and C a closed convex
nonempty subset of E. If Λ : C → C is a continuous map such that Λ(C ) is a
precompact subset of E, then Λ has a fixed point.

In the following, we use

E =
{

(u, Y,Θ) | u ∈ L2(0, τ ;H1(R3) ∩ C 0([0, τ ];L2(R3)),

Y ∈ L2(0, τ ;H1(Ωt) ∩ C 0([0, τ ];L2(Ωt)))

Θ ∈ L2(0, τ ;H1(Ωt) ∩ C 0([0, τ ];L2(Ωt)))
}

and we first set
C = {(u, Y,Θ) ∈ E | 0 ≤ Y ≤ 1},

the real convex to which we apply the theorem being in fact a subset of C , as
described below.

The vector-space E is endowed with the following norm. Let γ ∈ L2(R3).
We define the norm ‖.‖E by, for all (u, Y,Θ) ∈ E,

‖(u, Y,Θ)‖E = ‖Y ‖L2(Ω̂) + ‖Θ‖L2(Ω̂) + sup
t∈[0,τ ]

‖u(t, ·)γ‖L1(R3) .

Note that thanks to γ, when dealing with the convergence of (un, Yn,Θn) in E,
we will only have to prove convergence of (un)n∈N in L∞(0, τ ;L2(B)) for a ball
B, as long as the sequence is bounded in L∞(0, τ ;L2(R3)).

Let us apply Theorem 2.4 to the map Λ : C → C , the image of a triplet
(u, Y,Θ) ∈ C being the only triplet (ũ, Ỹ , Θ̃) satisfying the following systems
of equations:

∂tũ+ PNπL(divx(ũ⊗ ũ))−∆xũ+NPNπL
(
(ũ−w)1Ω̂c

)
= PNπLFu,Y,Θ,

(27)

divx ũ = 0, (28)

u t=0 = PNu
in (29)

in (0, τ)× R3,

∂tỸ + z̃N · ∇xỸ −∆xỸ + cfu,Y,Θ
Ỹ = SY,fu,Y,Θ

, (30)

∇xỸ · nt = 0, (31)

Y t=0 = Y in, (32)

12



and

∂tΘ̃ + z̃N · ∇xΘ̃−∆xΘ̃ + cfu,Y,Θ
Θ̃ = ST,fu,Y,Θ

, (33)

∇xΘ̃ · nt = 0, (34)

Θ t=0 = Θin, (35)

in Ω̂, where fu,Y,Θ is the unique weak solution to the problem

∂tf + v · ∇xf + divv (G1f) + ∂r (G2f) + ∂T (G3f) = 0 on Π̂, (36)

f = 0, on Σ̂−, (37)

f t=0 = f in, (38)

with
Fu,Y,Θ =

ˆ
R3×R∗+×R∗+

χ(v − u)rηfu,Y,Θ,

z̃N = w − πΩt
((ũ−w)1KN

) ,

cfu,Y,Θ
=

ˆ
R3×R∗+×R∗+

rηfu,Y,Θ,

ST,fu,Y,Θ
=

ˆ
R3×R∗+×R∗+

rTηfu,Y,Θ,

SY,fu,Y,Θ
=

ˆ
R3×R∗+×R∗+

Yv,surfrηfu,Y,Θ,

G1 = χ(u− v)
rη

r3 + r3
drug

, G2 =
Y − Yv,surf

r
η, G3 =

1

r
G2 +

χ(Θ− T )

r2
η.

The rest of this article is dedicated to the proof of Theorem 2.3. First,
we recall the results obtained in [8] regarding the Vlasov equation in a time-
dependent domain with boundary condition (37) and its consequences. Then we
briefly recall that Problem (27)–(29) has a unique strong solution and show that
this solution is also the unique solution in a less regular setting. We continue
by tackling both convection-diffusion problems (30)–(32) and (33)–(35). Our
approach relies on a change of variable in order to work over a fixed domain
and we use a standard approximation procedure to prove the existence and
uniqueness of a solution to the problem over a fixed domain. We can then apply
Theorem 2.4 to Λ thanks to compactness results of Aubin-Lions type [25] in
a time-dependent framework. Finally, we use compactness again to prove the
existence of a solution for a slightly modified version of (2)–(14), where η still
appears, and the DiPerna-Lions theory to get rid of this truncation.
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3 Proof of Theorem 2.3

3.1 Study of the Vlasov equation
Let (u, Y,Θ) ∈ C . The following result is an immediate consequence of

Theorem 3.1, Proposition 3.2 and Remark 3.3 of [8].

Theorem 3.1. Problem (36)–(38) has a unique weak solution fu,Y,Θ ∈ L∞(Π̂)
in the sense of Definition 2.2. Moreover, fu,Y,Θ ∈ C 0([0, τ ];Lploc(R3×R3×R∗+×
R∗+)) for all 1 ≤ p <∞. The trace of fu,Y,Θ on Σ̂ is well-defined as the unique
element γf ∈ L∞(Σ̂) such that, for all test functions ψ ∈ D(R×R3×R3×R×R),
all β ∈ C 1(R), and all 0 ≤ t0 ≤ t1 ≤ τ ,

ˆ t1

t0

¨
Πt

β(f) (∂tψ + v · ∇xψ +G1 · ∇vψ +G2∂rψ +G3∂Tψ)

−
ˆ t1

t0

¨
Πt

(fβ′(f)− β(f))ψ (divvG1 + ∂rG2 + ∂TG3)

=

¨
Πt1

β(f(t1))ψ(t1)−
¨

Πt0

β(f(t0))ψ(t0)

+

ˆ t1

t0

¨
Σt

β(γf)ψ v · nt.

Furthermore, f is nonnegative, so is γf , f is compactly supported, and∥∥fu,Y,Θ∥∥L∞(0,τ ;Lp(R3×R3×R∗+×R∗+))
.
∥∥f in

∥∥
Lp(Π0)

. (39)

We also have ST,fu,Y,Θ
, SY,fu,Y,Θ

, cfu,Y,Θ
∈ C 0([0, τ ];Lp(Ωt)) for all p ∈ [1,+∞)

and, for all p ∈ [1,+∞],∥∥ST,fu,Y,Θ

∥∥
L∞(0,τ ;Lp(Ωt))

.
∥∥f in

∥∥
Lp(Π0)

, (40)∥∥SY,fu,Y,Θ

∥∥
L∞(0,τ ;Lp(Ωt))

.
∥∥f in

∥∥
Lp(Π0)

, (41)

and ∥∥cfu,Y,Θ

∥∥
L∞(0,τ ;Lp(Ωt))

.
∥∥f in

∥∥
Lp(Π0)

. (42)

Finally, Fu,Y,Θ ∈ C 0([0, τ ];L2(R3)) and

‖Fu,Y,Θ‖L∞(0,τ ;L2(R3)) .
∥∥f in

∥∥
L2(Π0)

. (43)

Remark 3.2. Let us be more accurate with respect to the multiplicative constant
appearing in (39). It depends on p, τ , rdrug, ‖η′r‖L∞(R), ‖∇Yv,surf‖L∞(R∗+×R∗+)

and ‖χ′‖L∞(R). Therefore, we need to be vigilant when choosing a sequence of
truncations (χn)n∈N in Subsection 3.5.
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Remark 3.3. The fact that the solution f remains compactly supported comes
from the fact that G1, G2, G3 ∈ L∞((0, τ)×R3×R3×R∗+×R∗+). It is a standard
result that the size of the support only depends on the initial datum and the
L1(0, τ ;L∞(R3 × R3 × R∗+ × R∗+)) norm of G1, G2, G3. The only parameter
involved in the bounds (40)–(43) that is of interest is the size of the support of
f , and therefore the L∞ norms of |G1|+ |G2|+ |G3|.

3.2 Study of the approximated Navier-Stokes equations
Let uin ∈ L2(R3) such that divx u

in = 0 and let F ∈ C 0([0, τ ];L2(R3)). Our
focus in this section is the following problem on (0, τ)× R3:

∂tu+ PNπL(divx(u⊗ u))−∆xu+NPNπL
(
(u−w)1Ω̂c

)
= PNπLF , (44)

divx u = 0, (45)

u t=0 = PNu
in. (46)

In this section, .N will denote an inequality up to a multiplicative constant
which can depend on τ , w and N . Applying the Cauchy-Lipschitz theorem and
the standard procedure to obtain the energy estimates leads to the following
result.

Theorem 3.4. Problem (44)–(46) has a unique solution u ∈ C 1([0, τ ]; FN ).
Furthermore, for all t ∈ [0, τ ],

‖u(t)‖2L2(R3) +

ˆ t

0

‖∇xu‖2L2(R3) ds .N 1 +
∥∥uin

∥∥2

L2(R3)
+ ‖F ‖2L2((0,τ)×R3) (47)

and

‖∂tu‖2L2((0,τ)×R3) + ‖∇xu‖2L∞(0,τ ;L2(R2)) + ‖u‖2L2(0,τ ;H2(Ωt))

.N 1 +
∥∥uin

∥∥2

L2(R3)
+ ‖F ‖2L2((0,τ)×R3) . (48)

We also use a uniqueness result for weaker solutions of (44)–(46) with respect
to the time variable.

Definition 3.5. We say that u∗ ∈ C ([0, τ ];L2
loc(R3))∩L2(0, τ ; FN ) is a weak-

in-time solution of (44)–(46) if, for all ϕ ∈ D((0, τ)×R3) such that divxϕ = 0,
ˆ τ

0

ˆ
R3

(−u∗ · ∂tϕ+ PNπL (divx(u∗ ⊗ u∗)) · ϕ+∇xu∗ : ∇xϕ)

+

ˆ τ

0

ˆ
R3

NPNπL
(
(u∗ −w)1Ω̂c

)
·ϕ =

ˆ τ

0

ˆ
R3

PNπL(F ) ·ϕ, (49)

with u∗(0) = PNu
in and divx u∗ = 0.

Theorem 3.6. The solution u ∈ C 1([0, τ ]; FN ) given by Theorem 3.4 is the
only weak-in-time solution of (44)–(46) in the sense of Definition 3.5.

This results stems from Definition 3.5 and the derivation of a standard energy
estimate.
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3.3 Study of the convection-diffusion equations
Note that the equations on Y and Θ display the same structure. Therefore,

we consider a more general framework covering both cases. Let V in ∈ H1(Ω0),
z ∈ L∞(0, τ ;H1(Ωt)) such that divx z = 0 and z ∂Ωt = w ∂Ωt for almost every
t ∈ (0, τ). Let c ∈ L∞(0, τ ;L4(Ωt)) and S ∈ L2(Ω̂) such that c and S are
nonnegative.

This section is dedicated to solving the problem

∂tV + z · ∇xV −∆xV + cV = S in Ω̂, (50)

∇xV · nt = 0 on Γ̂, (51)

V (0, ·) = V in in Ω0. (52)

The notion of weak solution of this problem is defined as follows.

Definition 3.7. We say that V ∈ C 0([0, τ ];L2(Ωt))∩L2(0, τ ;H1(Ωt)) is a weak
solution of (50)–(52) if V (0) = V in and, for all ζ ∈ C 1(Ω̂), for all t ∈ (0, τ),
ˆ

Ωt

V (t)ζ(t)−
ˆ

Ω0

V inζ(0)−
¨

Ω̂t

V ∂sζ +

ˆ t

0

B(V (s), ζ(s); s) =

¨
Ω̂t

Sζ, (53)

where B is the time-dependent bilinear form defined, for all (v1, v2) ∈ H1(Ωt)
2

and almost every t ∈ (0, τ), by

B(v1, v2; t) =

ˆ
Ωt

(∇xv1 · ∇xv2 + v2z(t) · ∇xv1 + c(t)v1v2) .

We will prove the following result.

Theorem 3.8. Problem (50)–(52) has a unique weak solution V in the sense
of Definition 3.7. Furthermore, V satisfies the weak maximum principle: if V in

is nonnegative on Ω0, then V is nonnegative on Ω̂. Moreover, for all t ∈ (0, τ),

‖V (t)‖2L2(Ωt)
+ 2

ˆ t

0

‖∇xV ‖2L2(Ωs) + 2

¨
Ω̂t

cV .
∥∥V in

∥∥2

L2(Ω0)
+ ‖S‖2L2(Ω̂) . (54)

Finally, for all ζ ∈ D(Ω̂),

|〈∂tV, ζ〉| .
(∥∥V in

∥∥2

L2(Ω0)
+ ‖S‖2L2(0,τ ;L2(Ωt))

)
×
(

1 + ‖z‖2L∞(0,τ ;L2(Ωt))
+ ‖c‖2L∞(0,τ ;L4(Ωt))

)
‖ζ‖L2(0,τ ;H2(Ωt))

, (55)

where 〈·, ·〉 denotes the duality bracket D ′(Ω̂)–D(Ω̂).

In order to prove this theorem, we perform a change of variable so as to work
in a fixed domain. For t ∈ (0, τ) and y ∈ Ω0, let

V 0(t,y) = V (t,At(y)), z0(t,y) = z(t,At(y)),
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w0(t,y) = w(t,At(y)), c0(t,y) = c(t,At(y)),

S0(t,y) = S(t,At(y)), J(t,y) = Cof(∇yAt(y)), D(t,y) = J(t,y)ᵀJ(t,y),

and consider the problem on (0, τ)× Ω0

∂tV
0 +

(
z0 −w0

)
· J∇yV

0 − divy

(
D∇yV

0
)

+ c0V 0 = S0, (56)

D∇yV
0 · n0 = 0, (57)

V 0(0, ·) = V in. (58)

Definition 3.9. We say that V 0 ∈ C 0([0, τ ];L2(Ω0)) ∩ L2(0, τ ;H1(Ω0)) such
that ∂tV 0 ∈ L2(0, τ ;H1(Ω0)′) is a weak solution to Problem (56)–(58) if V 0(0) =
V in and, for all ζ ∈ C 1(Ω0), for any t ∈ (0, τ),

ˆ t

0

〈
∂tV

0, ζ
〉

1
+

ˆ t

0

ˆ
Ω0

B0(V 0(s), ζ(s); s) =

ˆ t

0

ˆ
Ω0

S0ζ, (59)

where 〈·, ·〉1 denotes the duality bracket H1(Ω0)′–H1(Ω0) and B0 is the time-
dependent bilinear form defined, for all (v1, v2) ∈ H1(Ω0)2 and almost every
t ∈ (0, τ), by

B0(v1, v2; t) =

ˆ
Ω0

[D(t)∇yv1 · ∇yv2 + v2(z0 −w0)(t) · J(t)∇yv1 + c0(t)v1v2].

Note that divy J = 0 and that divxw = 0 implies that det J = 1 as well as
divy(Jᵀw0) = 0. Therefore, by a change of variable, one can easily check that
V is a weak solution of Problem (50)–(52) in the sense of Definition 3.7 if and
only if V 0 is a weak solution of Problem (56)–(58) in the sense of Definition 3.9.

Let us now focus on Problem (56)–(58). In order to prove the existence
of a weak solution, we follow the steps of [14], which deals with the Dirichlet
boundary condition rather than the Neumann one, and use a Galerkin approxi-
mation. Let (vn)n∈N be an orthogonal basis of H1(Ω0) such that (vn)n∈N is an
orthonormal basis of L2(Ω0) and, for all n ∈ N, let Hn = Span(v0, . . . , vn). Let
n ∈ N. By the linear Cauchy-Lipschitz theorem, there exists a unique solution
V 0
n ∈W 1,∞(0, τ ;Hn) to the problem
ˆ

Ω0

∂tV
0
n vk +B0(V 0

n (t), vk; t) =

ˆ
Ω0

S0vk a.e. t ∈ (0, τ),∀k ∈ J0, nK (60)

V 0
n t=0 = PHnV

in. (61)

We write

V 0
n (t,y) =

n∑
k=0

qnk (t)vk(y).

Then, if we multiply (60) by qnk , sum over k for each k and integrate on (0, t),
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for t ∈ (0, τ), we get

ˆ t

0

ˆ
Ω0

(
V 0
n ∂sV

0
n + V 0

n (z0 −w0) · J∇yV
0
n +D∇yV

0
n · ∇yV

0
n + c0|V 0

n |2
)

=

ˆ t

0

ˆ
Ω0

S0V 0
n .

First note thatˆ t

0

ˆ
Ω0

V 0
n ∂sV

0
n =

1

2

∥∥V 0
n (t)

∥∥2

L2(Ω0)
− 1

2

∥∥V 0
n (0)

∥∥2

L2(Ω0)
.

Furthermore, for almost every t ∈ (0, τ),
ˆ

Ω0

V 0
n (z0 −w0) · J∇yV

0
n =

ˆ
∂Ω0

|V 0
n |2(z0 −w0) · Jn0

−
ˆ

Ω0

V 0
n (z0 −w0) · J∇yV

0
n −
ˆ

Ω0

|V 0
n |2(divy J) · (z0 −w0)

−
ˆ

Ω0

|V 0
n |2 Tr(Jᵀ∇y(z0 −w0)). (62)

Since divy J = 0 and

Tr(Jᵀ∇y(z0 −w0)) = Tr[Cof(∇yAt(y))ᵀ∇x(z −w)(t,At(y))∇yAt(y)]

=
1

det(∇yAt(y))
divx(z −w)(t,At(y)) = 0,

we deduce from (62) thatˆ
Ω0

V 0
n (z0 −w0) · J∇yV

0
n = 0.

Finally, noticing that (t,y) 7→ σ(J(t,y)) is a continuous map from [0, τ ]×Ω0 to
R3×3, and since (0, τ) × Ω0 is compact and det J = 1, there exists α > 0 such
that ˆ t

0

ˆ
Ω0

D∇yV
0
n · ∇yV

0
n ≥ α

ˆ t

0

ˆ
Ω0

|∇yV
0
n |2.

Therefore,

∥∥V 0
n (t)

∥∥2

L2(Ω0)
+ 2α

ˆ t

0

ˆ
Ω0

|∇yV
0
n |2 + 2

ˆ t

0

ˆ
Ω0

c0|V 0
n |2

≤
∥∥V in

∥∥2

L2(Ω0)
+
∥∥S0

∥∥2

L2((0,τ)×Ω0)
+

ˆ t

0

∥∥V 0
n (s)

∥∥2

L2(Ω0)

and by Grönwall’s lemma,∥∥V 0
n (t)

∥∥2

L2(Ω0)
+ 2α

ˆ t

0

∥∥∇yV
0
n

∥∥2

L2(Ω0)
+ 2

ˆ t

0

ˆ
Ω0

c0|V 0
n |2 . 1, (63)
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where the underlying constant depends on V in and S. Thus, there exists V 0 ∈
L∞(0, τ ;L2(Ω0)) ∩ L2(0, τ ;H1(Ω0)) such that, up to a subsequence, V 0

n ⇀ V 0

and ∇yV
0
n ⇀ ∇yV

0 weakly in L2((0, τ) × Ω0) and V 0
n ⇀ V 0 weakly-∗ in

L∞(0, τ ;L2(Ω0)).
In order to take the limit n → +∞ in (60)–(61), we prove that (∂tV

0
n )n∈N

is bounded in L2(0, τ ;H1(Ω0)′). Let v ∈ H1(Ω0). Applying (60) for n ∈ N and
almost every t ∈ (0, τ) yields

∣∣〈∂tV 0
n , v

〉
1

∣∣ =

∣∣∣∣ˆ
Ω0

∂tV
0
nPHnv

∣∣∣∣
≤
∣∣∣∣ˆ

Ω0

(PHn
v)Jᵀ(z0 −w0) · ∇yV

0
n

∣∣∣∣+

∣∣∣∣ˆ
Ω0

D∇yV
0
n · ∇y(PHn

v)

∣∣∣∣
+

∣∣∣∣ˆ
Ω0

c0V 0
n (PHn

v)

∣∣∣∣+

∣∣∣∣ˆ
Ω0

S0(PHn
v)

∣∣∣∣ .
Since∣∣∣∣ˆ

Ω0

(PHnv)Jᵀ(z0 −w0) · ∇yV
0
n

∣∣∣∣
.
∥∥∇yV

0
n

∥∥
L2(Ω0)

∥∥z0 −w0
∥∥
H1(Ω0)

‖v‖H1(Ω0) ,

we get, thanks to (63) and the fact that z0,w0 ∈ L∞(0, τ ;H1(Ω0)) and c0 ∈
L∞(0, τ ;L4(Ω0)),

ˆ τ

0

∥∥∂tV 0
n

∥∥2

H1(Ω0)′
.
ˆ τ

0

∥∥∇yV
0
n

∥∥2

L2(Ω0)

∥∥z0 −w0
∥∥2

H1(Ω0)

+

ˆ τ

0

∥∥D∇yV
0
n

∥∥2

L2(Ω0)
+
∥∥c0V 0

n

∥∥2

L2(Ω0)
+
∥∥S0

∥∥2

L2(Ω0)
. 1.

Therefore, up to a subsequence, (∂tV
0
n )n∈N converges weakly in L2(0, τ ;H1(Ω0)′)

to ∂tV 0. We deduce from this that V ∈ C 0([0, τ ];L2(Ω0)).
We can now pass to the limit in (60)–(61) in a similar way as in [14] and

prove the existence of a solution to Problem (56)–(58). To obtain its unique-
ness, we begin by showing that V 0 satisfies the maximum principle. After an
approximation procedure, we can choose ζ0 as the nonpositive part of V 0, which
we write (V 0)− in (59). For all t ∈ (0, τ), we have

∥∥(V 0)−(t)
∥∥2

L2(Ω0)
+ 2

ˆ t

0

ˆ
Ω0

1V 0<0

∣∣J∇yV
0
∣∣2 + 2

ˆ t

0

ˆ
Ω0

1V 0<0 c
0|V 0|2

≤
∥∥(V in)−

∥∥2

L2(Ω0)
−
ˆ t

0

ˆ
Ω0

S0(V 0)−,

where 1A denotes the characteristic function of a subset A ⊂ Ω0. Since, here,
V in, c0 and S0 are nonnegative, this yields V 0 ≥ 0. The uniqueness of the weak
solution to (56)–(58) follows.
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Estimate (54) can be obtained by taking ζ = V in (53) and applying Grön-
wall’s lemma. For (55), we can apply (53) to ζ ∈ D(Ω̂) and reason similarly to
what we have done for ∂tV 0 above, except for the following term, for which we
write∣∣∣∣¨

Ω̂

ζz · ∇xV

∣∣∣∣ ≤ ‖z‖L∞(0,τ ;L2(Ωt))
‖V ‖L2(0,τ ;H1(Ωt))

‖ζ‖L2(0,τ ;H2(Ωt))
.

This concludes the proof of Theorem 3.8.

3.4 Application of the Schauder theorem
Thanks to the results stated in the previous sections, we can check that the

map Λ defined by (27)–(35) satisfies the hypotheses of the Schauder fixed-point
theorem. From Theorems 3.1, 3.4, and 3.8, we deduce that Λ is well-defined and
that there exists a constant C > 0 depending only on w, N , χ and the initial
data, such that

∀(u, Y,Θ) ∈ E, ‖Λ(u, Y,Θ)‖E ≤ C.

Step 1 – Λ is compact

Let (un, Yn,Θn)n∈N be a bounded sequence of (E, ‖.‖E). Let

(ũn, Ỹn, Θ̃n)n∈N = (Λ(un, Yn,Θn))n∈N

and let (fn)n∈N be the sequence of solutions to the corresponding Vlasov equa-
tions. Thanks to Remark 3.3, there exists a compact of Ω̂ × R3 × R+ × R+

that contains all the supports of the functions fn. The bounds (40)-(43) are
therefore uniform with respect to n ∈ N.

The convergence, up to a subsequence, of (ũn)n∈N is a consequence of the
Arzelà-Ascoli theorem, which we apply in C 0([0, τ ];L2(B)) for any closed ball
B of R3. The sequence is indeed uniformly equicontinuous thanks to the bound
(48) and the fact that, for all ϕ ∈ C 0([0, τ ];L2(B)),

∀t1, t2 ∈ (0, τ), ‖ϕ‖2L2(B) ≤ |t2 − t1| ‖∂tϕ‖
2
L2((0,τ)×R3) .

Moreover, for all t ∈ [0, τ ], (ũn(t))n∈N is precompact in L2(B) thanks to the
Rellich-Kondrachov theorem. Then there exists u ∈ C 0([0, τ ];L2

loc(R3)) such
that the sequence (ũn)n∈N converges to u in C 0([0, τ ];L2(B)) for any closed
ball B of R3. Thanks to Estimates (43) and (47) and the monotone conver-
gence theorem, ũ belongs to L∞(0, τ ;L2(R3)). Then the equicontinuity of the
sequence (ũn)n∈N ensures that u ∈ C 0([0, τ ];L2(R3)). Furthermore, Estimate
(47) shows that (∇xũn)n∈N is bounded in L2((0, τ)× R3) and therefore, up to
a subsequence, it converges weakly to ∇xũ in L2((0, τ)× R3). The weak lower
semi-continuity of ‖.‖L2((0,τ)×R3) then implies that u ∈ L2(0, τ ;H1(R3)). Fi-
nally, we prove that (ũn)n∈N converges to u in E. For any R > 0, if we denote
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by BR the ball of R3 centered at 0 and of radius R, we have, for all t ∈ [0, τ ],

‖(ũ(t)− ũn(t))γ‖L1(R3) ≤ ‖ũ(t)− ũn(t)‖L2(BR) ‖γ‖L2(R3)

+ ‖ũ(t)− ũn(t)‖L2(R3)

∥∥γ1|x|>R∥∥L2(R3)

Thanks to Estimate (47) and the fact that γ ∈ L2(R3), we deduce from this
that

lim
n→+∞

sup
t∈[0,τ ]

‖(ũ(t)− ũn(t))γ‖L1(R3) = 0.

We now deal with the convergence of (Ỹn)n∈N, the case of (Θ̃n)n∈N being
completely similar. We begin by noticing that thanks to Theorem 3.8, for all
n ∈ N, Ỹn is nonnegative and, using the the same argument, since Yv,surf ≤ 1,
we can prove that Ỹn ≤ 1. In order to get compactness, we apply an Aubin-
Lions-type result due to [25, Corollary 1]. Indeed, thanks to the bounds (41)
and (54), (Ỹn)n∈N is bounded in L2(0, τ ;H1(Ωt)). And with (42), (43), (47) and
(55), for all ζ ∈ D(Ω̂), we obtain∣∣∣〈∂tỸn, ζ〉∣∣∣ .N ‖ζ‖L2(0,τ ;H2(Ωt))

.

This allows to state that, up to a subsequence, (Ỹn)n∈N converges in L2(Ω̂).
In conclusion, we have obtained that, up to a subsequence, (ũn, Ỹn, Θ̃n)n∈N

converges in (E, ‖.‖E).

Step 2 – Λ is continuous

Let (un, Yn,Θn)n∈N be a sequence of E converging towards (u, Y,Θ). It is
enough to prove that, from any subsequence of

(ũn, Ỹn, Θ̃n)n∈N = (Λ(un, Yn,Θn))n∈N,

we can extract a subsequence which converges to (ũ, Ỹ , Θ̃) = Λ(u, Y,Θ) in
E. For the sake of clarity, we will not modify the indices when dealing with
subsequences. The compactness of Λ ensures that (ũn, Ỹn, Θ̃n)n∈N converges to
(U , H, Z) in E up to a subsequence.

The convergences of (ũn)n∈N in C 0([0, τ ]×L2
loc(R3)) and in w-L2((0, τ)×R3)

provide that, with standard arguments, we can take the limit n→ +∞ in all the
terms appearing in (49), except the one on the right-hand side. For this term,
Estimate (39) ensures that, up to a subsequence, (fn)n∈N converges weakly-∗ in
L∞((0, τ)×R3×R3×R∗+×R∗+) and weakly in Lp((0, τ)×R3×R3×R∗+×R∗+) for
all p ∈ (1,∞). Furthermore, the convergence of (un, Yn,Θn) in E provides the
convergences of (Yn)n∈N and (Θn)n∈N in L2(Ω̂). With this, we can take the limit
n → +∞ in (18). The uniqueness of the weak solution, given by Theorem 3.1,
yields that the limit of (fn)n∈N is fu,Y,Θ. In turn, this results to the convergence
of the right-hand side term in (49) and, thanks to the uniqueness of the weak-
in-time solution proved in Theorem 3.6, we obtain that the whole sequence
(ũn)n∈N converges to U = ũ in C 0([0, τ ];L2

loc(R3)).
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We get the convergence in L2(Ω̂) of (Ỹn)n∈N and (Θ̃n)n∈N towards, respec-
tively, Z = Ỹ and H = Θ̃ in a similar way. As a conclusion, Λ is continuous.

Step 3 – Conclusion

Finally, we can apply Theorem 2.4 to the map Λ restricted to the set

C ′ = {(u, Y,Θ) ∈ C , ‖(u,Θ, Y )‖E ≤ C},

where C > 0 has been defined at the beginning of this section. We obtain the
existence of (u, Y,Θ) ∈ C ′ such that Λ(u, Y,Θ) = (u, Y,Θ).

3.5 Back to the initial system
Let uin, Y in,Θin, f in satisfy Assumptions 2–4.
Let (Y in

n )n∈N be a sequence of H1(Ω0) that converges to Y in in L2(Ω0) and
such that 0 ≤ Y in

n ≤ 1 and
∥∥Y in

n

∥∥
L2(Ω0)

≤
∥∥Y in

∥∥
L2(Ω0)

for all n ∈ N. Similarly,
let (Θin

n )n∈N be a nonnegative sequence of H1(Ω0) that converges to Θin and
such that

∥∥Θin
n

∥∥
L2(Ω0)

≤
∥∥Θin

∥∥
L2(Ω0)

for all n ∈ N. Finally, let (f in
n )n∈N be

a nonnegative sequence of L∞(Π0) such that, for all n ∈ N, fn is compactly
supported and f in

n ∈ L∞(0, τ ;Lp(Πt)) and such that (fn)n∈N converges to f in

in Lp(Π0) for all p ∈ [1,∞) and w∗-L∞(Π0). We also assume that, for all n ∈ N,
f in
n (·, ·, r, ·) ≡ 0 for almost every r ∈ [0, rdrug]. Lastly, we choose fn so that∥∥f in

n

∥∥
L∞(Π0)

≤
∥∥f in

∥∥
L∞(Π0)

, (64)¨
Π0

r3f in
n ≤

¨
Π0

r3f in, (65)
¨

Π0

r3|v|2f in
n ≤

¨
Π0

r3|v|2f in, (66)
¨

Π0

|v|2f in
n ≤

¨
Π0

|v|2f in, (67)
¨

Π0

r3T 2f in
n ≤

¨
Π0

r3T 2f in. (68)

Let (χn)n∈N be a sequence of truncation functions satisfying the same hy-
potheses as χ in Section 2. Additionally, we suppose that, for all n ∈ N,
‖χn‖L∞(R) ≤ n, 0 ≤ χ′n ≤ 1, and for all v ∈ R, |χn(v)| ≤ v. Finally, we
assume that χn [−n+1/n,n−1/n] = Id[−n+1/n,n−1/n] so that (χn)n∈N converges
uniformly to IdR.

Using the results of Subsection 3.4, for all n ∈ N there exist un, Yn,Θn, fn
weakly solving the system

∂tfn +v ·∇xfn + divv(G1,nfn) + ∂r(G2,nfn) + ∂T (G3,nfn) = 0 on Π̂, (69)

fn = 0 on Σ̂−, (70)
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∂tun + PnπL(divx(un ⊗ un))−∆xun + nPnπL
(
(un −w)1Ω̂c

)
= PnπL

ˆ
R3×R∗+×R∗+

rηfnχn(v − un) in (0, τ)× R3, (71)

divx un = 0 in (0, τ)× R3, (72)

∂tYn + zn · ∇xYn −∆xYn =

ˆ
R3×R∗+×R∗+

rη(Yv,surf − Yn)fn in Ω̂, (73)

∇xYn · nt = 0 on Γ̂, (74)

∂tΘn + zn · ∇xΘn −∆xΘn =

ˆ
R3×R∗+×R∗+

rη(T −Θn)fn in Ω̂, (75)

∇xΘn · nt = 0 on Γ̂, (76)

where
zn = w − πΩt

((un −w)1Kn
) ,

G1,n = χn(un − v)
η

r2 +
r3
drug

r

, G2,n =
Yn − Yv,surf

r
η

and

G3,n = G2,n +
Θn − T
r2

η.

Moreover, these solutions satisfy the initial conditions

un(0) = Pnu
in, Yn(0) = Y in

n , Θn(0) = Θin
n , fn(0) = f in

n .

Remark 3.10. Note that, thanks to Theorem 3.6, un ∈ C 1([0, τ ]; Fn) is a
strong solution of the regularized Navier-Stokes equations.

Thanks to Theorem 3.1, Remark 3.2 and Assumption 64, we have

‖fn‖L∞(Π̂) .
∥∥f in
n

∥∥
L∞(Π0)

. 1.

Therefore, there exists f ∈ L∞(Π̂) such that, up to a subsequence, (fn)n∈N con-
verges to f weakly-∗ in L∞(Π̂). Another consequence of (39) is the convergence
of (fn)n∈N weakly in Lq(0, τ ;Lp(Πt)) for all 1 < p, q < ∞. In particular, we
have f ≥ 0.

Estimate (47) on un is no longer satisfactory since it depends on n. We are
thus led to write an energy estimate such as (17). Multiplying (71) by un and
integrating over (0, t)× R3 for t ∈ (0, τ) yields

1

2
‖un(t)‖2L2(R3) +

ˆ t

0

‖∇xun‖2L2(R3) + n

ˆ t

0

ˆ
R3

1Ω̂c(un −w) · un

=

ˆ t

0

¨
R3×R3×R∗+×R∗+

rηfnχn(v − un) · un +
1

2

∥∥Pnuin
∥∥2

L2(R3)
.
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Furthermore, thanks to the stability of the renormalized solutions of the Vlasov
equation, due to the DiPerna-Lions theory [12], we can deal with the Vlasov
equation as if its coefficients and fn were smooth. For more details, the reader
can refer to [19, Remark 3.1]. Then, multiplying (69) by (r3 + r3

drug)|v|2/2 and
integrating over Π̂t leads to

1

2

¨
Πt

(r3 + r3
drug)|v|2fn ≤

˚
Π̂t

rηfnχn(un − v) · v + 3

˚
Π̂t

r|v|2ηfn

+
1

2

¨
Π0

(r3 + r3
drug)|v|2f in

n ,

because fn, Yn and Yv,surf are nonnegative, Yn, Yv,surf ≤ 1 and fn Σ̂− = 0.
Summing these inequalities, we obtain

1

2
‖un(t)‖2L2(R3) +

1

2

¨
Πt

(r3 + r3
drug)|v|2fn +

ˆ t

0

‖∇xun‖2L2(R3)

+ n

ˆ t

0

ˆ
R3

1Ω̂c(un −w) · un +

˚
Π̂t

rηfnχ(v − un) · (v − un)

≤ 3

˚
Π̂t

r|v|2ηfn +
1

2

∥∥uin
∥∥2

L2(R3)
+

1

2

¨
Π0

(r3 + r3
drug)|v|2f in

Since χ(v) · v ≥ 0 for all v, we only need to replace the unsigned term

n

ˆ t

0

ˆ
R3

1Ω̂c(un −w) · un by n

ˆ t

0

ˆ
R3

1Ω̂c |un −w|2.

We proceed in the same way as [8]. By multiplying (71) by Pnw and integrating
over (0, t)× R3, we get

− n
ˆ t

0

ˆ
R3

1Ω̂c(un −w) ·w =

ˆ
R3

un(t) ·w(t)−
ˆ
R3

uin
n ·w(0)

−
ˆ t

0

ˆ
R3

un · ∂tw +

ˆ t

0

ˆ
R3

∇xun : Pn∇xw

+

ˆ t

0

ˆ
R3

(divx(un ⊗ un)) ·w

+

ˆ t

0

˘
R3×R3×R∗+×R∗+

rηrθnfnχn(v − un) · Pnw. (77)

We then use Cauchy-Swcharz’s and Young’s inequalities, as well as the fact that
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|χn(z)|2 ≤ χn(z) · z for all z ∈ R3, to find, by summing (??) and (77),

1

4
‖un(t)‖2L2(R3) +

1

2

¨
Πt

(r3 + r3
drug)|v|2fn

+
1

8

ˆ t

0

‖∇xun‖2L2(R3) + n

ˆ t

0

ˆ
R3

1Ω̂c |un −w|2

+
1

2

˚
Π̂t

rηfnχn(v − un) · (v − un) . 1. (78)

Therefore, (un)n∈N is bounded in L∞(0, τ ;L2(R3))∩L2(0, τ ;H1(R3)) and there
exists u ∈ L∞(0, τ ;L2(R3)) ∩ L2(0, τ ;H1(R3)) such that, up to a subsequence,
(un)n∈N converges to u in w-L2(0, τ ;H1(R3)) and w∗-L∞(0, τ ;L2(R3)).

We also need a new estimate for (Θn)n∈N. After an approximation proce-
dure, we can take ζ = Θn1[0,t] in (53) and obtain

‖Θn(t)‖2L2(Ωt)
+ 2

ˆ t

0

‖∇xΘn‖2L2(Ωs) + 2

˚
Π̂t

r(Θn − T )Θnηfn

=
∥∥T in

n

∥∥2

L2(Ω0)
.

Furthermore, multiplying (69) by r3T 2 and integrating over Π̂t yields, thanks
to the boundary condition (70) and the fact that 0 ≤ Yn, Yv,surf ≤ 1 and fn ≥ 0,

¨
Πt

r3T 2fn(t) ≤ 6

˚
Π̂t

rT 2ηfn + 4

˚
Π̂t

rTηfn

+ 2

˚
Π̂t

rχn(Θn − T )Tηfn +

ˆ
Π0

r3T 2f in
n .

Summing these inequalities leads to

‖Θn(t)‖2L2(Ωt)
+

¨
Πt

r3T 2fn(t)

+ 2

ˆ t

0

‖∇xΘn‖2L2(Ωs) + 2

˚
Π̂t

r|Θn − T |2ηfn

≤ 6

˚
Π̂t

rT 2ηfn + 4

˚
Π̂t

rTηfn +

¨
Π0

r3T 2f in
n

+ 2

˚
Π̂t

rT [χn(Θn − T )− (Θn − T )] ηfn. (79)

As in the introduction, we deal with the first two terms of the right-hand side
by ensuring, thanks to the Grönwall lemma again, that

¨
Πt

r3fn(t) . 1. (80)
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Since |χn(Θn − T ) − (Θn − T )| ≤ 2|Θn − T |1|Θn−T |>n−1/n and thanks to the
Young inequality and the definition of η, we also have
˚

Π̂t

rT [χn(Θn − T )− (Θn − T )] ηfn

≤ 2

˚
Π̂t

rT |Θ− T |ηfn

≤ 4

rdrug

˚
Π̂t

r3T 2fn +
1

2

˚
Π̂t

r|Θn − T |2ηfn. (81)

Then, (79) leads to ¨
Πt

r3T 2fn . 1, (82)

thanks to the Grönwall lemma again. Note that by a straightforward application
of Fatou’s lemma, (80) and (82) yield

¨
Πt

r3T 2f <∞,
¨

Πt

r3f <∞.

As a conclusion, we can write

‖Θn(t)‖2L2(Ωt)
+

¨
Πt

r3T 2fn(t) + 2

ˆ t

0

‖∇xΘn‖2L2(Ωs)

+

˚
Π̂t

r|Θn − T |2ηfn . 1. (83)

Let B be an open ball such that, for every t ∈ [0, τ ], Ωt ⊂ B. We define re-
spectively (Θn)n∈N, (∇xΘn)n∈N as the sequence of continuations of (Θn)n∈N
and (∇xΘn)n∈N by 0 on (R∗+ × B)\Ω̂. From Estimate (83), we infer that
(Θn)n∈N is bounded in L∞(R∗+;L2(B))∩L2(R∗+;H1(B)). Therefore, there exists
Θ ∈ L∞(R+;L2(B)) ∩ L2(R+;H1(B)) such that, up to a subsequence, (Θn)n∈N
converges to Θ in w-L2(R+;H1(B)) and w∗-L∞(R+;L2(B)).

In the same way, we obtain an estimate on (Yn)n∈N. Choosing ζ = Yn1[0,t]

in (3.7), we get, since 0 ≤ Yn, Yv,surf ≤ 1,

1

2
‖Yn(t)‖2L2(Ωt)

+

ˆ t

0

‖∇xYn‖2L2(Ωs) ≤
˚

Π̂t

rηfn +
1

2

∥∥Y in
n

∥∥2

L2(Ω0)
,

hence, using (80),

1

2
‖Yn(t)‖2L2(Ωt)

+

ˆ t

0

‖∇xYn‖2L2(Ωs) . 1. (84)

Therefore, (Yn)n∈N is bounded in L∞(R∗+;L2(B)) ∩ L2(R∗+;H1(B)) and there
exists Y ∈ L∞(R+;L2(B)) ∩ L2(R+;H1(B)) such that, up to a subsequence,
(Yn)n∈N converges to Y in w-L2(R+;H1(B)) and w∗-L∞(R+;L2(B)).
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The weak convergences we have obtained are enough to justify the asymp-
totics n→ +∞ in the linear terms appearing in (18)–(21). For the other terms,
we will need to prove strong compactness for (un)n∈N, (Yn)n∈N and (Θn)n∈N.

Let us first consider the sequence (un)n∈N. We apply Theorem 4 of [25] which
is an Aubin-Lions type of result specifically engineered to deal with the Navier-
Stokes equation in a time-dependent domain. Namely, under the additional
hypotheses that the sequence of normal traces of un in L2(0, τ ;H−1/2(Ωt)) is
compact and that we have a control of the action of ∂tun on test functions
with divergence equal to zero, the sequence (un)n∈N converges in L2(Ω̂) up to
a subsequence.

The first hypothesis is verified since, thanks to (78), (un)n∈N converges to
w in L2(Ω̂c) and the normal trace operator on Γ̂ is continuous from {ϕ ∈
L2(Ω̂c), divxϕ ∈ L2(Ω̂c)} to L2(0, τ ;H−1/2(Ωt)). Note that this implies u −
w ∈ V0.

For the second one, we can prove that, for any ϕ ∈ D(Ω̂) such that divxϕ =
0, we have ∣∣∣∣ˆ t

0

ˆ
Ωt

∂tun ·ϕ
∣∣∣∣ . ‖ϕ‖L2(0,τ ;H2(Ωt))

.

This is obtained thanks to the Hölder and Gagliardo-Nirenberg inequalities, the
continuous injection H2(Ωt) ↪→ L∞(Ωt), and Estimate (78). We only detail
one computation: since |χ(v)|2 ≤ χ(v) · v for all v ∈ R3, the Cauchy-Schwarz
inequality yields∣∣∣∣˚

Π̂

rηfnχn(v − un) ·ϕ
∣∣∣∣ ≤ ˆ τ

0

‖ϕ‖H2(Ωt)

¨
Πt

rηfn|χn(v − un)|

≤
ˆ τ

0

‖ϕ‖H2(Ωt)

(¨
Πt

rηfn

)1/2(¨
Πt

rηfn|χn(v − un)|2
)1/2

≤

(
sup
t∈(0,τ)

¨
Πt

r3fn

)1/2(˚
Π̂

rηfnχn(v − un) · (v − un)

)1/2

× ‖ϕ‖L2(0,τ ;H2(Ωt))

. ‖ϕ‖L2(0,τ ;H2(Ωt))

thanks to (78) and (80). Therefore, up to a subsequence, (un)n∈N converges to
u in L2(Ω̂).

To obtain compactness for the sequence (Θn)n∈N, we apply Corollary 1 of
[25]. Since the sequence is bounded in L2(0, τ ;H1(Ωt)), we just have to prove
that, for all ζ ∈ D(Ω̂),

¨
Ω̂

Θn∂tζ . ‖ζ‖L2(0,τ ;H2(Ωt))
.

We do not detail the proof since the right-hand side term of the equation is dealt
with in the same way as for (un)n∈N by using of (80) and (83). Therefore, up to
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a subsequence, (Θn)n∈N converges to Θ in L2(Ω̂). The same goes for (Yn)n∈N,
converging to Y in L2(Ω̂) up to a subsequence.

This allows to take the limit n→ +∞ in all the nonlinear terms that appear
in Definition 2.2. We focus on the only difficulty arising in the asymptotics
in the coupling terms from the right-hand sides of the equations. We tackle
this case for the Navier-Stokes equation but a similar treatment provides the
expected results for the convection-diffusion equations.

Thanks to the strong convergence of (un)n∈N, we obtain the L2 conver-
gence of (rηχn(v − un(t)))n∈N in a bounded subset of Ωt × R3 × R∗+ × R∗+
for almost every t. Indeed, let R, θ > 0 and Kv a compact of R3. Up to
a subsequence, we can assume that (un)n∈N converges almost everywhere to
u ∈ L2(Ω̂). Since (un(t))n∈N converges to u(t) in L2(Ωt) for almost every
t, the Vitali convergence theorem ensures that (|un(t)|2)n∈N is uniformly inte-
grable. Since |χn(v − un(t))| ≤ |v| + |un(t)| and Kv is bounded, we deduce
from this that (|χn(v − un(t))|2)n∈N is uniformly integrable for almost every
t. Therefore, since this sequence converges almost everywhere, the Vitali con-
vergence theorem ensures the convergence of (χn(v−un(t)))n∈N to v−u(t) in
L2(Ωt×Kv) for almost every t. This leads to (rηχn(v−un(t)))n∈N converging
to (rη(v − u(t)))n∈N in L2(Ωt ×Kv × [0, R]× [0, θ]) for almost every t ∈ (0, τ).

Let ϕ ∈ D(Ω̂). Thanks to the bounds (78) and (82), we can prove that the
following convergence occurs uniformly with respect to n ∈ N:
˚

Π̂

1|v|≤M1r≤M1T≤Mrηfnχn(v − un) ·ϕ

−−−−−→
M→+∞

˚
Π̂

rηfnχn(v − un) ·ϕ.

Therefore,

lim
M→+∞

lim
n→+∞

˚
Π̂

1|v|≤M1r≤Mrηfnχn(v − un) ·ϕ

= lim
n→+∞

lim
M→+∞

˚
Π̂

1|v|≤M1r≤M1T≤Mrηfnχn(v − un) ·ϕ.

Then we deduce from the local convergence we have just obtained, the domi-
nated convergence theorem and the weak convergence of (fn)n∈N that
˚

Π̂

1|v|≤M1r≤M1T≤Mrηfnχn(v − un) ·ϕ

−−−−−→
n→+∞

˚
Π̂

1|v|≤M1r≤M1T≤Mrηf(v − u) ·ϕ.

Besides, thanks to (78), (80) and Fatou’s lemma, we can prove that rηf(v−u) ∈
L1(Π̂), which allows to take the limit M → +∞ and obtain the convergence

˚
Π̂

rηfnχn(v − un) ·ϕ −−−−−→
n→+∞

˚
Π̂

rηf(v − u) · ϕ.

28



As a conclusion, we have obtained that u, Y , Θ and f weakly solves a system
of equations similar to Problem (2)-(14). We have yet to deal with factor η still
appearing in these equations. Namely, we finally prove that under the assump-
tion that f in(·, ·, r, ·) ≡ 0 for almost every r ∈ [0, rdrug], then f(·, ·, ·, r, ·) ≡ 0
for r ∈ [0, rdrug], so that ηf = f . We use again the DiPerna-Lions theory [12]
which enables us, thanks to the uniqueness of the solution of the Vlasov equa-
tion, to consider a sequence of solutions (fn)n∈N strongly converging to f and
for which the coefficients of the equation are smooth. We can thus assume that
the functions (f in

n )n∈N, (un)n∈N, (Yn)n∈N and (Θn)n∈N are smooth and that
Yn ≥ 0 for all n ∈ N and f in

n (·, ·, r, ·) ≡ 0 for every r ∈ [0, rdrug]. We also take a
sequence (εn)n∈N of (0, 1) with limit 0 and replace Yn by Yn + εn in the part of
the Vlasov equation that describes radius evolution. With these assumptions,
the characteristic curves are defined by

Ẋn(t; t0,x,v, r, T ) = Vn,

V̇n(t; t0,x,v, r, T ) =
Rnη(Rn)

R3
n + r3

drug

χn(un(t,Xn)− Vn),

Ṙn(t; t0,x,v, r, T )n =
Yn(t,Xn) + εn − Yv,surf(Rn, Hn)

Rn
η(Rn),

Ḣn(t; t0,x,v, r, T )n =
Yn(t,Xn)− Yv,surf(Rn, Hn)

R2
n

η(Rn) +
Θn −Hn

R2
n

η(Rn),

(Xn,Vn, Rn, Hn)(t0; t0,x,v, r, T ) = (x,v, r, T ),

where (x,v, r, T ) ∈ R3 ×R3 ×R∗+ ×R∗+ and t0 ∈ [0, τ). Thanks to the Cauchy-
Lipschitz theorem, the previous differential system has a unique global solution
Zn = (Xn,Vn, Rn, Hn).

Let n ∈ N. Assume that r > rdrug, let t∗ = inf{t ≥ t0, Rn(t; t0,x,v, r, T ) =
rdrug} and suppose that t∗ < τ . Since Yv,surf(rdrug, θ) = 0 for all θ > 0,
Yn ≥ 0 and εn > 0, we have Ṙn(t∗; t0,x,v, r, T ) > 0, which contradicts the
definition of t∗ since Rn(·; t0,x,v, r, T ) is continuous. Therefore, if r > rdrug,
then Rn(t; t0,x,v, r, T ) > rdrug for all t ≥ t0.

Let (t,x,v, r, T ) ∈ Π̂, with r ≤ rdrug. By the methods of characteristics,
there exists a function Jn such that, for every (t,x′,v′, r′, T ′) ∈ Π̂,

fn(t, Z(t; 0,x′,v′, r′, T ′)) = f in
n (x′,v′, r′, T ′)Jn(t; 0,x′,v′, r′, T ′).

Therefore, with (x′,v′, r′, T ′) = Zn(0; t,x,v, r, T ), we get

fn(t,x,v, r, T ) = f in
n (Zn(0; t,x,v, r, T ))Jn(t,Zn(0; t,x,v, r, T )).

If we had Rn(0; t,x,v, r, T ) > rdrug, then, as proved in the last paragraph, we
would have r = Rn(t; t,x,v, r, T ) > rdrug. By contradiction, we getRn(0; t,x,v, r, T ) ≤
rdrug and the hypothesis on f in

n yields

fn(t,x,v, r, T ) = 0.
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Consequently, for all n ∈ N and r ∈ [0, rdrug], fn(·, ·, ·, r, ·) ≡ 0. The weak
convergence of (fn)n∈N yields the same property for f . Therefore, ηf = f ,
which concludes the proof of Theorem 2.3.
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