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Abstract

This paper aims to assess the stability of a polytope of linear systems by their vertices. These
results are based on the Hermite-Biehler and Edge theorems. A sufficient condition satisfying
a constraint on the even (or odd) part of the closed-loop characteristic polynomials associated
with the stabilization of its vertices, is proved. Finally, a constructive method to stabilize a
polytope of plants with simultaneous and robust linear time-invariant controllers is established.

Keywords: polytope of systems, simultaneous stabilization, robust stabilization, common
interlacing property.

1 Introduction

This paper concerns the stabilization of polytopes of SISO plants with a fixed order controller.
Until now the problem of deciding of the stability or stabilizability of a polytope of linear systems
with a linear time-invariant (LTT) controller stays an open question. We do not know which are
the conditions so that any polytope of systems is stabilizable by a LTI controller. In this article,
we show that this question is equivalent to that of the stability of the set of segments of systems
linking the vertices of the polytope with a LTI controller. The issue is therefore about the stability
of this set of segments with a LTI controller. Remark that this problem is also an open question.
This is even an undecidable mathematical issue that may be classified as an NP-hard problem, in
the sense that it is not possible to find necessary and sufficient conditions to stabilize this family
of systems with a LTI controller when the number of plants to stabilize, is greater than two, see
[1]. Accordingly, there exist only sufficient or necessary conditions for the robust stabilization of
a polytope of systems. This paper proposes some sufficient conditions based on the Edge theorem
[2]. More precisely, the question of stabilization of a polytope of systems is treated as a simple
simultaneous control design of a family of LTI systems submitted to an additional constraint on the
closed-loop characteristic polynomials associated with the vertices of this polytope. Furthermore,
the controller is shown to not only simultaneously stabilize the vertices of the polytope of systems,
i.e. a simultaneous control purpose, but also the set of systems belonging to the polytope, i.e. a
robust control purpose. That is hence a simultaneous and robust controller for the polytopes of
systems. Let us review briefly the main results in simultaneous and robust control.

Concerning the simultaneous control, [3] and [4] have proved that there exits a necessary and
sufficient condition to stabilize simultaneously two LTT systems. Moreover, [3] and [4] have shown



that this question is equivalent to the stabilization of one plant by a stable compensator. This issue
called "strong stabilization” has been originally treated in [5]. The problem of the simultaneous
stabilization of three or more LTI plants was initially tackled by [6] and [7]. Otherwise [8] has shown
that there exists no tractable and complete conditions to check the simultaneous stabilizability of
three or more systems. About the simultaneous stabilization of a segment of LTI systems, i.e. a
continuum of LTT systems described by a parameter and its two endpoints, [9] has provided existence
conditions which depend on the choice of the initial compensator stabilizing the extremities of the
segment. For this class of system, transcendental conditions have been given by [10] and [11]. In
[12] and [13] the authors address the question of the simultaneous strong stabilizability of a segment
of systems. They are conditions that have been stated to stabilize each element of this family with
a stable compensator. That does not imply existence conditions of a single controller stabilizing
the whole set of systems belonging to this segment. Conditions for the simultaneous stabilizability
of a segment of systems have been given in [14].

Concerning the robust control, Kharitonov’s theorem and its generalization, [15] and [16] have
been at the origin of many results. Others analysis methods have been studied in the literature but
those dedicated to the synthesis of robust control with polynomial methods are only a few. In [17],
the zero-exclusion principle has given conditions that are used to test the stability and allow to
design robust controllers. More recently, [18], [19], [20] and [21] propose fixed-order controllers for
systems with polytopic uncertainty. The methods described in these papers relied on a criterion of
stability which necessitates exactly proper and strict positive realness (EP-SPR) functions. These
rational functions are particular units in Hy, which also verify the properties of the SPR functions,
see [9], [22] and [23]. Nevertheless, derived from [24], it may be easily deduced that to stabilize a
polytope of systems, it is only required to synthesize units in H, whose Nyquist plots do not cut the
negative real axis. Then the conditions of the EP-SPR functions are not necessary. Consequently,
the constraint to make EP-SPR. functions introduces sufficiency and conservatism in regard to the
necessary and sufficient condition to stabilize a polytope of systems. In this paper, we propose a
new approach to synthesize units in Ho, for stabilizing the polytopes of systems which are not SPR
functions and which remain units in Hy if one interchanges even (or odd) part of the numerator
and denominator polynomials. The Nyquist plots of these units in H,, do not cut the negative real
axis, see [24].

In this manuscript, we focus on the stabilization of polytope of single input single output LTI
systems. Based on the Hermite-Biehler theorem and the Edge theorem, we prove that to stabilize
a polytope of systems it is sufficient to stabilize all its vertices with a simultaneous controller
giving characteristic polynomials that have a common even (or odd) part. Moreover, we show that
the synthesized units in Ho, do not cut the real negative axis of the Nyquist plot. In addition a
controller design for stabilizing the polytopes of systems is provided mixing polynomial techniques
and linear optimization.

The paper is organized as it follows. After preliminaries in section 2, the problem of the robust
stabilization of a polytope of systems is stated in section 3 by applying the Edge theorem. Then an
approach to stabilize the vertices of a polytope of systems with a simultaneous compensator is given
in section 4 that leads to a simple linear programming (LP) problem. The issue of the stabilization
of a polytope of systems by a simultaneous controller is formulated as positivity conditions if
particular pole placement constraints hold. Finally in section 5, examples are given to illustrate this
framework. In the appendix, our approach is extended to the case where characteristic polynomials
in closed-loop have a common odd part.



2 Preliminaries

Notations: The degree of a real polynomial X is denoted §(X). P, denotes the set of real poly-
nomials of degree m. The set of Hurwitz-stable polynomials is denoted H. R is the real field. C
is the complex field. R} | ={z € R" :2; >0, Vi} and R_joy = {z € R: z <0orx > 0}. The
notation x > 0 with z € R™ means that each component of the vector x is positive. If and only if
is defined as iff. The exactly proper and strict positive realness functions are denoted as EP-SPR
functions. Ho, is the set of proper stable rational functions. ||| denotes the operator norm. U is
the set of units in Hu ie. U € U iff U € Hy and U™! € Hy.

In the sequel of this section, concepts on Hurwitz-stability of a polytope of real polynomials are
presented. These results are used in section 3 to study the stability of a polytope of systems. The
notion of Hurwitz-stability highlighted by [25] is approached hereafter under the angle of interlacing
of real zeros.

2.1 The Hermite-Biehler’s stability.
Let f € P, expanded as

f(s):fe( +5f0 Zal

where o; are real coefficients and f¢ and f° denote the even and odd parts of f respectively. The
polynomials f¢ and f° are given by

o if 6(f) =m=20+1

fé(u) = Jo+02u+...+a(m_1)u£, (1a)
f(u) =01 +osu+ ...+ opul. (1b)
o if 6(f)=m=2
fé(u) =09+ oou+...+ omtt, (2a)
felu)=01+o3u+...+ a(m_l)u(z_l). (2b)

Let us recall the Zeros Interlacing Property.

Definition 1 ([25], The Zeros Interlacing Property) Let f(s) = f¢(s?) + sf°(s?) be a real
polynomial with 6(f) = m. Assume that the roots of f¢ and f° are defined by the following sets

o if §(f) =m =20+1and 5(f¢) = ¢, 5(f°) = ¢

roots(f€) = {a1,...,ae},
roots(f°) = {b1,...,be},

o if 5(f) =m =20 and 5(f¢) = £, 5(f°) = £ —1

roots(f°) ={a1,...,as},
roots(f°) = {b1,...,bp_1}.



Then f€ and f° interlace iff
e the roots of f¢ and f° are real, negative, distinct and simple,
e the leading coefficients of f¢ and f° have the same sign,
e the ¢ roots of f¢ alternate with the £ or £ — 1 roots of f° as it follows.
If 6(f) =m =20+ 1 then
b1 <ayp <by...<by<ay<O.
If 6(f) = m = 2¢ then
a; <by < ...<bi_1 <ap<O.

Let us note that the cases m = 2¢ 4+ 1 or m = 2¢ are considered indistinctly in this paper but
to simplify the writing, the theoretical results are presented for only m = 2¢ + 1 and an example
is given section 5.1 for the two cases m = 2¢ and m = 2¢ 4+ 1. It should be noticed that the case
m = 2¢ may be directly deduced from the case m = 2¢ + 1.

The relationship between the zeros interlacing property of a real polynomial and the Hurwitz-
stability is emphasized by the Hermite-Biehler’s theorem that we remind.

Lemma 1 ([25], Hermite-Biehler’s theorem) The real polynomial f(s) = f¢(s?) + sf°(s?) is
Hurwitz-stable (i.e. all the real parts of the roots of f are strictly negative) iff f¢ and f° verify the
Zeros Interlacing Property.

Let us write the partial fraction expansion of the real rational function f°/f¢ with f¢ and f°

satisfying (1). Consequently, from lemma 1, simple conditions for testing the Hurwitz-stability of
f are deduced.

Lemma 2 ([26], [27]) The polynomial f(s) = f¢(s?) + sf°(s?) with f € P,, is Hurwitz-stable iff
the two following conditions hold.

1. f€ has real, simple and negative roots (ay,...,as).
2. The real coefficients ¢ (k = 0,...,¢) given by the expansion of f° as the following sum of
products of factors of f¢
2 2 : fe(s?)
fo(s%) = eof <s>+;ck82_ak. (3)

are strictly positive.

Note that ¢y = 0 in the case where m = 2/.

Mention that all the next developments are made in function of the writing (3) with f¢ given
a priori. The developments in function of f° are presented in the appendix section.



Let us consider n real polynomials f;, (i = 1,...,n) with a a same even part f¢. Then we have

fils) = fo(s*) +sf7(s%), (i =1,....n).
In association with f;, a generalization of the Zeros Interlacing Property is now given.

Definition 2 (Common even interlacing property) Consider a finite collection of polynomi-
als f?, (i = 1,...,n) and a polynomial f¢ with their leading coefficients of same sign. Assume
that for each pair (f?, f¢), (i =1,...,n), the roots of f? and f¢ are all real, negative, distinct and
simple defined by the following sets

TOOtS(fio) = {bll’ RS b%}7
roots(f¢) ={a1,...,as}.

The polynomials f have a common even interlacing f¢ iff the ¢ roots of each f alternate with the
£ roots of f€ as below

Vi <ap <by<..<by<a; <O.

Remark that if the polynomials f?, (i = 1,...,n) have a common interlacing f¢ this implies
that for any jth root, we have

max b: <a; < min b
i€{l,...n} ’ T et ny I

By using the common even interlacing property given above, an extension of lemma 2 is deduced
for testing the Hurwitz-stability of polynomials f;, (i = 1,...,n).

Corollary 1 The polynomials f;(s) = f¢(s%) + sf?(s?), (i = 1,...,n) with f; € P, are Hurwitz-
stable iff the two following conditions hold.

1. f€ has real, simple and negative roots (a1, ..., ap).

2. The real coefficients ¢;, (i = 1,...,n) and (k = 0,...,¢) given by the expansions of f?

(i =1,...,n) as the following sums of products of factors of f¢
2 2 . fe(s?)
f{(s7) = ciof (s )+ZCi,km- (4)
k=1

are strictly positive.

Proof: That is a consequence of lemma 2. O



2.2 Matrix formulation of f? and f°.

l
Let us set f¢(s%) = ¢ H(s2 —a;) with v¢ € R_g). Consequently relation (4) can be simplified as

j=1
it follows
¢ ¢ l
F2(s%) =~%cio 1_[(82 —aj)+~° Z Cik l_I(s2 — a;)
Jj=1 k=1 j=1
J#k
l /—1 .
=2 cik D Vs,
k=0  j=0
= VAU, i=1,...,n. (5a)
fe(s*) = VH, (5b)
where
T

Ue = [ Cio Cig ] (6a)
V= [ 1 2 52t } (6b)

’UQ,O U071 . U(],[

Ul,O U171 e Ul’g
A° . (6¢)

Vo Vg1 .- Ugy
H =1[hg hs ... b )" (6d)

Note that matrix A€ only depends on the even part f€.
By using the above notations, a reformulation of corollary 1 is now deduced.

Corollary 2 The polynomials f; € P,,, (i = 1,...,n) are Hurwitz-stable iff the two following
conditions hold

1. f¢is a polynomial with real, simple and negative roots (ai,...,ay).
2. There exist ¢ € Rﬁ"j} fori=1,...,n, given by (6a).

Proof: That is a consequence of the writing (4) as (5a). O

2.3 Hurwitz-stability of a polytope of real polynomials.

Let Sy be a convex polytope of real polynomials described by the set of n vertices f; € P, as it

follows " .
Sfé{f5fzz)\ifia )\iZO,Z)\izl} (7)

i=1 i=1



The set of the exposed edges' connecting two vertices f; and f; in Py, of the polytope of
polynomials Sy is defined by Sy, . where

Sfi,].é{fi,j:fi,j:afﬁu—a)fj, acl0,1],i=1,...,n—1, j:i+1,...,n} (8)

Recall theorem 1 in [2] that shows that the stability of a polytope of real polynomials can be
inferred from its exposed edges.

Theorem 1 ([2]) The polytope of real polynomials Sy is Hurwitz-stable iff the set of exposed
edges Sy, ; are Hurwitz-stable.

The Hurwitz-stability issue of Sy may be simplified by considering corollary 3 in [28].

Lemma 3 ([28]) Let f; € P, and f; € P, be two vertices of Sy with their leading coefficients of
same sign and with a same even part f¢, then the exposed edge f; ; defined by (8) is Hurwitz-stable
iff f; and f; are Hurwitz-stable.

Corollary 3 If the vertices f; € Pp,, (i = 1,...,n) of a polytope of real polynomials Sy are
Hurwitz-stable with a same even part f¢ and if the leading coefficients of f;, (i = 1,...,n) have a
same sign then the polytope of real polynomials Sy is Hurwitz-stable.

Proof: A consequence of theorem 1 and lemma 3. O

In connection with corollary 2, a reformulation of corollary 3 is now deduced.

Corollary 4 Consider a convex polytope of real polynomials S; defined by the set of vertices
fi € Py, verifying (7) with a same even part f°. If the two following conditions hold then Sy is
Hurwitz-stable.

1. f¢is a polynomial with real, simple and negative roots (ai,...,ay).
2. There exist U¢ € R (i = 1...n) given by (6a).

Proof: As a consequence of corollaries 2 and 3. |

Lemma 4 Let Sy be a convex polytope of real polynomials described by a set of n vertices f; € P,
verifying (7). The number of exposed edges of Sy is 7 = S — ).

Proof: Consider f;, (i = 1,...,n), vertices of a convex polytope Sy. Count the number of
different exposed edges connected to each vertex with f; ; = f;;. Each vertex f;, (i =1,...,n—1),
is connected by n — i different exposed edges to n — ¢ vertices. In consequence, the total number of
exposed edges of Sy is = Y1 (n — i). O

Note that the problem of Hurwitz-stability of a polytope of real polynomials Sy is significantly
reduced by considering corollary 3 and lemma 4, with which we only need to verify the Hurwitz-
stability of n vertices of S instead to verify the Hurwitz-stability of m exposed edges of Sy, n <n
if n > 3.

!See [2] for the definition of the exposed edges.



3 Robust stabilization of a polytope of plants.

Now a robust stability analysis for a polytope of systems may be carried out.

Definition 3 (A polytope of plants) The convex polytope of plants Qg generated by n SISO
LTI systems G; = N;D; * (i = 1...n) is defined as

Qg = {G:G—NDl7 N:i)\iNu D:i)\iDu Ai}o’i)‘i_l} 9)
i=1

i=1 i=1
where N; and D; are real polynomials with 6(N;) < §(D;) and D; € Py.

All pairs of vertices (G;,Gj), withi=1,...,n—1and j =i+1,...,n, of a polytope of systems
Q¢ are connected by an exposed edge G ;. Each exposed edge is a segment of systems. The set of
all segments of systems of () is defined as the set ()¢, ; given below.

Definition 4 (The set of segments of systems (g, ) The set of segments of systems Qg, ;
connecting any two vertices of the polytope of systems (g is defined as

QGi,j N {Gi,j : Gi,j = Niiji_,jl, Ni,j = CMNZ' =+ (1 — CE)NJ', Di,j = OJDZ‘ =+ (1 — Oz)Dj, (10)

acl0,1],i=1,...,n—1, j:i—i—l,...,n}.

The objective of this paper is to propose a proper controller C = XY ~! that stabilizes the
polytope of systems 2 where X and Y are real polynomials. Consequently, the existence conditions

of a compensator C satisfying
(G,C)=(NX+DY)eH (11)

are studied.

Lemma 5 The compensator C stabilizes the polytope of systems Qg iff C' stabilizes the set of
segments of systems Qg ..

Proof: The compensator C' stabilizes the polytope of systems Q¢ iff

B(G,C)=NX+YD = (i (N X + D,;Y)) cH
=1

or iff

n n
(Z A®(G, C)) € Hwith\; 20,3 A = 1.
i=1 i=1
Hence, the compensator C' stabilizes the polytope of systems ¢ iff the polytope of polynomials ¢
is Hurwitz-stable where

= {@(G,C) (G, 0) = f:)\i@(Gi,O), A >0, En:/\i = 1} (12)
=1 =1



By applying theorem 1, we know that ®(G,C) € H iff ®(G;;,C) € H. This implies that ¢ is
Hurwitz-stable iff ¢; ; is Hurwitz-stable with ¢; ; defined as the set of exposed edges of ¢ where

(Zsi,j £ {(I)(GiVj,C) : @(G@j,C) = OAI’(GZ,C) + (1 — Oé)(I)(Gj,C), (13)
acl0,1],i=1,...,n—1, j:i+1,...,n}.

Consequently, the controller C' stabilizes the polytope of plants Q¢ iff C' stabilizes the set of seg-
ments of systems Qg, ; defined by (10). O

Now to conclude this section, we can observe that by applying corollary 3 to the polytope of
polynomials ¢, we can simplify the issue of the Hurwitzness of ¢. That is, if the vertices ®(G;, C)
(¢ = 1,...n) of the polytope ¢ are Hurwitz-stable with a same degree and with their leading
coefficients of same sign and a same even part ®(G;, C)¢ where

O(Gy,C)(s) = B(Gy, C)4(s?) + sP(Gy, C)°(s?)

then the polytope of polynomials ¢ is Hurwitz-stable.

4 Computational conditions for robust stabilization of a polytope
of plants with a simultaneous compensator.
In this section, the problem of the stabilization of the polytope of systems ¢ is posed as that of

the stabilization of its vertices GG; with a simultaneous compensator C' that guarantees a same even
part ®(G;, C)¢ for the closed-loop characteristic polynomials associated with G; for i = 1,...,n.

Theorem 2 Consider a convex polytope of plants Q¢ defined by (9). If there exists a simultaneous
compensator C' satisfying the following relations

®(G;,C) € H, (14a)
O(G;,C) =B(G;,C), i=1,....n—1,j=i+1,...,n. (14b)
with the leading coefficients of ®(G;, C') of same sign, then C stabilizes Q.

Proof: This theorem is a consequence of lemma 5 and corollary 3. n

Henceforth, the issue of the stabilization of the polytope of systems {2g is reduced to the
design of a simultaneous compensator that must satisfy the particular poles placements required
by theorem 2. This yields to the following lemma.

Lemma 6 Consider a convex polytope of plants Q¢ defined by (9). Let V', A¢, H® and U¢ be given
by (6b), (6¢), (6d) and (6a) respectively. If there exist ¥¢ € Rﬁt& (i=1,...,n) and a compensator
C verifying the following relations
o(G;,C)* =VHS, i=1,...,n (15a)
O(G;,C)° = VAU (15b)

then C' stabilizes Q.



Proof: This lemma is a consequence of corollary 4 and theorem 2. O

Notice that the simultaneous controller C' proposed in lemma 6 has a fixed order since the
degree of the closed-loop characteristic polynomials ®(G;, C) associated with the vertices of the
polytope of polynomials ¢ given in (12), are chosen a priori.

Consider the simultaneous compensator C' = XY ! and the vertices G; = NiDZ-_1 (t=1,...,n)

of a polytope of systems 2 where X, Y, N; and D; be real polynomials expressed in terms of their
even and odd parts as follows

Then we obtain

(G, 0) =T5C,, i=1,...,n (16a)
(G, C) =170, (16b)
with
Cp(s®) = [X°(s*) Y(s?) X°(s*) Y°>sH)"
Pe(s?) = V(%) DE(s?) $*NO(s®)  s2DY(sP)]

( H
[NP(s®) D(s*) Ni(s®) Di(s?)]

I7(s%)
Reformulate ®(G;, C)¢ and ®(G;, C)° in a matrix form. For that consider

T
C’U:[moe...mzfeyg...y;e:vg...x;oyg...y;’o] (17)

with p¢ = §(X°€), p° = §(X?), ¢ =6(Y°) and ¢° = §(Y?).
Define two matrices A and A such that

(G, C)¢ =VASC,, i=1,...,n (18a)
(G, C)° =VALC, (18b)

where A and A{ are a rewriting of I'f and I'{ according to the coefficients of polynomials N7, DY,
Ny and Dy.
Lemma 6 and relations (18) permit to deduce the following lemma.

Lemma 7 Consider a convex polytope of plants Q¢ defined by (9). Let A°, H® and U{ given by
(6¢), (6d) and (6a) respectively. If there exist C,, and ¥§ € Riﬁl, (1 = 1,...,n) satisfying the
following relations

ASC,=H®  i=1,....n, (19a)
A2C, = ATS (19b)

then C' stabilizes Q.

10



Proof: This result is a consequence of lemma 6 and relations (18a) and (18b). O

Now rewrite relations (19)

B¢ = ©°\° (20)
where
T 0 [A° 0 ... 0 —AY]
0 0 0 Ae —AS
B = |H|, 0= |0 o 0 A¢ |
H* 0 0 0 A
|H* ] [0 0 0 A¢ |

e e T
Xt = [t Ol
g = [T wgT weT L weT]T e r1CHY
There is solutions ¥¢ € R™“*1) and C,, to the equation (20) iff [29].
rank([B¢ ©°¢]) = rank(©°). (21)

By considering equation (19), the robust stabilization of the polytope of systems Q¢ given by
lemma 7 is now set as the issue of feasibility of a linear programming problem (LP).

Theorem 3 Let ¢ be a convex polytope of plants defined by (9). Assume that (21) holds then
the controller C stabilizes Q¢ if there exists a solution x¢ to the linear programming (LP) problem
given by (20).

Proof: Since (20) is a rewritten of the relations (19), then theorem 3 is equivalent to lemma 7. O

This LP problem can be expressed as a LP computational procedure. Readily available, linear
programming software allows to solve this type of system (20) in an efficient way. This possibility
is demonstrated through some numerical examples that are reported in the section 5.

After focusing initially on the controller design for stabilizing a polytope of systems, we are
again going to review some literature results. Derived from [24], an equivalent condition to the one
given in lemma 5 may be formulated.

Corollary 5 To stabilize a polytope of plants Q¢ with a LTI compensator, it is necessary and suf-
ficient that the units in H,, formed by the ratio of every two closed-loop characteristic polynomials
associated with the vertices of the polytope of systems have the modulus of their argument less
than 180°.

11



Proof: This necessary and sufficient condition is a direct consequence deduced from lemma 5 and
theorem 2.3 in [24]. O

The condition given in corollary 5 may be rewritten as

(Gi, O)(jw) . .
g (e U ) <150, 1= 1o n =1 =i 1 22
with
®(G;, C)
A\ 2
(I)(GJ7C)EU (3)

The approach outlined here, permits to synthesize units in H,, which remain units in H, if
one interchanges even (or odd) part of the numerator and denominator polynomials. The rational

(G, C
functions <I>EG“C§ may have the modulus of their argument more than 90°, see [24]. Consequently
R
the framework described in this article for the stabilization of polytopes of systems allows to envisage

other solutions than those allowed by [18].

5 Illustrative examples

Several examples are now provided to illustrate the applicability of our approach. Since the interval
plants are an important class of systems considered in many applications, we begin in the sections
5.1 and 5.2 to apply our approach on these particular uncertain systems. In the last part, section
5.3, an application is given for a polytope of systems that does not belong to the class of interval
systems. That is a system whose the polynomial coefficients are not bound by some minimum and
maximum values. On the other hand these coefficients can be dependant.

Although our analysis and our conditions of robust stability given in the sections 3 and 4 do
not fall within the framework of the so-called ”16-plant theorem”, see [30], [31], we show by these
examples that we can use our approach to stabilize these polytopes of systems.

5.1 A detailed example

To illustrate this design as defined in section 4, we propose to stabilize an interval plant G with a
proper LTT compensator where

2
~ s“+ng
G =
() 252 +dis+1

with ng € [emina 6max] and dl S [nminynmax]-

(24)

First of all, if we consider a simple gain K as compensator, the characteristic equation of the
closed-loop system is

O(G,K)(s) = (2+ K)s* +dis + (1 + Kng)

12



We observe that a constant gain K cannot stabilize a such system G if di has not always the
same sign.

Before developing our approach to synthesize a robust controller stabilizing é, the following
result is stated.

Proposition 1: Consider the interval plant G given by (24). For all ny € [€min, €max] and
d1 € [Mmin, NMmax), there exists a polytope of plants Qg defined by its vertices G; = NiD;1 (i=1...4)
where

2 2
5§ + €min 5§ + €min
Gi(s) =  Gals) = 25
1(8) 252 + Nmins + 1 2(8) 252 + Nmaxs + 1 ( a)
2 2
+ +
Gs(s) T T Emax  qy(s) ® T Cmax (25b)

B 252 + Nmin$S + Iy B 252 4 Mmaxs + 1

such that G € Qa.
Proof: Let G = ND~! with

4 4 4
N=> X\Ni,D=> AD;, > X=1land); >0,
i=1 =1 =1

Or equivalently, we have

N(S) = 5 + ()\1 + )\Q)emin + ()\3 + )\4)6max
D(S) = 232 + (Al + )\3)77min5 + ()\2 + )\4)77max3 +1

4
with  Ai=1 and X\ >0,i=1...4
1

Using the above relations, we can define the scalars o; € [0, 1] (j = 1,2) that satisfy the
following relations

a1 = A+ Ao
l—a1 =A3+ M\
26
s = A1+ A3 (26)

l—ay =X+ M\

Now let us show that for any «; € [0, 1] (j = 1,2), there exist A\; (¢ =1...,4) with 0 < A; and
4
Z Ai = 1. In terms of (26), let us remark that for any «; € [0, 1] (j = 1,2), we can always choose

0 < A1 <1 such that the following inequalities hold.
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0 < X\ < ap <1
0 < X\ < ap <1 (27)
-1 < ap4+ae—-1 < XN <1

From relations (26) and (27), we deduce that for any a; € [0, 1] (j = 1,2), there exist Ay > 0,
A3 > 0 and Ay > 0 with Zzll A; = 1 that the following relationships hold.

0 < =a1—-X\ <1
0 < A3=ag— )\ < 1 (28)
0 < Mq=1l—-ag—as+X\ < 1

Then we can rewrite G = ND~! with

N(s) = s? + (Oq €min + (1 — o) emaX)
5(8) = 232 + (a2 Tmin + (1 - 062) nmax)s + 1
a1 €0, 1], az €0, 1]

Notice that for any «; € [0, 1], (j = 1,2), there exist always scalars \;, (i = 1,4) such that
0< X\ <1, (i=1,...,4) that satisfy (27) and (28) by taking A\; = min(ay, as). O

Now consider G defined by (24) with emin = 1, €max = 2, Tmin = —1, Nmax = 1. By applying
Proposition 1, we know that if a compensator C exists that stabilizes the polytope of plants Q¢
defined by its four vertices (25) then this compensator stabilizes G. We can note that for stabilizing
the polytope of systems Qg, it is sufficient to stabilize simultaneously only the four vertices (25)
instead of six segments of systems as in the case of lemma 5. Consequently, to synthesize a robust
controller that stabilizes 2g, theorem 3 and theorem 5 will be considered successively.

Firstly, let us solve this robust stabilization problem guaranteeing that the closed-loop charac-
teristic polynomials associated with the four vertices of €2 have the same even part. To that goal,
we can take a controller of the following form

IS
C°(s) = ————
(#) Y252 + yo
We choose two negative distinct real roots: a; = —0.5, ag = —4. Then we find

¥ =13.06 0.01 2.04 1.03 3.06 1.01 2.04 2.03]

and we get

_ 3.97s
©0.552 42

The closed-loop characteristic polynomials associated with the four vertices of Q¢ are Hurwitz-
stable where

C*(s)

14



O(G1,C%(s) = s* +3.07s> + 4.55% + 1.575 + 2
B(Go, C)(s) = s* +3.075% + 4.55% + 5.145 + 2
B(Gs, C)(s) = s* +4.07s% + 4.55> + 5.57s + 2
O(Gy,C%)(s) = s* +4.07s> + 4.55% + 9.145 + 2

Now solve the same problem that the one that we have just treated but by considering theorem 5.
With this formulation detailed in the appendix section, we can compute a controller C'° guaranteeing
that the closed-loop characteristic polynomials associated with the four vertices of {2 have the same
odd part. To that goal, we can consider a controller of the form

2
IS xT

C(s) = 23+ 0
Y3s® + Y18

The odd part of the characteristic polynomials can be fixed by the two negative distinct real
roots by = —2.3704, by = —0.5. This yields to

Y =[3.5926 0.198 6.8363 3.5926 1.0941 1.8476 4.5926 0.6980 6.8363 4.5926 1.5941 1.8476]
and

22157 420
2753 + 64s

The closed-loop characteristic polynomials associated with the four vertices of the polytope Q¢
are Hurwitz-stable where

C(s)

D(G,C0%)(s) = 54s° + 194s? + 15553 + 1775 + 645 + 20
B(Go, C°)(s) = 54s® + 194s* + 1555° 4 39852 + 645 + 40
®(G3,C°)(s) = 54s° + 2485 + 15553 + 30552 + 645 + 20
(G4, C°)(s) = 54s® + 248s* + 1555° 4 52652 + 645 + 40
d(G;, C° (G, C* . .
Consider Uy; = <I>((GC0; and Uf; = <I>((GCe; withi=1,...,3,7=4+1,...,4. Let us plot
VRS VRl

the modulus of the argument of the rational functions U; ;(jw)® and U; ;(jw)?, see figures 1 and
2. We observe that all these units have the modulus of their argument less than 180° and some
of these units have modulus of their argument more than 90°. Hence, they are not all EP-SPR
functions.

The conditions given in the theorems 2 and 4 are all satisfied then C° and C? stabilize the
polytope of systems Q. Accordingly, C¢ and C° stabilize G.
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5.2 A numerical benchmark

In this part, a collection of interval plants are now presented showing the efficiency of our numerical
design when the order of these systems grows. Consequently, the number of constraints treated in
these configurations by the linear programming procedure becomes important. It is about pointing
out that in spite of this numerical complexity, the algorithm can find feasible solutions. The
allowed maximum uncertainty is defined by a parameter 7,4, which is linked to the size of the
uncertainty intervals with 0 < 7,,4,. To simplify the presentation, only simultaneous compensators
guaranteeing a same even part for the characteristic polynomials are given.

5.2.1 Example 1

A similar example to the one given previously in section 5.1 but by considering a polytope of
systems of 8 vertices instead of 4.

2
~ ngs” + no
G(s)=————
System (s) 252 +dys + 1

no € [1.25 — 0.2579, 1.25 + 0.2570], na € [1.25 — 0.2573, 1.25 + 0.257]

di € [=71,m1] wWith 7 (i—...2) € [0, Timaz]

From G is deduced a polytope of plants Qg defined by the set of its vertices
Gi, (i = 1...8) associated with the 8 combinations of the bounds of the uncer-
tainty intervals.

A stabilizing controller C*¢ allowing a maximum uncertainty 7p,q; = 1

_ &81s
© 1.8552+8

Controller 1
C(s)

The roots of the even part of the 8 characteristic polynomials are a; =
{—4.3243, —0.5}.

A stabilizing controller C¢ allowing a maximum uncertainty 7,4, = 1.5

~ 13.4277s% + 1.1379s
~ 0.28s% +0.655% + 0.05

Controller 2

Ce(s)

The roots of the even part of the 8 characteristic polynomials are a; =
{—2.2418, 0.5, —0.0797}.
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5.2.2 Example 2

A 3rd order unstable system is considered with four uncertain coefficients.

~ s3 + nas® + no
G(s) =
System dss3 —2s2 +dys+1
no € [1 —0.579,1 + 0.57’0], ng € [3 —0.572,3 + 0.57’2]
dy € [=71,71], d3 € [1 = 0.573,1 + 0.573] with 7; (i, 3) € [0, Tinaa]
From G is deduced a polytope of plants Qg defined by the set of its vertices
Gi, (i = 1...16) associated with the 16 combinations of the bounds of the un-
certainty intervals.
o . . . . _
Controller A stabilizing controller C° allowing a maximum uncertainty 7,,q, = 1
e (s) = 4.5049s° + 0.44035s
© 1.7524s% + 0.1914s2 + 0.0017

The roots of the even part of the 16 characteristic polynomials are a;
{-1.7,-0.1,-0.01}

5.2.3 Example 3

A 4th order unstable system is treated with five uncertain coefficients.

Gis) ngs* 4+ 5% +ngs? +ng
S) =
System 0.1s% + dgs? — 252 +dys+ 1
ng € [0.75 — 0.579,0.75 4+ 0.57¢], ng € [2.25 — 0.572,2.25 + 0.579)
nyg € [0.11 — 0.174,0.11 + 0.17'4], dy € [—7’1,7‘1], ds € [1.5 —73,1.5 + 7'3] with
Ti, (i=0,....4) € [0, Tmaa]
From G is deduced a polytope of plants Qg defined by the set of its vertices
G;, (i = 1...32) associated with the 32 combinations of the bounds of the un-
certainty intervals.
o . . . . _
Controller A stabilizing controller C*¢ allowing a maximum uncertainty 7,4, = 0.5
29.23s% 4 395.65
C°(s) = §° + S
10s* + 138.7s%2 +10.5

The roots of the even part of the 32 characteristic polynomials are a;
{-15,-7,—1,-0.1}
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5.2.4 Example 4

This is a 5th order unstable system with four uncertain coefficients.

~ 652 + nas? + 22s + ng

G p—
System () —0.285 — 354 + d3s3 + 2252 + dys — 0.5
ng € [-3 — 19, —3+ 70|, n2 € [3 — 72,3 + 1]
dy € [—11 -7, —11+ 7'1], ds € [—16 —713,—16 + 7'3] with Ti, (i=0,...,3) € [0, Tmax]
From G is deduced a polytope of plants Qg defined by the set of its vertices
G;, (i = 1...16) associated with the 16 combinations of the bounds of the un-
certainty intervals.
o . . . . _
Controller A stabilizing controller C¢ allowing a maximum uncertainty 7,q, = 1.7

B 50.612s% 4 65.161s
~ —4.6063s! — 30.132s% — 40.469

Ce(s)

The roots of the even part of the 16 characteristic polynomials are a; =
{-17.275,—3.1836, —0.68588, —0.038819 }

5.2.5 Example 5

This is a 5th order unstable system with five uncertain coefficients.

~ N —2.58% + nus* — 1153 4+ nys® + 10s + ng

G =
System () —0.255 — 3154 + d3s3 — 8152 + dys — 2
no € [30.5 — 2.579,30.5 + 2.57¢], na € [24 — 279,24 + 279]
Nng € [2.15 — 0.857’4, 2.15 + 0.857’4], d1 S [—72.5 — 4.57'1, —72.5 + 4.57‘1],
d3 € [-4.1 — 1473, —4.1 + 1.473] with 7 (=0, 4) € [0, Trmaz]
From G is deduced a polytope of plants Qg defined by the set of its vertices
G;, (i = 1...32) associated with the 32 combinations of the bounds of the un-
certainty intervals.
o . . . . B
Controller A stabilizing controller C*¢ allowing a maximum uncertainty 7p,q.; = 1

_ 50.612s° + 65.161s> — 53.913s
~ —4.6063s% — 30.132s* — 40.469s — 28.229

C<(s)

The roots of the even part of the 32 characteristic polynomials are a; =
{—28.8,—-5.32,—1.57,-0.42, —0.034}
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5.2.6 Comparison with the robust stabilization approach given in [32] and [33].

Well known H methods [32] and [33] are used to establish robust stabilizability conditions
for a family of uncertain plants and also to synthesize controllers that would stabilize the whole
family. These regulators synthesis techniques can be implemented on the examples 1 to 5, in order
to evaluate robustness of our approach in a simple way. For that, an interval system is associated to
a family of systems with a central model Gg also called nominal model defined through the average
values of parameters of the interval model. The plant transfer function is written with a coprime
factorization Go = TpSy U where Ty, Sy are normalized such that

To(s)To(—s) + So(s)So(—s) = 1.

Then a family of plants G is characterized by H, bounded perturbations to the numerator Ty and
denominator Sy of the normalized coprime factorization of the nomimal system Gg as

So={G:G=TS™ T=Ty+ArS=5S+As: ||[[As Ar]| <8 8>0} (29)

where Ap, Ag are stable unknown transfer functions representing the uncertainty.
Then §g is robustly stabilizable by a single linear time invariant controller C' iff (see Lemma
3.1 in [32))
. C(1—Go0) 18t 1
inf 0 < - 30
o[ s || <3 30
where the infinimum is chosen over all compensators C' that stabilizes Gj.
The problem of robust stabilization of normalized coprime factor plant descriptions with H
bounded uncertainty is formulated as

p(G07G) < Bmax (31)

where fpax denotes a maximum S and p(Go, G) is the gap-metric between Gy and G as defined in

[34] and [35] with
- o] g (5] [2]e] )

The issue of finding fBpax can be solved via standard H., optimization techniques (see [32], [33]
and [34]). So, as for the gap metric, any plant G at a distance less than 5 from Gy (8 < Bmax) Will
be stabilized by any compensator C' stabilizing the nominal system with a stability margin of 5.

In the case of our approach, an interval plant is represented by a polytope of systems Qg
defined by its vertices G; (i = 1,...,n). It is thus possible to measure for each vertex of the
polytope the ”distance” to the central plant G by the gap metric. Denote by p,, = z‘llllinn p(Go, Gi)

p(Go, G) = max (Qggm

and ppr = max p(Go, G;), the maximum and the minimum of the gap-metrics between Gy and

G;(i=1,...,n).

Consequently, for each interval plant, the radius of the maximal gap ball Syax around the
central plant G associated with the family §s, may be compared to the distance measured by the
gap metric between Gy and the vertices G; (i = 1,...,n) associated with the polytope Q¢. This
comparison between the H,, method given in [32] and [33] and our approach is presented for the
examples 1 to 5 in table 1 hereafter where
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e 1 is the number of vertices G; (i = 1,...,n) associated with the polytope of plants Q¢,

e 1, is the number of vertices G; (i = 1,...,n) satisfying p(Go, G;)) < Bmax-
p ) ) ymg p )

Section Go(s) Bmax | 1 Pm pr | np
1.255%2 +1.25
5.2.1 L2057 120 it o = 1 0.60964 | 8 | 0.6312 | 0.96777 | 0
252 +1
1.2552 4+ 1.25
5.2.1 208" T 1S ith T = 1.5 0.60964 | 8 | 0.70467 | 0.999 | 0
252 +1
3 2 1
522 s +3+1 0.3329 | 16 | 0.25884 | 0.42977 | 2
s3 —2s2 41

0.11s" + 5° + 2.255> + 0.75
5.2.3 0.24363 | 32 | 0.17906 | 0.2891 | 14
0 0.Ls7 + 1.5s% — 252 1 1

65> 4+ 3s% +225s — 3
—0.255 — 354 — 1653 + 2252 — 115 — 0.5

5.2.4 0.1728 | 16 | 0.20878 | 0.79022 | 0

—2.58% +2.15s* — 11s% + 245 + 10s + 30.5

2.
5.2.5 —0.25% — 31s* —4.1s3 — 8152 — 72.55 — 2

0.16273 | 32 | 0.034146 | 0.17463 | 31

Table 1: Gap metric results applied to examples 1 to 5

In table 1, we can observe for every example that pps > SBuax. We deduce that the robust
stabilization approach developed in [32] and [33] does not allow to take into account an uncertainty
level as large as the one considered in the benchmark section 5.2. These results are due to the lost
of the uncertainty structure with representation (29). This design limitation of H,, methods in
regard to the uncertainty structure provides conservatism.

Finally, we conclude our numerical benchmark of section 5.2 by pointing out that like in the
literature on the stabilization of interval plants, see [18], [19], [20] and [21], our approach is based
on sufficient conditions which generate some inevitable conservatism. In other words, if the linear
programming problem defined by equation (20) has no solution, it does not mean that there is
no robust controller that stabilizes the polytope of plants. In our examples, the limit of stability
is reached for a given controller when 7; (;—o.. ) = Tmaz Where n is the number of uncertainty
coefficient for a given interval plant. It does not imply that there is no robust stabilizing controllers
if 7; (i=0,....n) > Tmaz- This is illustrated by example 1 where a 2nd order controller is get with
Tmaz = 1 while a 4th order controller permits 7,4, = 1.5. The issue of 7,4, is the one of the
compromise between the controller order and the robustness.

5.3 An example of a polytope of systems not belonging to the family of interval
plants

Consider now a polytope of plants Q¢ defined by the 8 vertices G; (i = 1,...,8) given in table 2.
That is a system whose the polynomial coefficients are not bound by some minimum and maximum
values. On the other hand these coefficients can be dependant. The set of all convex combinations
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of vertices G; (1 = 1,...,8) forms a convex hull. Note that the systems G; (i = 1,...,7) are
unstable plants.

First of all, we show that this polytope Q¢ is not stabilizable by a first order controller. For
this purpose, consider the vertex Gy of Q¢ of the form (32) with K =1, @ = 1 and b = 1 and the
compensator (33).

o - S
Gi(s) = 0.059i23i; 1.2639 Gy(s) = 0.2;6—&1458;—:,19281
G (s) = 70.05;0%6; i E1.7033 Gols) = 0.0;)31_7;133_ +S 15517
o= S o= L

Table 2: Vertices G; of the polytope of plants Q¢
K

G (s - K,a,b} € R 32

(3,5 (5) asd —as? +as+b t } .
18 + Zo

Cs) = —— »

(s) Y18 + Yo w

The resulting closed-loop polynomial is
(G ka4, C)s) = ayis* +a(yo — y1)s® + alyr — yo)s® + (byr + ayo + Ka1)s + (byo + Ko)

Let us remark that this characteristic equation will never be Hurwitz-stable because there
are two coefficients of opposite sign, the coefficient of degree 3 and the coefficient of degree 2.
Consequently, the polytope of plants {2g can not be stabilized with a first order compensator.
Therefore, a controller of higher order must be tested. A second order controller of the following
general form
x252 +x15 + x9

C(s) = 34
( ) y282+y1s+yo ( )

is already considered to stabilize this polytope of plants Q.

To solve this robust stabilization problem, we desire that the closed-loop characteristic polyno-
mials ®(G;,C) (i = 1,...8) have a same odd part. At this end, we select the two following negative
distinct real roots, by = —62.203 and by = —2.7973. Then we find

2185 + 825 — 6
C =
(5) 52+ 14s + 78

(35)

With this simultaneous compensator (35), the eight closed-loop characteristic polynomials as-
sociated with the eight vertices of Q0 are Hurwitz-stable and have a same odd part.
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5.4 Discussion

The considered numerical examples are not easy to stabilize because simple compensators like
constant gain cannot stabilize these uncertain systems. Moreover unstable poles and unstable zeros
of these uncertain plants may change which would constitute additional difficulties. It is also useful
to observe that in literature this same problem requires the solution of bilinear matrix inequalities
(BMIs) which lead to nonconvex optimization problems (see for example [18], [19]) while our ap-
proach generates a simple linear programming (LP) problem for which there are efficient solvers
with low computational costs. This basic computational procedure founded on linear programming
permits to find robust controllers of reasonable order in many cases when the plant order and
the number of vertices of the polytope grow. These simulations also show that the order of the
compensators is not higher than those used in the usual applications of automatic control: it is at
most of the same order that the plant order plus one.

6 Conclusion

In this paper, a new approach for stabilizing a polytope of SISO plants has been proposed which
yields to a simple controller design for these systems. The Hermite-Biehler theorem and Edge
theorem have been the backbones of this framework. An alternative would be to use the Hermite-
Fujiwara criterion, see [36] and [37] instead of the Hermite-Biehler criterion that we apply to
stabilize the closed-loop system. So we would have a feedback that would not be based on the
common interlacing property but on the properties of the Hermite-Fujiwara matrices. Thus [36]
has proved that a polynomial f is Hurwitz-stable iff the Hermite-Fujiwara matrix associated with
f is positive definite. Thereafter this property has been extended to define the Hurwitz-stability
of a linear combination of several polynomials, see [37]. Assuming that we consider the Hermite-
Fujiwara criterion instead of the Hermite-Biehler criterion, our approach would remain unchanged
until theorem 2. Then the conditions (15) of lemma 6 would be modified in order to rewrite the
closed-loop characteristic polynomials of the vertices of the polytope with the Hermite-Fujiwara
matrices. In this situation, we would get bilinear matrix inequalities (BMIs) conditions which would
give a non-convex optimization problem. From the literature, we know that the problem of checking
the solvability of a BMI system is NP-hard, see [38]. It is the reason why, the BMIs are converted to
linear matrix inequalities (LMIs) with a constraint rank. However this alteration in rank-one LMI
optimization problem produces an heuristic algorithm without guaranteeing to find solutions when
they exist. For example, in the case of the 2nd order system associated with a polytope of plants of
8 vertices studied in section 5.2, no solution has been found with the Yalmip and SeDuMi solvers
for a fourth-order controller by using the Hermite-Fujiwara’s criterion. Moreover, this approach
generates a higher numerical complexity than the one developed with the Hermite-Biehler criterion.
This complexity is linked to the size and to the number of Hermite-Fujiwara matrices. For example,
the second order system regulated with a fourth-order controller given in the section 5.2 involves
to calculate two hundred Hermite-Fujiwara’s matrices.

To summarize, use of the Hermite-Biehler criterion has reduced the stabilization problem of a
polytope of systems to a linear programming problem for which there exists efficacious solvers.
Our approach has been illustrated by examples showing that the controllers have a reasonable
order in spite of the numbers of vertices of the polytope of plants to stabilize and the uncertainty
regarded.
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Note that these results could be extended in several ways. Notably we could study the polytopes
of plants with a similar controller design than the one given in this paper but in discrete-time or
for other stability domains than the unit circle or than the left half-plane of the complex plane.
Finally, we could research conditions to stabilize a polytope of systems with a compensator of any
order.

7 Appendix: Stabilization of ¢ with a same ®(G;, C)°

In the previous sections has been proposed a design of a controller C' that guarantees the same
even part for the closed-loop characteristic polynomials associated with the vertices of a polytope
of systems (. In this appendix are presented similar results but for guaranteeing a same odd part
®(G;, C)° for the closed-loop characteristic polynomials associated with the vertices of Q¢.

Definition 5 (Common odd interlacing property) Consider a finite collection of polynomials
f{ and a polynomial f° with their leading coefficients of same sign. Assume that for each pair
(fe, f°), (i=1,...,n), the roots of f{ and f° are all real, negative simple and distinct defined by
the following sets

roots(ff) ={aj, ..., a}}
roots(f°) = {b1,...,bs}

The polynomials f{ have a common odd interlacing f° iff the ¢ roots of each f; alternate with the
{ roots of f° as below

al <bp<adh<..<adi<b <0

Note that if ff, (¢ =1...,n) have a common interlacing f°, this implies that for any jth root,
we have

max a; <b; < min a7, .
i€{l,...,n} J I i€{1,...,n} gt

Based on this property of common odd interlacing, a corollary is deduced for testing the Hurwitz-
stability of f;(s) = f¢(s?) + sf°(s?), (i=1...,n).

Corollary 6 (see corollary 1) The polynomials fi(s) = ff(s?) + sf°(s?), (i = 1,...,n) with
fi € P,,, are Hurwitz-stable iff the two following conditions hold.

1. f° has real, simple and negative roots (b1, ..., bs).

2. The real coefficients ¢;, (¢ = 1,...,n) and (k = 0,...,¢) given by the expansions of ff

(i =1,...,n) as the following sums of products of factors of f°
) = ean (60 - D e ) (30
7 — &0 P Z,k 32 . bk

are strictly positive.
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From corollary 6, we can deduce a matrix formulation of f{ and f°.

Since f°(s H s” —bj) with 4° € R_;gy then relation (36) can be simplified as it follows

l 1

fz _7010H5_b Z HS—b
k=1 7j=1
'#k

¢ -1

o

= E Ci.k E U ks,
k=0  j=0

= VAW,  i=1,...,n,

fo(s*) = VH
where
T
\I’;-) = [ Go .-+ Cig ]

V= [ 1 2 ... s* ]
’U070 'UO,l e on
p0 — vi0 Y11 ... U1y
U&[) U&l . U&g
HO=[hg he ... hg]"

A reformulation of corollary 6 is now deduced.

Corollary 7 (see corollary 2) The polynomials f; € P, (i = 1,.
two following conditions hold.

1. f° has real, simple and negative roots (b1, ..., by).

2. There exist V¢ € ]R€H fori=1,...,n, given by (38a).

(37a)
(37D)

(38a)
(38Db)

(38c)

(38d)

,n) are Hurwitz-stable iff the

The Hurwitz-stability issue of a polytope of real polynomials Sy defined by (7) may be simplified

by considering corollary 3 in [28].

Lemma 8 (see lemma 3) Let f; and f; be in P,,, two vertices of Sy with their leading coefficients
of same sign and with a same odd part f° then the exposed edge f; ; defined by (8) is Hurwitz-stable

iff f; and f; are Hurwitz-stable.

Hence, we write.

Corollary 8 (see corollary 3) If the vertices f; € Py, (1 =1,...,

n), of a polytope of real poly-

nomials Sy are Hurwitz-stable with a same odd part f° and if the leading coefficients of f; have a

same sign then the polytope of real polynomials Sy is Hurwitz-stable.

That implies theorem below.

25



Theorem 4 (see theorem 2) Consider a convex polytope of plants Q¢ defined by (9). If there
exists a compensator C' satisfying the two following relations

q)(GmC) € Ha (39&)
O(G;,C)° =0(G,C), i=1,....n—1,j=i+1,... n (39b)

with the leading coefficients of ®(G;, C') of same sign, then C stabilizes Q.

Hence the following result by considering C;, given by (17) and A{ and A¢ defined by (18).

Lemma 9 (see lemma 7) Consider a convex polytope of plants Q¢ defined by (9) and A°, H®
given by (38¢), (38d) respectively. If there exists C,, and ¢ € RY ., (i = 1,...,n) satisfying

AC, = H°, i=1,...,n, (40a)
ASC, = A°07 (40b)
then C stabilizes Q.
Now rewrite relations (40)
B° = @OXO (41)
where
T 0 [A° 0 ... 0 —AS§]
0 0 0 A° —AS
B®=|H°|, 8= |0 o0 0 A9 |
H* 0 0 0 Ag
LH° ] (0 0 ... 0 A9

=t e’
W0 = (w7 wyT wgT . weT]T e rIUTY
There is solutions ¢° and C,, to (41) iff [29].

rank([B° ©°]) = rank(©°). (42)

By considering equation (40), the robust stabilization of ¢ given by lemma 9 is now set as the
issue of feasibility of a linear programming problem. Thus, we can deduce the next theorem.

Theorem 5 (see theorem 3) Let Q¢ be a convex polytope of plants defined by (9). Assume that
(42) holds then the controller C' stabilizes Q¢ if there exists a solution x° to the linear programming
(LP) problem given by (41).
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