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Abstract—On-demand video delivery with a Content Delivery
Network (CDN) solely based on set-top-boxes has been recently
introduced. In previous works, videos are separated into pieces
and randomly stored in boxes, requests from clients being
redirected to the nearest boxes. However, random strategy may
lead to some costly and inefficient allocation. For example, a video
part could be placed much further than other parts of the same
video, while two close boxes host the same part. This paper aims
to reduce downloading cost by exploiting the network location
of boxes when allocating the videos. We show that optimizing
the allocation is NP-hard. In this paper, in order to analyze
the impact of different content allocation methods on cross-
domain traffic, we compare an existing approximate algorithm
and two simple heuristics with random allocation. Simulations
with realistic network settings demonstrate that inter-AS traffic
can be efficiently reduced, when knowledge on network topology
is integrated in the allocation algorithm, such as links and
relationships among Autonomous Systems.

I. INTRODUCTION

The advantages of exploiting set-top-boxes to raise a mas-
sive and cheap box-powered Content Delivery Network (CDN)
have been introduced in [1]. Several studies have recently
refined the design of this appealing system with a focus on
Video on Demand services [2]–[5]. It has been shown that
an optimal architecture requires to cut the videos into smaller
pieces (sub-streams) and to distribute these sub-streams over
the boxes, clients being expected to find all sub-streams of
the requested video in nearby boxes. However, the size of the
catalog of videos is very large, although the number of boxes
is limited, so not so many boxes host sub-streams of a given
video [4]. Hence, a client is sometimes unable to find all sub-
streams on boxes that are within its Autonomous System (AS).

Previous works have considered a basic random strategy to
allocate the sub-streams to boxes. However, random strategy
may lead to some costly and inefficient allocation. For exam-
ple, two boxes within the same AS may host the same sub-
stream while one sub-stream of this video is not available in
this AS. This would produce some unnecessary inter-AS traf-
fic, and calls for the design of new content allocation strategies
aiming at reducing the cross-domain traffic generated by the
use of a box-powered CDN.

We formulate four applicative scenarios:
• the service provider has a full knowledge, i.e. it knows

the exact position of every box and every future client,
moreover it knows the cost of transmitting data from
any box to any client. In this ideal case, the formal

description of the sub-stream allocation problem reveals
that determining an optimal allocation is NP-hard.

• the service provider does not know the location of clients,
but it knows the location of boxes and the network cost
of the links between boxes. This scenario corresponds
to a service provider being also a large Internet Service
Provider (ISP) responsible of various ASs over the In-
ternet. It can perfectly determine the cost of transmitting
data from one of its AS to another.

• the service provider knows the location of boxes and the
inter-AS map. It is then able to estimate the inter-AS rout-
ing, but it does not know inter-AS peering agreements.
This scenario occurs when the service provider is not
related with network operators.

• the service has no knowledge, therefore the only way to
allocate the content is to use a random strategy.

In this paper, we make a theoretical analysis of the inter-AS
traffic generated by a box-powered CDN. This work is thus
another step in the design of these attractive systems. To the
best of our knowledge, this is the first time that networking
aspects are thoroughly studied in this topic. This paper could
thus be used as a guideline for the settings of box-powered
CDN. Our main contribution is the analysis of the gain that can
be expected by the service provider if it implements a strategy
exploiting its knowledge. Our simulations show that the inter-
AS traffic can be reduced by up to 60%, that is, a lightweight
strategy based on a realistic knowledge can provide substantial
savings for network operators.

The remainder of this paper is organized as follows: We
introduce related works in Section II. Then, we propose a
theoretical analysis in Section III. We show the results of our
simulations in Section IV.

II. RELATED WORKS

We first recall the main design principles of box-powered
CDN. They are now clearly stated, this part allows us to
emphasize our exact position in the state of the art, and to
review some previous works. In a second part, we give some
details about close works that have been conducted for CDN
and peer-to-peer VoD systems.

A. Box-Powered CDN

1) a catalog of videos (noted C) to be hosted by the box-
powered CDN is selected. Requests for the top 5%



popular videos (approximately half of the global traffic)
are handled by CDN proxies. The traffic generated by
the three quarter most unpopular videos (a tenth of the
global traffic) is managed by the data-center. Therefore,
the catalog C is chosen in the remaining: several millions
of mid-popular videos in the popularity range [5%, 25%].

2) a set of boxes (noted V) agree to participate.
3) each video a ∈ C is cut into ka independent sub-streams.

The principle of spreading distinct video sub-streams in
distributed video service is now widely admitted [6].
The optimal number of sub-streams per video has been
extensively studied in [4].

4) a subset of boxes Va ⊂ V is chosen to host a sub-stream
of the video a ∈ C. The ideal number of boxes (|Va|) has
been thoroughly analyzed in [3, 4]. A random choice of
boxes is usually assumed.

5) the ka sub-streams of a video a ∈ C is allocated to
the boxes Va. Capacity constraint imposes to allocate
only one sub-stream to each box. Previous works have
neglected the question of which sub-stream to which
box. This is the topic of this paper.

6) requests from clients of any video a ∈ C (noted Ja)
are automatically routed to the ka nearest boxes in
Va hosting separate sub-streams. Various works have
addressed the nearest server selection problem [7]–[10]

B. CDN and Peer-to-Peer VoD

The design of a CDN hosting multiple sub-streams has
been introduced in [11]. Authors provide a short description
of a coloring problem where the goal is to assign to each
proxy a color corresponding to a unique sub-stream. However,
this study considers only two sub-streams per video, so the
distribution of sub-streams across proxies is not really an
issue. Since, it has been shown that increasing the number of
sub-streams can lead to substantial performance improvements
(e.g. [12, 13]). Therefore, the problem of allocating sub-
streams to participants of a delivery network has been more
deeply analyzed, but these works usually focus on maintaining
a number of sub-streams proportional to their popularity as
a countermeasure to crashes [14, 15]. How to reduce the
network cost when clients retrieve all pieces of requested video
segments is less frequently addressed. The distributed storage
system described in [16] proposes a mechanism to discover
the “closest” video parts. However, the allocation algorithm
does not take into account any network proximity, so a video
sub-stream may be excessively far from other sub-streams
while two close peers could store the same sub-stream. In our
context, the video service provider is expected to implement
a redirection mechanism able to route the request of clients to
the k closest peers hosting the k required sub-streams of the
requested video.

III. THEORETICAL ANALYSIS

A. Problem Formulation

Generally, a large catalog of videos is hosted by the box-
powered CDN. For a given video a, the set Va is nearly static

for several hours or days, because pushing the content to boxes
is a costly operations that is not done frequently. Therefore,
all videos can be treated independently, and we will omit the
subscript a in the notation. The set of clients is thus noted J ,
the set of selected boxes V and the number of descriptions k.

We call network cost the cost to transport the data from the
boxes hosting the sub-streams to the clients. The notion of
network cost is generic: it can be computed at the AS level
with cross-domain cost or at the router level with the number
of traversed routers. In this paper, without loss of generality,
we use the first indicator, so we consider an AS-level Internet
map, the network cost is computed using the AS path length
and the relationship among ASes. We denote by d(x, p) the
cost of the transport of one sub-stream from a box x ∈ V to
a client p ∈ J . The decision problem related with allocating
the sub-streams to boxes can be formulated as follows.
Decision Problem for Box-powered Video Delivery Net-
work
INSTANCE : Two subsets J and V , a positive integer k ≤ |V |,
a cost function d : J × V → R+ and a positive real K ∈ R.
QUESTION : Is there a labelling function ϕ from V onto
{1, · · · , k} such that the sum of all minimum costs to other
sub-streams is lower or equal to K, that is :∑

p∈J

∑
i∈[1,k]

min {d(x, p) : x ∈ V, ϕ(x) = i} ≤ K

B. Approximation Algorithms

This problem is a sub-problem of k-Product Uncapacitated
Facility Location Problem (k-PUFLP) [17]. It is known as
NP-hard. An approximate optimal algorithm for the k-PUFLP
problem has been recently proposed in [18]. The algorithm
is able to find a solution which it is at most 3

2k − 1 times
the optimal solution. The idea of this algorithm is as follows.
For each client p ∈ J , the set of k nearest boxes, N(p), and
the overall cost

∑
p∈N(x) d(x, p) are computed. Then, clients

are processed iteratively in ascending order of overall cost.
For every client, the algorithm tries to place k distinct sub-
streams for all boxes in N(p). If it is impossible, then the
next client is processed. When all clients are processed, if it
remains unfilled boxes, they choose a random sub-stream.

Despite various stochastic models are studied, we can hardly
imagine that the location of clients is precisely known in
advance. Therefore, we use here a simpler approach. We
consider only boxes, therefore we assume that clients and
boxes are merged, and the distance between two boxes x and
y is still noted d(x, y). Note that, the problem restricted to
study the boxes is a variant of the domatic number problem,
so it also NP-hard.

We define a heuristic called k-nearest allocation: to assign
one sub-stream out of k possible to all boxes, we process all
boxes in a random order. For every box x, we determine its
k−1 nearest boxes according to the distance function. We note
N+(x) the set of boxes N(x)∪{x}. Every box in N+(x) that
is not already allocated should then pick randomly one of the
missing sub-streams. Hence, the set N+(x) contains as many



distinct sub-streams as possible, ideally k. Note that the k-
nearest allocation is an online algorithm. When a new box
joins the system, we just determine its k − 1 nearest boxes,
and allocate to this box one of the missing sub-streams. The
k-PUFLP requires to recompute the whole assignment.

This algorithm does not provide any guaranteed approxi-
mation, but our tests reveals that it works actually well in
comparison to exact algorithms. The idea here is to evaluate
the gains that can be obtained from a clever sub-stream
allocation. Therefore such a heuristic matches our objectives.

C. AS-Graph Traffic Model

An AS-level Internet topology is represented by a directed
graph G(A, E): each vertex a ∈ A represents an AS over
the Internet. The set E is the set of edges connecting two
ASs. Each link in the AS graph represents a transit or peering
agreement between two ASs: every AS may be the peering AS
of its neighbor, or in the case of transit link, be the customer
(or provider) of its adjacent AS. The set of ASs is usually
distinguished into three distinct non-overlapping classes :
• tier-1 ASs are the core of the Internet, they only have

connections toward peering ASs (other tier-1 ASs) and
transit customers. They have no outgoing provider rela-
tions as they are at the top level.

• on the opposite, tier-3 ASs are at the “border”, their
outgoing edges do not reach customers but only peering
and provider ASs.

• tier-2 ASs are the rest of ASs, connecting tier-1 and tier-3
ASs.

Using the shortest path to determine the route between two
ASs has been shown to not reflect the path that is actually used
over the Internet. Some conditions to obtain a distributed and
stable routing among ASs are given in [19]. More precisely,
some path selection rules should be respected: all routes
are classified into customer routes, peer routes and provider
routes. Usually, AS prefers customer routes over peer and
provider routes. Moreover, the routes should be valley-free.
For example, a tier-2 AS can not reach another tier-2 AS via
any tier-3 AS.

Each link in E is associated with a cost that depends on
the agreement between both ASs. One customer AS pays for
traffic transited by its provider, so the transit link has high
cost. Two ASs having a peering agreement do not charge each
other, peering link has relatively low cost. We note c(e) the
cost associated with an edge e ∈ E , so the AS-graph is more
precisely defined as G(A, E , c).

D. Levels of Knowledge

As mentioned in Introduction, various levels of knowledge
on the AS-graph can be defined. In an ideal one, the video
service provider knows not only the graph G and the cost
function c, but also the location of clients. Despite it is not
realistic, this configuration is interesting because it allows to
evaluate the k-PUFLP approximate algorithm. As we will see
later, our proposed heuristic performs better than the k-PUFLP
algorithm. This opens perspectives for future works.

Determining the k − 1 nearest boxes of a box requires to
know the AS-graph G. If we consider a totally blind service
provider having no knowledge of the location of boxes or of
the AS-graph, the only heuristic that can be implemented is
a random one, each box choosing its sub-stream randomly
among all sub-streams. This algorithm is what have been
proposed in previous works.

Between these two extrema, it is possible to distinguish
into two intermediate levels of knowledge. In the first one,
the graph G is known but the cost function c is not known.
Actually, various maps of AS-level Internet are now available,
so a service provider able to determine the AS of every box can
easily estimate the closest boxes of a given box by computing
the shortest path over this topology. Since only the links among
ASs are known by the service provider, the heuristic is thus
called topology-aware heuristic.

Finally, the service provider can know the graph G and the
cost function c. That is, it is able to compute exactly the
cheapest path between two ASs. This can be realistic when
the service provider is also a network operator. With this
knowledge, the heuristic is called relationship-aware heuristic.

IV. EXPERIMENTAL ANALYSIS

We conduct extensive simulations to measure the gain that
can be obtained by the heuristics. Recall that these heuristics
are not optimal, but are expected to provide a good approx-
imation of what can be done if the service provider has a
certain knowledge level. The goal of this study is to highlight
the gain that can be obtained, so it could be included in
the design of box-powered CDN. The simulations rely on
realistic network topologies, widely adopted parameters and
experimentally demonstrated properties. Therefore we expect
to provide accurate and meaningful results.

A. Simulation Environment

In our simulation, we use the dataset from CAIDA
project [20] (AS relationship 20090105). After all loops are
removed, the graph consists of 28, 421 ASs and 115, 244
links. Table I shows some properties of each tier: their size,
average number of providers and customers per AS and the
total number of intra-tier peering link. These properties are
also observed in practice, for example, the high number of
customers of Tier-1 AS, the high percentage of peering link
in Tier-2, and the small average number of providers in Tier-3.
This AS graph is now widely admitted to be representative of
the current Internet.

Size #Providers/AS #Customer/AS #Peering
Tier-1 35 0 434.4 42
Tier-2 3995 2.845807 9.553692 2894
Tier-3 24301 1.728406 0.000000 20

TABLE I
PARTITION OF AS GRAPH

For the routing, we made a tradeoff between realism and
simulation time complexity. We replace the distributed proto-
col by a centralized “prioritized” Depth-First Search (p-DFS),



where different branches of the same node are explored with
a defined priority, following the aforementioned path selection
rules:

1) Links with a Provider-to-Customer relation are explored
first, because a provider is in charge of connecting its
different customers or sub-customers;

2) Peering links can be used when no more Provider-to-
Customer link is available.

3) Finally, the Customer-to-Provider links can be used.
We guarantee the valley-free property of routes among ASs,

by checking the link relation of previous hop to determine
possible next hops. We first give an overview of the difference
between the path discovered by the p-DFS routing and the one
computed by a shortest path. We compute the paths between
all ASs in the tier-3. Results shown in Table II reveals the that
shortest paths routing exhibit too small average path lengths.
In comparison to this oversimplified AS routing, the p-DFS
algorithm gives acceptable results with conform path length
value and noticeable variation. We now provide an illustration
of the distances between two ASs in the network. Figure 1
shows the distance distribution among ASs. For each AS, we
compute the number of ASs at distance x, y-axis shows the
min, average and max number of ASs at distance x. This figure
is mostly useful to understand some interpretations given later.

min max average Std Dev
Shortest 1 10 3.907981 0.861664
Prioritized DFS 2 44 11.517826 6.404997

TABLE II
COMPARISON BETWEEN AS PATH AND SHORTEST PATH
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Fig. 1. Distribution of distances among Tier-3 ASs (24301 ASs)

We call peer the system elements (clients and boxes). In
our context, all peers are located at tier-3 ASs. Boxes are
able to store sub-streams, while clients do not have storage
capacity. Both clients and boxes send request for the selected
video. To add clients and boxes in the AS graph, we randomly
select a number of edge ASs in the tier-3 set obtained in
previous partition. Then, we transform them into a small
cluster according to [21]: we attach to the selected AS a
number of peers following a normal distribution N(µ, 0.2µ)

where µ is an adjustable parameter. Intuitively, a high value for
µ means that elements are clustered, which is representative
of a VoD service that either is offered to clients of a few
ISP, or is a local service, for instance delivering video related
with local topics. On the contrary, a low value for µ indicates
that elements are spread all over the Internet, so the VoD
service is probably a worldwide service. Then we defined
pbox, as the percentage of boxes over all peers. It represents
the proportion of participants being able to store video sub-
streams. Moreover, µbox = µ × pbox is the average number
of boxes in the same AS. We will show later that µbox is a
crucial indicator.

B. Global Cross-Domain Traffic Reduction

We run a set of simulations for a given configuration where
10, 000 peers are requesting the video, and 30% of them are
boxes. This corresponds approximately to the case of a popular
video in [4]. We also assume that µ = 100, so µbox is equal
to 30. It is difficult to determine this number µ in simulations,
our choice is made after a careful reading of measurements on
VoD services given in [22]. The number of sub-streams varies
from 4 to 30. For these first runs, we measure the AS path
length between the peers and their closest boxes hosting all
sub-streams. The motivation is to measure the cross-domain
traffic. Figure 2 shows the results.
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Intuitively, our heuristics guarantee that, for a number of
boxes that is less or equal to the number of sub-streams, our
heuristics allocate distinct sub-streams to every box within
the same AS. On the contrary, a random process is unable
to guarantee no redundancy. Actually, this explains in a
straightforward manner that the global traffic increases for the
random algorithm with a far lesser number of sub-streams.
This advocates for a very basic implementation where all
boxes within the same AS cooperate to not store the same
sub-streams.

More disappointing is the evolution of curves. That is,
it seems that all algorithm behaves similarly once the sub-
streams can not be found in the AS. It means that a clever
algorithm trying to minimize the distance between the AS of



a client and the AS of closest boxes has few impact on the
overall cross-domain traffic volume. We will analyze this more
carefully later.

Another interesting fact is that the k-PUFLP algorithm
behaves exactly similarly as the other heuristics. Besides this
confirms the previous point, this shows that the complete
knowledge of the system can hardly be exploited, or it would
require the design of specific algorithms.

C. Analysis of the Cross-Domain Traffic Reduction

For these second runs, we study the AS-links that are used
by the various heuristics. We force the system to generate
cross-domain traffic by setting µbox to values less than the
number of sub-streams k. We measure now the cost (defined
with distinct values for edges in E regarding their inter-AS
relations). We compute the gain of the total cost generated by
our heuristics over the cost of a random allocation. Therefore
we can quantify the gain for network operators in Fig. 3.

For small values of k, the gain is significant for the reasons
we previously emphasized. A random allocation is unable
to guarantee that boxes in an AS store distinct sub-streams.
Nevertheless, this 60% gain (Fig.2, k = 30) clearly shows the
interest of some simple implementations. The gain becomes
less substantial when k increases, because, with µbox = 5, the
number of outgoing connections is roughly equivalent. The
gain is now around 20%, which is though an impressive gain.
When we detail on every class of links, we show that this gain
is mostly obtained through the reduction of the peering traffic.

This latter result is questioning us, therefore we analyze
more carefully the cross-domain link. We analyze every out-
going connection for all heuristics, by calculating the aver-
age hops per connection (Fig.4). We show that, despite our
heuristic are expected to allocate the sub-streams to close ASs,
the gain actually obtained is not so significant. With a basic
random allocation, a client is able to find subs-streams in
relatively close AS. This can be explained by recalling that
most distances inter-ASs are around 5 hops (cf Fig.1). Note
however that the difference of distance between a random
allocation and a clever one increases with the number of sub-
streams because the number of boxes by streams increase. The
gain reaches 10%. A detailed analysis reveals that this gain is
mostly due to peering routes (Fig.4(c)), because the lengths of
customer routes are only slightly larger for random allocation.

Finally, we study the scalability of content allocation algo-
rithms, by varying the population in the system. We set µ to
50, µbox to 10 and k to 16, but the number of peers varies from
5, 000 to 25, 000. Fig.5 shows the global cost ratio of three
methods compared to random placement. We observe that the
global gain remains stable with various number of peers.

V. SUMMARY AND CONCLUSION

Long videos encoded into multiple substreams and box-
powered CDN are two major trends for the future of video
services. An important but less studied problem is how to store
these substreams in proxies such that the overall download

cost is minimized when the client has to retrieve a set of sub-
streams. We have identified and formulated this problem. Two
simple heuristics with different levels of network knowledge
were proposed. They have been compared with the existing
k-PUFLP and random placement algorithms. Both proposed
heuristics demonstrates promising performance gains over the
random placement and similar performances as the k-PUFLP.

This paper provides a comprehensive study of the impact of
content allocation on cross-domain traffic, through simulations
using real-world sittings. The simulations first show the impor-
tance of intra-AS placement. To reduce cross-domain traffic,
the number of distinct substreams should be maximized.
Although this conclusion is quite straightforward, a realistic
comparison with random placement is made to clearly prove
this claim. Then, a more relevant inter-AS placement case,
meaning few boxes are present in the same AS, is studied.
We have demonstrated that a significant gain over a random
allocation can be achieved. The traffic reduction is mainly due
to less peering traffic; transit traffic is only slightly decreased.
Finally, we have reviewed the scalability of content placement.
We have shown that heuristics always advantages over random
allocation with an increasing number of peers in the system.

These results demonstrates that clever content allocation can
clearly reduce cross-domain traffic. Some insights are given
to design efficient placement algorithm. We have proven that
box location and AS path is the most important input, and
client location and AS relationship do not help to reduce cross
domain traffic.
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Fig. 3. Cost Variation with 10,000 peers, 3000 boxes, µbox = 5
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Fig. 4. Cross-AS connection cost with 10,000 peers, 5000 boxes, µbox = 5
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Fig. 5. Comparison with Random Placement (20% boxes, µ = 50, µbox = 10, k = 16)
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