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Abstract

This paper aims to assess the stability of a polytope of linear systems by their vertices. These
results are based on the Hermite-Biehler and Edge theorems. A sufficient condition satisfying
a constraint on the even (or odd) part of the closed-loop characteristic polynomials associated
with the stabilization of its vertices, is proved. Finally, a constructive method to stabilize a
polytope of plants with simultaneous and robust linear time-invariant controllers is established.

Keywords: polytope of systems, simultaneous stabilization, robust stabilization, common
interlacing property.

1 Introduction

This paper concerns the stabilization of polytopes of SISO plants with a fixed order controller.
Until now the problem of deciding of the stability or stabilizability of a polytope of linear systems
with a linear time-invariant (LTI) controller stays an open question. We do not know which are
the conditions so that any polytope of systems is stabilizable by a LTI controller. In this article,
we show that this question is equivalent to that of the stability of the set of segments of systems
linking the vertices of the polytope with a LTI controller. The issue is therefore about the stability
of this set of segments with a LTI controller. Remark that this problem is also an open question.
This is even an undecidable mathematical issue that may be classified as an NP-hard problem, in
the sense that it is not possible to find necessary and sufficient conditions to stabilize this family
of systems with a LTI controller when the number of plants to stabilize, is greater than two, see
[1]. Accordingly, there exist only sufficient or necessary conditions for the robust stabilization of
a polytope of systems. This paper proposes some sufficient conditions based on the Edge theorem
[2]. More precisely, the question of stabilization of a polytope of systems is treated as a simple
simultaneous control design of a family of LTI systems submitted to an additional constraint on the
closed-loop characteristic polynomials associated with the vertices of this polytope. Furthermore,
the controller is shown to not only simultaneously stabilize the vertices of the polytope of systems,
i.e. a simultaneous control purpose, but also the set of systems belonging to the polytope, i.e. a
robust control purpose. That is hence a simultaneous and robust controller for the polytopes of
systems. Let us review briefly the main results in simultaneous and robust control.

Concerning the simultaneous control, [3] and [4] have proved that there exits a necessary and
sufficient condition to stabilize simultaneously two LTI systems. Moreover, [3] and [4] have shown
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that this question is equivalent to the stabilization of one plant by a stable compensator. This issue
called ”strong stabilization” has been originally treated in [5]. The problem of the simultaneous
stabilization of three or more LTI plants was initially tackled by [6] and [7]. Otherwise [8] has shown
that there exists no tractable and complete conditions to check the simultaneous stabilizability of
three or more systems. About the simultaneous stabilization of a segment of LTI systems, i.e. a
continuum of LTI systems described by a parameter and its two endpoints, [9] has provided existence
conditions which depend on the choice of the initial compensator stabilizing the extremities of the
segment. For this class of system, transcendental conditions have been given by [10] and [11]. In
[12] and [13] the authors address the question of the simultaneous strong stabilizability of a segment
of systems. They are conditions that have been stated to stabilize each element of this family with
a stable compensator. That does not imply existence conditions of a single controller stabilizing
the whole set of systems belonging to this segment. Conditions for the simultaneous stabilizability
of a segment of systems have been given in [14].

Concerning the robust control, Kharitonov’s theorem and its generalization, [15] and [16] have
been at the origin of many results. Others analysis methods have been studied in the literature but
those dedicated to the synthesis of robust control with polynomial methods are only a few. In [17],
the zero-exclusion principle has given conditions that are used to test the stability and allow to
design robust controllers. More recently, [18], [19], [20] and [21] propose fixed-order controllers for
systems with polytopic uncertainty. The methods described in these papers relied on a criterion of
stability which necessitates exactly proper and strict positive realness (EP-SPR) functions. These
rational functions are particular units in H∞ which also verify the properties of the SPR functions,
see [9], [22] and [23]. Nevertheless, derived from [24], it may be easily deduced that to stabilize a
polytope of systems, it is only required to synthesize units inH∞ whose Nyquist plots do not cut the
negative real axis. Then the conditions of the EP-SPR functions are not necessary. Consequently,
the constraint to make EP-SPR functions introduces sufficiency and conservatism in regard to the
necessary and sufficient condition to stabilize a polytope of systems. In this paper, we propose a
new approach to synthesize units in H∞ for stabilizing the polytopes of systems which are not SPR
functions and which remain units in H∞ if one interchanges even (or odd) part of the numerator
and denominator polynomials. The Nyquist plots of these units in H∞ do not cut the negative real
axis, see [24].

In this manuscript, we focus on the stabilization of polytope of single input single output LTI
systems. Based on the Hermite-Biehler theorem and the Edge theorem, we prove that to stabilize
a polytope of systems it is sufficient to stabilize all its vertices with a simultaneous controller
giving characteristic polynomials that have a common even (or odd) part. Moreover, we show that
the synthesized units in H∞ do not cut the real negative axis of the Nyquist plot. In addition a
controller design for stabilizing the polytopes of systems is provided mixing polynomial techniques
and linear optimization.

The paper is organized as it follows. After preliminaries in section 2, the problem of the robust
stabilization of a polytope of systems is stated in section 3 by applying the Edge theorem. Then an
approach to stabilize the vertices of a polytope of systems with a simultaneous compensator is given
in section 4 that leads to a simple linear programming (LP) problem. The issue of the stabilization
of a polytope of systems by a simultaneous controller is formulated as positivity conditions if
particular pole placement constraints hold. Finally in section 5, examples are given to illustrate this
framework. In the appendix, our approach is extended to the case where characteristic polynomials
in closed-loop have a common odd part.
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2 Preliminaries

Notations: The degree of a real polynomial X is denoted δ(X). Pm denotes the set of real poly-
nomials of degree m. The set of Hurwitz-stable polynomials is denoted H. R is the real field. C
is the complex field. Rn

++ = {x ∈ Rn : xi > 0, ∀i } and R−{0} = {x ∈ R : x < 0 or x > 0}. The
notation x > 0 with x ∈ Rn means that each component of the vector x is positive. If and only if
is defined as iff. The exactly proper and strict positive realness functions are denoted as EP-SPR
functions. H∞ is the set of proper stable rational functions. ∥∥ denotes the operator norm. U is
the set of units in H∞ i.e. U ∈ U iff U ∈ H∞ and U−1 ∈ H∞.

In the sequel of this section, concepts on Hurwitz-stability of a polytope of real polynomials are
presented. These results are used in section 3 to study the stability of a polytope of systems. The
notion of Hurwitz-stability highlighted by [25] is approached hereafter under the angle of interlacing
of real zeros.

2.1 The Hermite-Biehler’s stability.

Let f ∈ Pm expanded as

f(s) = fe(s2) + sfo(s2) =

m∑
i=0

σis
i

where σi are real coefficients and f e and fo denote the even and odd parts of f respectively. The
polynomials fe and fo are given by

• if δ(f) = m = 2ℓ+ 1

fe(u) = σ0 + σ2u+ . . .+ σ(m−1)u
ℓ, (1a)

fo(u) = σ1 + σ3u+ . . .+ σmu
ℓ. (1b)

• if δ(f) = m = 2ℓ

f e(u) = σ0 + σ2u+ . . .+ σmu
ℓ, (2a)

fo(u) = σ1 + σ3u+ . . .+ σ(m−1)u
(ℓ−1). (2b)

Let us recall the Zeros Interlacing Property.

Definition 1 ([25], The Zeros Interlacing Property) Let f(s) = fe(s2) + sfo(s2) be a real
polynomial with δ(f) = m. Assume that the roots of fe and fo are defined by the following sets

• if δ(f) = m = 2ℓ+ 1 and δ(f e) = ℓ, δ(fo) = ℓ

roots(f e) = {a1, . . . , aℓ},
roots(fo) = {b1, . . . , bℓ},

• if δ(f) = m = 2ℓ and δ(fe) = ℓ, δ(fo) = ℓ− 1

roots(f e) = {a1, . . . , aℓ},
roots(fo) = {b1, . . . , bℓ−1}.
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Then f e and fo interlace iff

• the roots of f e and fo are real, negative, distinct and simple,

• the leading coefficients of f e and fo have the same sign,

• the ℓ roots of f e alternate with the ℓ or ℓ− 1 roots of fo as it follows.

If δ(f) = m = 2ℓ+ 1 then

b1 < a1 < b2 . . . < bℓ < aℓ < 0.

If δ(f) = m = 2ℓ then

a1 < b1 < . . . < bℓ−1 < aℓ < 0.

Let us note that the cases m = 2ℓ + 1 or m = 2ℓ are considered indistinctly in this paper but
to simplify the writing, the theoretical results are presented for only m = 2ℓ + 1 and an example
is given section 5.1 for the two cases m = 2ℓ and m = 2ℓ + 1. It should be noticed that the case
m = 2ℓ may be directly deduced from the case m = 2ℓ+ 1.

The relationship between the zeros interlacing property of a real polynomial and the Hurwitz-
stability is emphasized by the Hermite-Biehler’s theorem that we remind.

Lemma 1 ([25], Hermite-Biehler’s theorem) The real polynomial f(s) = f e(s2) + sfo(s2) is
Hurwitz-stable (i.e. all the real parts of the roots of f are strictly negative) iff f e and fo verify the
Zeros Interlacing Property.

Let us write the partial fraction expansion of the real rational function fo/fe with f e and fo

satisfying (1). Consequently, from lemma 1, simple conditions for testing the Hurwitz-stability of
f are deduced.

Lemma 2 ([26], [27]) The polynomial f(s) = f e(s2) + sfo(s2) with f ∈ Pm is Hurwitz-stable iff
the two following conditions hold.

1. f e has real, simple and negative roots (a1, . . . , aℓ).

2. The real coefficients ck (k = 0, . . . , ℓ) given by the expansion of fo as the following sum of
products of factors of fe

fo(s2) = c0f
e(s2) +

ℓ∑
k=1

ck
f e(s2)

s2 − ak
. (3)

are strictly positive.

Note that c0 = 0 in the case where m = 2ℓ.

Mention that all the next developments are made in function of the writing (3) with f e given
a priori. The developments in function of fo are presented in the appendix section.
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Let us consider n real polynomials fi, (i = 1, . . . , n) with a a same even part f e. Then we have
fi(s) = fe(s2) + sfoi (s

2), (i = 1, . . . , n).

In association with fi, a generalization of the Zeros Interlacing Property is now given.

Definition 2 (Common even interlacing property) Consider a finite collection of polynomi-
als foi , (i = 1, . . . , n) and a polynomial fe with their leading coefficients of same sign. Assume
that for each pair (foi , f

e), (i = 1, . . . , n), the roots of foi and fe are all real, negative, distinct and
simple defined by the following sets

roots(foi ) = {bi1, . . . , biℓ},
roots(f e) = {a1, . . . , aℓ}.

The polynomials foi have a common even interlacing fe iff the ℓ roots of each foi alternate with the
ℓ roots of f e as below

bi1 < a1 < bi2 < . . . < biℓ < aℓ < 0.

Remark that if the polynomials foi , (i = 1, . . . , n) have a common interlacing f e this implies
that for any jth root, we have

max
i∈{1,...,n}

bij < aj < min
i∈{1,...,n}

bij+1

By using the common even interlacing property given above, an extension of lemma 2 is deduced
for testing the Hurwitz-stability of polynomials fi, (i = 1, . . . , n).

Corollary 1 The polynomials fi(s) = f e(s2) + sfoi (s
2), (i = 1, . . . , n) with fi ∈ Pm are Hurwitz-

stable iff the two following conditions hold.

1. f e has real, simple and negative roots (a1, . . . , aℓ).

2. The real coefficients ci,k (i = 1, . . . , n) and (k = 0, . . . , ℓ) given by the expansions of foi
(i = 1, . . . , n) as the following sums of products of factors of f e

foi (s
2) = ci,0f

e(s2) +

ℓ∑
k=1

ci,k
fe(s2)

s2 − ak
. (4)

are strictly positive.

Proof: That is a consequence of lemma 2. �
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2.2 Matrix formulation of f o
i and f e.

Let us set fe(s2) = γe
ℓ∏

j=1

(s2 − aj) with γ
e ∈ R−{0}. Consequently relation (4) can be simplified as

it follows

foi (s
2) = γeci,0

ℓ∏
j=1

(s2 − aj) + γe
ℓ∑

k=1

ci,k

ℓ∏
j=1
j ̸=k

(s2 − aj)

=

ℓ∑
k=0

ci,k

ℓ−1∑
j=0

υj,ks
2j ,

= V AeΨe
i , i = 1, . . . , n. (5a)

fe(s2) = V He, (5b)

where

Ψe
i =

[
ci,0 . . . ci,ℓ

]T
(6a)

V =
[
1 s2 . . . s2ℓ

]
(6b)

Ae =


υ0,0 υ0,1 . . . υ0,ℓ
υ1,0 υ1,1 . . . υ1,ℓ
...

...
...

...
υℓ,0 υℓ,1 . . . υℓ,ℓ

 (6c)

He =
[
he0 he1 . . . heℓ

]T
(6d)

Note that matrix Ae only depends on the even part f e.
By using the above notations, a reformulation of corollary 1 is now deduced.

Corollary 2 The polynomials fi ∈ Pm, (i = 1, . . . , n) are Hurwitz-stable iff the two following
conditions hold

1. f e is a polynomial with real, simple and negative roots (a1, . . . , aℓ).

2. There exist Ψe
i ∈ Rℓ+1

++ for i = 1, . . . , n, given by (6a).

Proof: That is a consequence of the writing (4) as (5a). �

2.3 Hurwitz-stability of a polytope of real polynomials.

Let Sf be a convex polytope of real polynomials described by the set of n vertices fi ∈ Pm as it
follows

Sf ,
{
f : f =

n∑
i=1

λifi, λi ≥ 0,

n∑
i=1

λi = 1

}
(7)
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The set of the exposed edges1 connecting two vertices fi and fj in Pm of the polytope of
polynomials Sf is defined by Sfi,j where

Sfi,j ,
{
fi,j : fi,j = αfi + (1− α)fj , α ∈ [0, 1], i = 1, . . . , n− 1, j = i+ 1, . . . , n

}
(8)

Recall theorem 1 in [2] that shows that the stability of a polytope of real polynomials can be
inferred from its exposed edges.

Theorem 1 ([2]) The polytope of real polynomials Sf is Hurwitz-stable iff the set of exposed
edges Sfi,j are Hurwitz-stable.

The Hurwitz-stability issue of Sf may be simplified by considering corollary 3 in [28].

Lemma 3 ([28]) Let fi ∈ Pm and fj ∈ Pm be two vertices of Sf with their leading coefficients of
same sign and with a same even part f e, then the exposed edge fi,j defined by (8) is Hurwitz-stable
iff fi and fj are Hurwitz-stable.

Corollary 3 If the vertices fi ∈ Pm, (i = 1, . . . , n) of a polytope of real polynomials Sf are
Hurwitz-stable with a same even part fe and if the leading coefficients of fi, (i = 1, . . . , n) have a
same sign then the polytope of real polynomials Sf is Hurwitz-stable.

Proof: A consequence of theorem 1 and lemma 3. �

In connection with corollary 2, a reformulation of corollary 3 is now deduced.

Corollary 4 Consider a convex polytope of real polynomials Sf defined by the set of vertices
fi ∈ Pm verifying (7) with a same even part fe. If the two following conditions hold then Sf is
Hurwitz-stable.

1. f e is a polynomial with real, simple and negative roots (a1, . . . , aℓ).

2. There exist Ψe
i ∈ Rℓ+1

++ (i = 1 . . . n) given by (6a).

Proof: As a consequence of corollaries 2 and 3. �

Lemma 4 Let Sf be a convex polytope of real polynomials described by a set of n vertices fi ∈ Pm

verifying (7). The number of exposed edges of Sf is n =
∑n−1

i=1 (n− i).

Proof: Consider fi, (i = 1, . . . , n), vertices of a convex polytope Sf . Count the number of
different exposed edges connected to each vertex with fi,j = fj,i. Each vertex fi, (i = 1, . . . , n− 1),
is connected by n− i different exposed edges to n− i vertices. In consequence, the total number of
exposed edges of Sf is n =

∑n−1
i=1 (n− i). �

Note that the problem of Hurwitz-stability of a polytope of real polynomials Sf is significantly
reduced by considering corollary 3 and lemma 4, with which we only need to verify the Hurwitz-
stability of n vertices of Sf instead to verify the Hurwitz-stability of n exposed edges of Sf , n < n
if n > 3.

1See [2] for the definition of the exposed edges.
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3 Robust stabilization of a polytope of plants.

Now a robust stability analysis for a polytope of systems may be carried out.

Definition 3 (A polytope of plants) The convex polytope of plants ΩG generated by n SISO
LTI systems Gi = NiD

−1
i (i = 1 . . . n) is defined as

ΩG ,
{
G : G = ND−1, N =

n∑
i=1

λiNi, D =

n∑
i=1

λiDi, λi > 0,

n∑
i=1

λi = 1

}
(9)

where Ni and Di are real polynomials with δ(Ni) 6 δ(Di) and Di ∈ Pd.

All pairs of vertices (Gi, Gj), with i = 1, . . . , n−1 and j = i+1, . . . , n, of a polytope of systems
ΩG are connected by an exposed edge Gi,j . Each exposed edge is a segment of systems. The set of
all segments of systems of ΩG is defined as the set ΩGi,j given below.

Definition 4 (The set of segments of systems ΩGi,j) The set of segments of systems ΩGi,j

connecting any two vertices of the polytope of systems ΩG is defined as

ΩGi,j ,
{
Gi,j : Gi,j = Ni,jD

−1
i,j , Ni,j = αNi + (1− α)Nj , Di,j = αDi + (1− α)Dj , (10)

α ∈ [0, 1], i = 1, . . . , n− 1, j = i+ 1, . . . , n

}
.

The objective of this paper is to propose a proper controller C = XY −1 that stabilizes the
polytope of systems ΩG whereX and Y are real polynomials. Consequently, the existence conditions
of a compensator C satisfying

Φ(G,C) = (NX +DY ) ∈ H (11)

are studied.

Lemma 5 The compensator C stabilizes the polytope of systems ΩG iff C stabilizes the set of
segments of systems ΩGi,j .

Proof: The compensator C stabilizes the polytope of systems ΩG iff

Φ(G,C) = NX + Y D =
( n∑

i=1

λi(NiX +DiY )
)
∈ H

or iff ( n∑
i=1

λiΦ(Gi, C)
)
∈ H with λi ≥ 0,

n∑
i=1

λi = 1.

Hence, the compensator C stabilizes the polytope of systems ΩG iff the polytope of polynomials ϕ
is Hurwitz-stable where

ϕ ,
{
Φ(G,C) : Φ(G,C) =

n∑
i=1

λiΦ(Gi, C), λi ≥ 0,
n∑

i=1

λi = 1

}
(12)
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By applying theorem 1, we know that Φ(G,C) ∈ H iff Φ(Gi,j , C) ∈ H. This implies that ϕ is
Hurwitz-stable iff ϕi,j is Hurwitz-stable with ϕi,j defined as the set of exposed edges of ϕ where

ϕi,j ,
{
Φ(Gi,j , C) : Φ(Gi,j , C) = αΦ(Gi, C) + (1− α)Φ(Gj , C), (13)

α ∈ [0, 1], i = 1, . . . , n− 1, j = i+ 1, . . . , n

}
.

Consequently, the controller C stabilizes the polytope of plants ΩG iff C stabilizes the set of seg-
ments of systems ΩGi,j defined by (10). �

Now to conclude this section, we can observe that by applying corollary 3 to the polytope of
polynomials ϕ, we can simplify the issue of the Hurwitzness of ϕ. That is, if the vertices Φ(Gi, C)
(i = 1, . . . n) of the polytope ϕ are Hurwitz-stable with a same degree and with their leading
coefficients of same sign and a same even part Φ(Gi, C)

e where

Φ(Gi, C)(s) = Φ(Gi, C)
e(s2) + sΦ(Gi, C)

o(s2)

then the polytope of polynomials ϕ is Hurwitz-stable.

4 Computational conditions for robust stabilization of a polytope
of plants with a simultaneous compensator.

In this section, the problem of the stabilization of the polytope of systems ΩG is posed as that of
the stabilization of its vertices Gi with a simultaneous compensator C that guarantees a same even
part Φ(Gi, C)

e for the closed-loop characteristic polynomials associated with Gi for i = 1, . . . , n.

Theorem 2 Consider a convex polytope of plants ΩG defined by (9). If there exists a simultaneous
compensator C satisfying the following relations

Φ(Gi, C) ∈ H, (14a)

Φ(Gi, C)
e = Φ(Gj , C)

e, i = 1, . . . , n− 1, j = i+ 1, . . . , n. (14b)

with the leading coefficients of Φ(Gi, C) of same sign, then C stabilizes ΩG.

Proof: This theorem is a consequence of lemma 5 and corollary 3. �

Henceforth, the issue of the stabilization of the polytope of systems ΩG is reduced to the
design of a simultaneous compensator that must satisfy the particular poles placements required
by theorem 2. This yields to the following lemma.

Lemma 6 Consider a convex polytope of plants ΩG defined by (9). Let V , Ae, He and Ψe
i be given

by (6b), (6c), (6d) and (6a) respectively. If there exist Ψe
i ∈ Rℓ+1

++ (i = 1, . . . , n) and a compensator
C verifying the following relations

Φ(Gi, C)
e = V He, i = 1, . . . , n (15a)

Φ(Gi, C)
o = V AeΨe

i (15b)

then C stabilizes ΩG.
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Proof: This lemma is a consequence of corollary 4 and theorem 2. �

Notice that the simultaneous controller C proposed in lemma 6 has a fixed order since the
degree of the closed-loop characteristic polynomials Φ(Gi, C) associated with the vertices of the
polytope of polynomials ϕ given in (12), are chosen a priori.

Consider the simultaneous compensator C = XY −1 and the vertices Gi = NiD
−1
i (i = 1, . . . , n)

of a polytope of systems ΩG where X, Y , Ni and Di be real polynomials expressed in terms of their
even and odd parts as follows

X(s) = Xe(s2) + sXo(s2), Y (s) = Y e(s2) + sY o(s2)

Ni(s) = N e
i (s

2) + sNo
i (s

2), Di(s) = De
i (s

2) + sDo
i (s

2)

Then we obtain

Φ(Gi, C)
e = Γe

iCp, i = 1, . . . , n (16a)

Φ(Gi, C)
o = Γo

iCp (16b)

with

Cp(s
2) = [Xe(s2) Y e(s2) Xo(s2) Y o(s2)]T

Γe
i (s

2) = [N e
i (s

2) De
i (s

2) s2No
i (s

2) s2Do
i (s

2)]

Γo
i (s

2) = [No
i (s

2) Do
i (s

2) N e
i (s

2) De
i (s

2)]

Reformulate Φ(Gi, C)
e and Φ(Gi, C)

o in a matrix form. For that consider

Cυ =
[
x e
0 . . . x e

pe ye0 . . . y
e
qe xo

0 . . . x o
po yo0 . . . yoqo

]T
(17)

with pe = δ(Xe), po = δ(Xo), qe = δ(Y e) and qo = δ(Y o).
Define two matrices Λe

i and Λo
i such that

Φ(Gi, C)
e = V Λe

iCυ, i = 1, . . . , n (18a)

Φ(Gi, C)
o = V Λo

iCυ (18b)

where Λe
i and Λo

i are a rewriting of Γe
i and Γo

i according to the coefficients of polynomials N e
i , D

e
i ,

No
i and Do

i .

Lemma 6 and relations (18) permit to deduce the following lemma.

Lemma 7 Consider a convex polytope of plants ΩG defined by (9). Let Ae, He and Ψe
i given by

(6c), (6d) and (6a) respectively. If there exist Cυ and Ψe
i ∈ Rℓ+1

++ , (i = 1, . . . , n) satisfying the
following relations

Λe
iCυ = He i = 1, . . . , n, (19a)

Λo
iCυ = AeΨe

i (19b)

then C stabilizes ΩG.
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Proof: This result is a consequence of lemma 6 and relations (18a) and (18b). �

Now rewrite relations (19)
Be = Θeχe (20)

where

Be =



0
...
0
He

He

...
He


, Θe =



Ae 0 . . . 0 −Λo
1

...
...

. . .
...

...

0 0
. . . Ae −Λo

n

0 0 . . . 0 Λe
1

0 0 . . . 0 Λe
2

...
... . . .

...
...

0 0 . . . 0 Λe
n


,

χe =
[
ψeT CT

υ

]T
,

ψe =
[
Ψe

1
T Ψe

2
T Ψe

3
T . . . Ψe

n
T
]T ∈ Rn(ℓ+1)

++ .

There is solutions ψe ∈ Rn(ℓ+1) and Cυ to the equation (20) iff [29].

rank
([
Be Θe

])
= rank(Θe). (21)

By considering equation (19), the robust stabilization of the polytope of systems ΩG given by
lemma 7 is now set as the issue of feasibility of a linear programming problem (LP).

Theorem 3 Let ΩG be a convex polytope of plants defined by (9). Assume that (21) holds then
the controller C stabilizes ΩG if there exists a solution χe to the linear programming (LP) problem
given by (20).

Proof: Since (20) is a rewritten of the relations (19), then theorem 3 is equivalent to lemma 7. �

This LP problem can be expressed as a LP computational procedure. Readily available, linear
programming software allows to solve this type of system (20) in an efficient way. This possibility
is demonstrated through some numerical examples that are reported in the section 5.

After focusing initially on the controller design for stabilizing a polytope of systems, we are
again going to review some literature results. Derived from [24], an equivalent condition to the one
given in lemma 5 may be formulated.

Corollary 5 To stabilize a polytope of plants ΩG with a LTI compensator, it is necessary and suf-
ficient that the units in H∞ formed by the ratio of every two closed-loop characteristic polynomials
associated with the vertices of the polytope of systems have the modulus of their argument less
than 180◦.

11



Proof: This necessary and sufficient condition is a direct consequence deduced from lemma 5 and
theorem 2.3 in [24]. �

The condition given in corollary 5 may be rewritten as∣∣∣ arg (Φ(Gi, C)(jw)

Φ(Gj , C)(jw)

)∣∣∣< 180o, i = 1, . . . , n− 1, j = i+ 1, . . . , n (22)

with

Φ(Gi, C)

Φ(Gj , C)
∈ U (23)

The approach outlined here, permits to synthesize units in H∞ which remain units in H∞ if
one interchanges even (or odd) part of the numerator and denominator polynomials. The rational

functions
Φ(Gi, C)

Φ(Gj , C)
may have the modulus of their argument more than 90◦, see [24]. Consequently

the framework described in this article for the stabilization of polytopes of systems allows to envisage
other solutions than those allowed by [18].

5 Illustrative examples

Several examples are now provided to illustrate the applicability of our approach. Since the interval
plants are an important class of systems considered in many applications, we begin in the sections
5.1 and 5.2 to apply our approach on these particular uncertain systems. In the last part, section
5.3, an application is given for a polytope of systems that does not belong to the class of interval
systems. That is a system whose the polynomial coefficients are not bound by some minimum and
maximum values. On the other hand these coefficients can be dependant.

Although our analysis and our conditions of robust stability given in the sections 3 and 4 do
not fall within the framework of the so-called ”16-plant theorem”, see [30], [31], we show by these
examples that we can use our approach to stabilize these polytopes of systems.

5.1 A detailed example

To illustrate this design as defined in section 4, we propose to stabilize an interval plant G̃ with a
proper LTI compensator where

G̃(s) =
s2 + n0

2s2 + d1s+ 1
(24)

with n0 ∈ [ϵmin, ϵmax] and d1 ∈ [ηmin, ηmax].

First of all, if we consider a simple gain K as compensator, the characteristic equation of the
closed-loop system is

Φ(G̃,K)(s) = (2 +K)s2 + d1s+ (1 +Kn0)

12



We observe that a constant gain K cannot stabilize a such system G̃ if d1 has not always the
same sign.

Before developing our approach to synthesize a robust controller stabilizing G̃, the following
result is stated.

Proposition 1: Consider the interval plant G̃ given by (24). For all n0 ∈ [ϵmin, ϵmax] and
d1 ∈ [ηmin, ηmax], there exists a polytope of plants ΩG defined by its vertices Gi = NiD

−1
i (i = 1 . . . 4)

where

G1(s) =
s2 + ϵmin

2s2 + ηmins+ 1
, G2(s) =

s2 + ϵmin

2s2 + ηmaxs+ 1
(25a)

G3(s) =
s2 + ϵmax

2s2 + ηmins+ 1
, G4(s) =

s2 + ϵmax

2s2 + ηmaxs+ 1
(25b)

such that G̃ ∈ ΩG.
Proof: Let G = ND−1 with

N =
4∑

i=1

λiNi, D =
4∑

i=1

λiDi,
4∑

i=1

λi = 1 and λi ≥ 0,

Or equivalently, we have

N(s) = s2 + (λ1 + λ2)ϵmin + (λ3 + λ4)ϵmax

D(s) = 2s2 + (λ1 + λ3)ηmins+ (λ2 + λ4)ηmaxs+ 1

with
4∑
1

λi = 1 and λi ≥ 0, i = 1 . . . 4

Using the above relations, we can define the scalars αj ∈ [0, 1] (j = 1, 2) that satisfy the
following relations


α1 = λ1 + λ2

1− α1 = λ3 + λ4
α2 = λ1 + λ3

1− α2 = λ2 + λ4

(26)

Now let us show that for any αj ∈ [0, 1] (j = 1, 2), there exist λi (i = 1 . . . , 4) with 0 ≤ λi and
4∑

i=1

λi = 1. In terms of (26), let us remark that for any αj ∈ [0, 1] (j = 1, 2), we can always choose

0 ≤ λ1 ≤ 1 such that the following inequalities hold.

13




0 ≤ λ1 ≤ α1 ≤ 1
0 ≤ λ1 ≤ α2 ≤ 1
−1 ≤ α1 + α2 − 1 ≤ λ1 ≤ 1

(27)

From relations (26) and (27), we deduce that for any αj ∈ [0, 1] (j = 1, 2), there exist λ2 ≥ 0,
λ3 ≥ 0 and λ4 ≥ 0 with

∑4
1 λi = 1 that the following relationships hold.


0 ≤ λ2 = α1 − λ1 ≤ 1
0 ≤ λ3 = α2 − λ1 ≤ 1
0 ≤ λ4 = 1− α1 − α2 + λ1 ≤ 1

(28)

Then we can rewrite G̃ = ÑD̃−1 with

Ñ(s) = s2 +
(
α1 ϵmin + (1− α1) ϵmax

)
D̃(s) = 2s2 +

(
α2 ηmin + (1− α2) ηmax

)
s+ 1

α1 ∈ [0, 1], α2 ∈ [0, 1]

Notice that for any αj ∈ [0, 1], (j = 1, 2), there exist always scalars λi, (i = 1, 4) such that
0 ≤ λi ≤ 1, (i = 1, . . . , 4) that satisfy (27) and (28) by taking λ1 = min(α1, α2). �

Now consider G̃ defined by (24) with ϵmin = 1, ϵmax = 2, ηmin = −1, ηmax = 1. By applying
Proposition 1, we know that if a compensator C exists that stabilizes the polytope of plants ΩG

defined by its four vertices (25) then this compensator stabilizes G̃. We can note that for stabilizing
the polytope of systems ΩG, it is sufficient to stabilize simultaneously only the four vertices (25)
instead of six segments of systems as in the case of lemma 5. Consequently, to synthesize a robust
controller that stabilizes ΩG, theorem 3 and theorem 5 will be considered successively.

Firstly, let us solve this robust stabilization problem guaranteeing that the closed-loop charac-
teristic polynomials associated with the four vertices of ΩG have the same even part. To that goal,
we can take a controller of the following form

Ce(s) =
x1s

y2s2 + y0

We choose two negative distinct real roots: a1 = −0.5, a2 = −4. Then we find

ψ = [3.06 0.01 2.04 1.03 3.06 1.01 2.04 2.03]

and we get

Ce(s) =
3.57s

0.5s2 + 2

The closed-loop characteristic polynomials associated with the four vertices of ΩG are Hurwitz-
stable where

14



Φ(G1, C
e)(s) = s4 + 3.07s3 + 4.5s2 + 1.57s+ 2

Φ(G2, C
e)(s) = s4 + 3.07s3 + 4.5s2 + 5.14s+ 2

Φ(G3, C
e)(s) = s4 + 4.07s3 + 4.5s2 + 5.57s+ 2

Φ(G4, C
e)(s) = s4 + 4.07s3 + 4.5s2 + 9.14s+ 2

Now solve the same problem that the one that we have just treated but by considering theorem 5.
With this formulation detailed in the appendix section, we can compute a controller Co guaranteeing
that the closed-loop characteristic polynomials associated with the four vertices of ΩG have the same
odd part. To that goal, we can consider a controller of the form

Co(s) =
x2s

2 + x0
y3s3 + y1s

The odd part of the characteristic polynomials can be fixed by the two negative distinct real
roots b1 = −2.3704, b2 = −0.5. This yields to

ψ = [3.5926 0.198 6.8363 3.5926 1.0941 1.8476 4.5926 0.6980 6.8363 4.5926 1.5941 1.8476]

and

Co(s) =
221s2 + 20

27s3 + 64s

The closed-loop characteristic polynomials associated with the four vertices of the polytope ΩG

are Hurwitz-stable where

Φ(G1, C
o)(s) = 54s5 + 194s4 + 155s3 + 177s2 + 64s+ 20

Φ(G2, C
o)(s) = 54s5 + 194s4 + 155s3 + 398s2 + 64s+ 40

Φ(G3, C
o)(s) = 54s5 + 248s4 + 155s3 + 305s2 + 64s+ 20

Φ(G4, C
o)(s) = 54s5 + 248s4 + 155s3 + 526s2 + 64s+ 40

Consider Uo
i,j =

Φ(Gi, C
o)

Φ(Gj , Co)
and U e

i,j =
Φ(Gi, C

e)

Φ(Gj , Ce)
with i = 1, . . . , 3, j = i+1, . . . , 4. Let us plot

the modulus of the argument of the rational functions Ui,j(jw)
e and Ui,j(jw)

o, see figures 1 and
2. We observe that all these units have the modulus of their argument less than 180◦ and some
of these units have modulus of their argument more than 90◦. Hence, they are not all EP-SPR
functions.

The conditions given in the theorems 2 and 4 are all satisfied then Ce and Co stabilize the
polytope of systems ΩG. Accordingly, C

e and Co stabilize G̃.
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Fig 1: Plot of
∣∣∣ argUo

i,j(jw)
∣∣∣ in regard to Co Fig 2: Plot of

∣∣∣ argU e
i,j(jw)

∣∣∣ in regard to Ce
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5.2 A numerical benchmark

In this part, a collection of interval plants are now presented showing the efficiency of our numerical
design when the order of these systems grows. Consequently, the number of constraints treated in
these configurations by the linear programming procedure becomes important. It is about pointing
out that in spite of this numerical complexity, the algorithm can find feasible solutions. The
allowed maximum uncertainty is defined by a parameter τmax which is linked to the size of the
uncertainty intervals with 0 ≤ τmax. To simplify the presentation, only simultaneous compensators
guaranteeing a same even part for the characteristic polynomials are given.

5.2.1 Example 1

A similar example to the one given previously in section 5.1 but by considering a polytope of
systems of 8 vertices instead of 4.

System G̃(s) =
n2s

2 + n0
2s2 + d1s+ 1

n0 ∈ [1.25− 0.25τ0, 1.25 + 0.25τ0], n2 ∈ [1.25− 0.25τ2, 1.25 + 0.25τ2]

d1 ∈ [−τ1, τ1] with τi, (i=0,...,2) ∈ [0, τmax]

From G̃ is deduced a polytope of plants ΩG defined by the set of its vertices
Gi, (i = 1 . . . 8) associated with the 8 combinations of the bounds of the uncer-
tainty intervals.

Controller 1
A stabilizing controller Ce allowing a maximum uncertainty τmax = 1

Ce(s) =
81s

1.85s2 + 8

The roots of the even part of the 8 characteristic polynomials are ai =
{−4.3243, −0.5}.

Controller 2
A stabilizing controller Ce allowing a maximum uncertainty τmax = 1.5

Ce(s) =
13.4277s3 + 1.1379s

0.28s4 + 0.65s2 + 0.05

The roots of the even part of the 8 characteristic polynomials are ai =
{−2.2418,−0.5,−0.0797}.
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5.2.2 Example 2

A 3rd order unstable system is considered with four uncertain coefficients.

System
G̃(s) =

s3 + n2s
2 + n0

d3s3 − 2s2 + d1s+ 1

n0 ∈ [1− 0.5τ0, 1 + 0.5τ0], n2 ∈ [3− 0.5τ2, 3 + 0.5τ2]

d1 ∈ [−τ1, τ1], d3 ∈ [1− 0.5τ3, 1 + 0.5τ3] with τi, (i=0,...,3) ∈ [0, τmax]

From G̃ is deduced a polytope of plants ΩG defined by the set of its vertices
Gi, (i = 1 . . . 16) associated with the 16 combinations of the bounds of the un-
certainty intervals.

Controller
A stabilizing controller Ce allowing a maximum uncertainty τmax = 1

Ce(s) =
4.5049s3 + 0.44035s

1.7524s4 + 0.1914s2 + 0.0017

The roots of the even part of the 16 characteristic polynomials are ai =
{−1.7,−0.1,−0.01}

5.2.3 Example 3

A 4th order unstable system is treated with five uncertain coefficients.

System
G̃(s) =

n4s
4 + s3 + n2s

2 + n0
0.1s4 + d3s3 − 2s2 + d1s+ 1

n0 ∈ [0.75− 0.5τ0, 0.75 + 0.5τ0], n2 ∈ [2.25− 0.5τ2, 2.25 + 0.5τ2]

n4 ∈ [0.11 − 0.1τ4, 0.11 + 0.1τ4], d1 ∈ [−τ1, τ1], d3 ∈ [1.5 − τ3, 1.5 + τ3] with

τi, (i=0,...,4) ∈ [0, τmax]

From G̃ is deduced a polytope of plants ΩG defined by the set of its vertices
Gi, (i = 1 . . . 32) associated with the 32 combinations of the bounds of the un-
certainty intervals.

Controller
A stabilizing controller Ce allowing a maximum uncertainty τmax = 0.5

Ce(s) =
29.23s3 + 395.65s

10s4 + 138.7s2 + 10.5

The roots of the even part of the 32 characteristic polynomials are ai =
{−15,−7,−1,−0.1}
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5.2.4 Example 4

This is a 5th order unstable system with four uncertain coefficients.

System
G̃(s) =

6s3 + n2s
2 + 22s+ n0

−0.2s5 − 3s4 + d3s3 + 22s2 + d1s− 0.5

n0 ∈ [−3− τ0,−3 + τ0], n2 ∈ [3− τ2, 3 + τ2]

d1 ∈ [−11− τ1,−11 + τ1], d3 ∈ [−16− τ3,−16 + τ3] with τi, (i=0,...,3) ∈ [0, τmax]

From G̃ is deduced a polytope of plants ΩG defined by the set of its vertices
Gi, (i = 1 . . . 16) associated with the 16 combinations of the bounds of the un-
certainty intervals.

Controller
A stabilizing controller Ce allowing a maximum uncertainty τmax = 1.7

Ce(s) =
50.612s3 + 65.161s

−4.6063s4 − 30.132s2 − 40.469

The roots of the even part of the 16 characteristic polynomials are ai =
{−17.275,−3.1836,−0.68588,−0.038819}

5.2.5 Example 5

This is a 5th order unstable system with five uncertain coefficients.

System
G̃(s) =

−2.5s5 + n4s
4 − 11s3 + n2s

2 + 10s+ n0
−0.2s5 − 31s4 + d3s3 − 81s2 + d1s− 2

n0 ∈ [30.5− 2.5τ0, 30.5 + 2.5τ0], n2 ∈ [24− 2τ2, 24 + 2τ2]

n4 ∈ [2.15− 0.85τ4, 2.15 + 0.85τ4], d1 ∈ [−72.5− 4.5τ1,−72.5 + 4.5τ1],

d3 ∈ [−4.1− 1.4τ3,−4.1 + 1.4τ3] with τi, (i=0,...,4) ∈ [0, τmax]

From G̃ is deduced a polytope of plants ΩG defined by the set of its vertices
Gi, (i = 1 . . . 32) associated with the 32 combinations of the bounds of the un-
certainty intervals.

Controller
A stabilizing controller Ce allowing a maximum uncertainty τmax = 1

Ce(s) =
50.612s5 + 65.161s3 − 53.913s

−4.6063s6 − 30.132s4 − 40.469s2 − 28.229

The roots of the even part of the 32 characteristic polynomials are ai =
{−28.8,−5.32,−1.57,−0.42,−0.034}
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5.2.6 Comparison with the robust stabilization approach given in [32] and [33].

Well known H∞ methods [32] and [33] are used to establish robust stabilizability conditions
for a family of uncertain plants and also to synthesize controllers that would stabilize the whole
family. These regulators synthesis techniques can be implemented on the examples 1 to 5, in order
to evaluate robustness of our approach in a simple way. For that, an interval system is associated to
a family of systems with a central model G0 also called nominal model defined through the average
values of parameters of the interval model. The plant transfer function is written with a coprime
factorization G0 = T0S

−1
0 where T0, S0 are normalized such that

T0(s)T0(−s) + S0(s)S0(−s) = 1.

Then a family of plants G is characterized by H∞ bounded perturbations to the numerator T0 and
denominator S0 of the normalized coprime factorization of the nomimal system G0 as

FG =
{
G : G = TS−1, T = T0 +∆T , S = S0 +∆S :

∥∥[∆S ∆T

]∥∥
∞ ≤ β, β > 0

}
(29)

where ∆T , ∆S are stable unknown transfer functions representing the uncertainty.
Then FG is robustly stabilizable by a single linear time invariant controller C iff (see Lemma

3.1 in [32])

inf
C

∥∥∥∥[C(1−G0C)
−1S−1

0

(1−G0C)
−1S−1

0

]∥∥∥∥
∞

≤ 1

β
(30)

where the infinimum is chosen over all compensators C that stabilizes G0.
The problem of robust stabilization of normalized coprime factor plant descriptions with H∞

bounded uncertainty is formulated as

ρ(G0, G) < βmax (31)

where βmax denotes a maximum β and ρ(G0, G) is the gap-metric between G0 and G as defined in
[34] and [35] with

ρ(G0, G) = max

(
inf

Q∈H∞

∥∥∥∥[S0T0
]
−

[
S
T

]
Q

∥∥∥∥
∞
, inf

Q∈H∞

∥∥∥∥[ST
]
−

[
S0
T0

]
Q

∥∥∥∥
∞

)
The issue of finding βmax can be solved via standard H∞ optimization techniques (see [32], [33]

and [34]). So, as for the gap metric, any plant G at a distance less than β from G0 (β < βmax) will
be stabilized by any compensator C stabilizing the nominal system with a stability margin of β.

In the case of our approach, an interval plant is represented by a polytope of systems ΩG

defined by its vertices Gi (i = 1, . . . , n). It is thus possible to measure for each vertex of the
polytope the ”distance” to the central plant G0 by the gap metric. Denote by ρm = min

i=1,...,n
ρ(G0, Gi)

and ρM = max
i=1,...,n

ρ(G0, Gi), the maximum and the minimum of the gap-metrics between G0 and

Gi (i = 1, . . . , n).
Consequently, for each interval plant, the radius of the maximal gap ball βmax around the

central plant G0 associated with the family FG, may be compared to the distance measured by the
gap metric between G0 and the vertices Gi (i = 1, . . . , n) associated with the polytope ΩG. This
comparison between the H∞ method given in [32] and [33] and our approach is presented for the
examples 1 to 5 in table 1 hereafter where
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• n is the number of vertices Gi (i = 1, . . . , n) associated with the polytope of plants ΩG,

• nρ is the number of vertices Gi (i = 1, . . . , n) satisfying ρ(G0, Gi)) ≤ βmax.

Section G0(s) βmax n ρm ρM nρ

5.2.1
1.25s2 + 1.25

2s2 + 1
with τmax = 1 0.60964 8 0.6312 0.96777 0

5.2.1
1.25s2 + 1.25

2s2 + 1
with τmax = 1.5 0.60964 8 0.70467 0.999 0

5.2.2
s3 + 3s2 + 1

s3 − 2s2 + 1
0.3329 16 0.25884 0.42977 2

5.2.3
0.11s4 + s3 + 2.25s2 + 0.75

0.1s4 + 1.5s3 − 2s2 + 1
0.24363 32 0.17906 0.2891 14

5.2.4
6s3 + 3s2 + 22s− 3

−0.2s5 − 3s4 − 16s3 + 22s2 − 11s− 0.5
0.1728 16 0.20878 0.79022 0

5.2.5
−2.5s5 + 2.15s4 − 11s3 + 24s2 + 10s+ 30.5

−0.2s5 − 31s4 − 4.1s3 − 81s2 − 72.5s− 2
0.16273 32 0.034146 0.17463 31

Table 1: Gap metric results applied to examples 1 to 5

In table 1, we can observe for every example that ρM > βmax. We deduce that the robust
stabilization approach developed in [32] and [33] does not allow to take into account an uncertainty
level as large as the one considered in the benchmark section 5.2. These results are due to the lost
of the uncertainty structure with representation (29). This design limitation of H∞ methods in
regard to the uncertainty structure provides conservatism.

Finally, we conclude our numerical benchmark of section 5.2 by pointing out that like in the
literature on the stabilization of interval plants, see [18], [19], [20] and [21], our approach is based
on sufficient conditions which generate some inevitable conservatism. In other words, if the linear
programming problem defined by equation (20) has no solution, it does not mean that there is
no robust controller that stabilizes the polytope of plants. In our examples, the limit of stability
is reached for a given controller when τi, (i=0,...,n) = τmax where n is the number of uncertainty
coefficient for a given interval plant. It does not imply that there is no robust stabilizing controllers
if τi, (i=0,...,n) > τmax. This is illustrated by example 1 where a 2nd order controller is get with
τmax = 1 while a 4th order controller permits τmax = 1.5. The issue of τmax is the one of the
compromise between the controller order and the robustness.

5.3 An example of a polytope of systems not belonging to the family of interval
plants

Consider now a polytope of plants ΩG defined by the 8 vertices Gi (i = 1, . . . , 8) given in table 2.
That is a system whose the polynomial coefficients are not bound by some minimum and maximum
values. On the other hand these coefficients can be dependant. The set of all convex combinations
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of vertices Gi (i = 1, . . . , 8) forms a convex hull. Note that the systems Gi (i = 1, . . . , 7) are
unstable plants.

First of all, we show that this polytope ΩG is not stabilizable by a first order controller. For
this purpose, consider the vertex G1 of ΩG of the form (32) with K = 1, ã = 1 and b̃ = 1 and the
compensator (33).

G1(s) =
1

s3 − s2 + s+ 1
G2(s) =

−0.24771s+ 2.0307

s3 + 3s2 − s+ 6

G3(s) =
−0.059633s+ 1.2639

s3 + 5
G4(s) =

−0.31651s+ 1.9281

s3 + 4s2 + 1

G5(s) =
−0.055046s+ 1.7033

s3 − s+ 8
G6(s) =

0.0091743s+ 2.5617

s3 − s2 − s+ 3

G7(s) =
−0.11927s+ 2.3815

s3 + s2 − s+ 4
G8(s) =

−0.44954s+ 0.79637

s3 + 6s2 + s+ 2

Table 2: Vertices Gi of the polytope of plants ΩG

G(K,ã,b̃)(s) =
K

ãs3 − ãs2 + ãs+ b̃
, {K, ã, b̃} ∈ R3 (32)

C(s) =
x1s+ x0
y1s+ y0

(33)

The resulting closed-loop polynomial is

Φ(G(K,ã,b̃), C)(s) = ãy1s
4 + ã(y0 − y1)s

3 + ã(y1 − y0)s
2 + (b̃y1 + ãy0 +Kx1)s+ (b̃y0 +Kx0)

Let us remark that this characteristic equation will never be Hurwitz-stable because there
are two coefficients of opposite sign, the coefficient of degree 3 and the coefficient of degree 2.
Consequently, the polytope of plants ΩG can not be stabilized with a first order compensator.
Therefore, a controller of higher order must be tested. A second order controller of the following
general form

C(s) =
x2s

2 + x1s+ x0
y2s2 + y1s+ y0

(34)

is already considered to stabilize this polytope of plants ΩG.
To solve this robust stabilization problem, we desire that the closed-loop characteristic polyno-

mials Φ(Gi, C) (i = 1, . . . 8) have a same odd part. At this end, we select the two following negative
distinct real roots, b1 = −62.203 and b2 = −2.7973. Then we find

C(s) =
218s2 + 82s− 6

s2 + 14s+ 78
(35)

With this simultaneous compensator (35), the eight closed-loop characteristic polynomials as-
sociated with the eight vertices of ΩG are Hurwitz-stable and have a same odd part.
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5.4 Discussion

The considered numerical examples are not easy to stabilize because simple compensators like
constant gain cannot stabilize these uncertain systems. Moreover unstable poles and unstable zeros
of these uncertain plants may change which would constitute additional difficulties. It is also useful
to observe that in literature this same problem requires the solution of bilinear matrix inequalities
(BMIs) which lead to nonconvex optimization problems (see for example [18], [19]) while our ap-
proach generates a simple linear programming (LP) problem for which there are efficient solvers
with low computational costs. This basic computational procedure founded on linear programming
permits to find robust controllers of reasonable order in many cases when the plant order and
the number of vertices of the polytope grow. These simulations also show that the order of the
compensators is not higher than those used in the usual applications of automatic control: it is at
most of the same order that the plant order plus one.

6 Conclusion

In this paper, a new approach for stabilizing a polytope of SISO plants has been proposed which
yields to a simple controller design for these systems. The Hermite-Biehler theorem and Edge
theorem have been the backbones of this framework. An alternative would be to use the Hermite-
Fujiwara criterion, see [36] and [37] instead of the Hermite-Biehler criterion that we apply to
stabilize the closed-loop system. So we would have a feedback that would not be based on the
common interlacing property but on the properties of the Hermite-Fujiwara matrices. Thus [36]
has proved that a polynomial f is Hurwitz-stable iff the Hermite-Fujiwara matrix associated with
f is positive definite. Thereafter this property has been extended to define the Hurwitz-stability
of a linear combination of several polynomials, see [37]. Assuming that we consider the Hermite-
Fujiwara criterion instead of the Hermite-Biehler criterion, our approach would remain unchanged
until theorem 2. Then the conditions (15) of lemma 6 would be modified in order to rewrite the
closed-loop characteristic polynomials of the vertices of the polytope with the Hermite-Fujiwara
matrices. In this situation, we would get bilinear matrix inequalities (BMIs) conditions which would
give a non-convex optimization problem. From the literature, we know that the problem of checking
the solvability of a BMI system is NP-hard, see [38]. It is the reason why, the BMIs are converted to
linear matrix inequalities (LMIs) with a constraint rank. However this alteration in rank-one LMI
optimization problem produces an heuristic algorithm without guaranteeing to find solutions when
they exist. For example, in the case of the 2nd order system associated with a polytope of plants of
8 vertices studied in section 5.2, no solution has been found with the Yalmip and SeDuMi solvers
for a fourth-order controller by using the Hermite-Fujiwara’s criterion. Moreover, this approach
generates a higher numerical complexity than the one developed with the Hermite-Biehler criterion.
This complexity is linked to the size and to the number of Hermite-Fujiwara matrices. For example,
the second order system regulated with a fourth-order controller given in the section 5.2 involves
to calculate two hundred Hermite-Fujiwara’s matrices.
To summarize, use of the Hermite-Biehler criterion has reduced the stabilization problem of a
polytope of systems to a linear programming problem for which there exists efficacious solvers.
Our approach has been illustrated by examples showing that the controllers have a reasonable
order in spite of the numbers of vertices of the polytope of plants to stabilize and the uncertainty
regarded.
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Note that these results could be extended in several ways. Notably we could study the polytopes
of plants with a similar controller design than the one given in this paper but in discrete-time or
for other stability domains than the unit circle or than the left half-plane of the complex plane.
Finally, we could research conditions to stabilize a polytope of systems with a compensator of any
order.

7 Appendix: Stabilization of ΩG with a same Φ(Gi, C)o

In the previous sections has been proposed a design of a controller C that guarantees the same
even part for the closed-loop characteristic polynomials associated with the vertices of a polytope
of systems ΩG. In this appendix are presented similar results but for guaranteeing a same odd part
Φ(Gi, C)

o for the closed-loop characteristic polynomials associated with the vertices of ΩG.

Definition 5 (Common odd interlacing property) Consider a finite collection of polynomials
f ei and a polynomial fo with their leading coefficients of same sign. Assume that for each pair
(f ei , f

o), (i = 1, . . . , n), the roots of fei and fo are all real, negative simple and distinct defined by
the following sets

roots(fei ) = {ai1, . . . , aiℓ}
roots(fo) = {b1, . . . , bℓ}

The polynomials f ei have a common odd interlacing fo iff the ℓ roots of each f ei alternate with the
ℓ roots of fo as below

ai1 < b1 < ai2 < . . . < aiℓ < bℓ < 0

Note that if fei , (i = 1 . . . , n) have a common interlacing fo, this implies that for any jth root,
we have

max
i∈{1,...,n}

aij < bj < min
i∈{1,...,n}

aij+1.

Based on this property of common odd interlacing, a corollary is deduced for testing the Hurwitz-
stability of fi(s) = fei (s

2) + sfo(s2), (i = 1 . . . , n).

Corollary 6 (see corollary 1) The polynomials fi(s) = fei (s
2) + sfo(s2), (i = 1, . . . , n) with

fi ∈ Pm are Hurwitz-stable iff the two following conditions hold.

1. fo has real, simple and negative roots (b1, . . . , bℓ).

2. The real coefficients ci,k (i = 1, . . . , n) and (k = 0, . . . , ℓ) given by the expansions of fei
(i = 1, . . . , n) as the following sums of products of factors of fo

f ei (s
2) = ci,0f

o(s2)−
ℓ∑

k=1

ci,k
fo(s2)

s2 − bk
. (36)

are strictly positive.
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From corollary 6, we can deduce a matrix formulation of f ei and fo.

Since fo(s2) = γo
ℓ∏

j=1

(s2 − bj) with γ
o ∈ R−{0} then relation (36) can be simplified as it follows

fei (s
2) = γoci,0

ℓ∏
j=1

(s2 − bj)− γo
ℓ∑

k=1

ci,k

ℓ∏
j=1
j ̸=k

(s2 − bj)

=
ℓ∑

k=0

ci,k

ℓ−1∑
j=0

υj,ks
2j ,

= V AoΨo
i , i = 1, . . . , n, (37a)

fo(s2) = V Ho (37b)

where

Ψo
i =

[
ci,0 . . . ci,ℓ

]T
(38a)

V =
[
1 s2 . . . s2ℓ

]
(38b)

Ao =


υ0,0 υ0,1 . . . υ0,ℓ
υ1,0 υ1,1 . . . υ1,ℓ
...

...
...

...
υℓ,0 υℓ,1 . . . υℓ,ℓ

 (38c)

Ho =
[
ho0, ho1 . . . hoℓ

]T
(38d)

A reformulation of corollary 6 is now deduced.

Corollary 7 (see corollary 2) The polynomials fi ∈ Pm (i = 1, . . . , n) are Hurwitz-stable iff the
two following conditions hold.

1. fo has real, simple and negative roots (b1, . . . , bℓ).

2. There exist Ψo
i ∈ Rℓ

++ for i = 1, . . . , n, given by (38a).

The Hurwitz-stability issue of a polytope of real polynomials Sf defined by (7) may be simplified
by considering corollary 3 in [28].

Lemma 8 (see lemma 3) Let fi and fj be in Pm, two vertices of Sf with their leading coefficients
of same sign and with a same odd part fo then the exposed edge fi,j defined by (8) is Hurwitz-stable
iff fi and fj are Hurwitz-stable.

Hence, we write.

Corollary 8 (see corollary 3) If the vertices fi ∈ Pm (i = 1, . . . , n), of a polytope of real poly-
nomials Sf are Hurwitz-stable with a same odd part fo and if the leading coefficients of fi have a
same sign then the polytope of real polynomials Sf is Hurwitz-stable.

That implies theorem below.
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Theorem 4 (see theorem 2) Consider a convex polytope of plants ΩG defined by (9). If there
exists a compensator C satisfying the two following relations

Φ(Gi, C) ∈ H, (39a)

Φ(Gi, C)
o = Φ(Gj , C)

o, i = 1, . . . , n− 1, j = i+ 1, . . . , n. (39b)

with the leading coefficients of Φ(Gi, C) of same sign, then C stabilizes ΩG.

Hence the following result by considering Cυ given by (17) and Λe
i and Λo

i defined by (18).

Lemma 9 (see lemma 7) Consider a convex polytope of plants ΩG defined by (9) and Ao, Ho

given by (38c), (38d) respectively. If there exists Cυ and Ψo
i ∈ Rℓ

++, (i = 1, . . . , n) satisfying

Λo
iCυ = Ho, i = 1, . . . , n, (40a)

Λe
iCυ = AoΨo

i (40b)

then C stabilizes ΩG.

Now rewrite relations (40)
Bo = Θoχo (41)

where

Bo =



0
...
0
Ho

Ho

...
Ho


, Θe =



Ao 0 . . . 0 −Λe
1

...
...

. . .
...

...

0 0
. . . Ao −Λe

n

0 0 . . . 0 Λo
1

0 0 . . . 0 Λo
2

...
... . . .

...
...

0 0 . . . 0 Λo
n


,

χo =
[
ψoT Cυ

T
]T
,

ψo =
[
Ψo

1
T Ψo

2
T Ψo

3
T . . . Ψo

n
T
]T ∈ Rn(ℓ+1)

++ .

There is solutions ψo and Cυ to (41) iff [29].

rank
([
Bo Θo

])
= rank(Θo). (42)

By considering equation (40), the robust stabilization of ΩG given by lemma 9 is now set as the
issue of feasibility of a linear programming problem. Thus, we can deduce the next theorem.

Theorem 5 (see theorem 3) Let ΩG be a convex polytope of plants defined by (9). Assume that
(42) holds then the controller C stabilizes ΩG if there exists a solution χo to the linear programming
(LP) problem given by (41).
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