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2 Laboratoire CLLE, équipe ERSS, Toulouse, France

cecile.fabre@univ-tlse2.fr

Abstract

Extracting hypernym relations from text is one of the key steps in the construction and enrich-

ment of semantic resources. Several methods have been exploited in a variety of propositions in the

literature. However, the strengths of each approach on a same corpus are still poorly identified in

order to better take advantage of their complementarity. In this paper, we study how complementary

two approaches of different nature are when identifying hypernym relations on a structured corpus

containing both well-written text and syntactically poor formulations, together with a rich formatting.

A symbolic approach based on lexico-syntactic patterns and a statistical approach using a supervised

learning method are applied to a sub-corpus of Wikipedia in French, composed of disambiguation

pages. These pages, particularly rich in hypernym relations, contain both kinks of formulations. We

compared the results of each approach independently of each other and compared the performance

when combining together their individual results. We obtain the best results in the latter case, with

an F-measure of 0.75. In addition, 55% of the identified relations, with respect to a reference corpus,

are not expressed in the French DBPedia and could be used to enrich this resource.

1 Introduction

In many fields such as artificial intelligence, semantic web, software engineering or information retrieval,

applications require a strong reasoning ability, based on semantic resources that describe concepts and the

relations between them. These resources can be manually designed. They are of good quality, however

due to the high cost of their design, they offer a limited domain coverage. With the increasing amount of

textual documents available in digital format, NLP processing chains offer a good support to design such

resources from text. In this context, the task of automatically extracting relations from text is a crucial

step (Buitelaar et al., 2005). Numerous studies have attempted to extract hypernym relations, as they

allow for expressing the backbone structure of such resources and for assigning types to entities.

While symbolic approaches usually rely on manually defined lexico-syntactic patterns identifying

clues of relations between terms (Hearst, 1992), statistical approaches, which are nowadays predominant,

are generally based on supervised (Pantel and Pennacchiotti, 2008) or unsupervised (Banko et al., 2007)

learning methods, or on distributional spaces (Lenci and Benotto, 2012). These methods of different

nature answer to the need of exploiting corpora with different specificities (e.g. domain granularity,

nature of the corpus, language, target semantic resource, etc.) and which express the hypernym relation

in different forms. For giving some examples, this kind of relation can be expressed by the lexicon and

the syntactic structure as in the sentence sand is a sedimentary rock, by a lexical inclusion as in domestic

pigeon (implied domestic pigeon is a pigeon), or by using punctuation or layout features that replace

lexical markers like the comma in Trojan horse, a Greek myth or even the disposition in enumerative

structures.

The study we conduct in this paper aims to show the interest of applying several approaches on a

same corpus in order to identify hypernym relations through their various forms of expression. We are



particularly interested in exploiting a corpus containing both well-written text (i.e., sentences expressed

with a complete syntactic structure) and syntactically poor formulations (i.e., sentences with syntactic

holes), together with a rich formatting. We analyze the complementarity of a symbolic approach based on

lexico-syntactic patterns and a statistical approach based on supervised learning. We applied these two

approaches to a corpus of Wikipedia disambiguation pages, which are very rich in hypernym relations

differently expressed, as these pages contain both well-written text and poorly-written text.

Our proposal focuses on the combination of the individual results rather than on the combination

of the approaches themselves (e.g., by learning patterns). Indeed, combining patterns with machine

learning usually relies on path-based methods (Snow et al., 2004) (Snow et al., 2006) (Riedel et al.,

2013). However, dependency parsers have proven to perform worse on poorly-written text. Although

our approach is naive in that sense, it proves to provide good results, in particular, in terms of F-measure.

This work is part of the SemPedia1 project that aims at enriching the semantic resource DBPedia for

French (semantic resources targeting this language are scarce), by proposing a new Wikipedia extractors

dedicated to the hypernym relation. Hence, we evaluate how the extracted relations could potentially

enrich such kind of resource.

The paper is organized as follows. Section 2 outlines the main work related to our proposal. Section 3

presents the materials and methods used in our study, namely the description of the training and reference

corpus, their pre-processing, and the extraction approaches. The results obtained are presented and

discussed in Section 4. Finally, Section 5 concludes the paper and presents future directions.

2 Related work

In the field of relation extraction, the pioneering work of the symbolic methods is that of Hearst (Hearst,

1992) which defined a set of lexico-syntactic patterns specific to the hypernym relation for English. This

work has been adapted and extended to French for the hypernym relation (Morin and Jacquemin, 2004),

for the meronymic relation (Berland and Charniak, 1999), and for different types of relations (Séguéla

and Aussenac-Gilles, 1999), by progressively integrating learning techniques.

With respect to statistical approaches and, in particular, those based on machine learning, which are

specially required when dealing with large corpus, Snow and colleagues (Snow et al., 2004) and Bunescu

and Mooney (Bunescu and Mooney, 2005) apply supervised learning methods to a set of manually anno-

tated examples. While the cost of manual annotation is the main limitation of supervised learning, distant

supervision method consists in building the set of examples using an external resource to automatically

annotate the learning examples (Mintz et al., 2009). Another way to avoid manual annotation is the

semi-supervised learning method called bootstrapping which uses a selection of patterns to construct the

set of examples (Brin, 1998). Agichtein and Gravano (Agichtein and Gravano, 2000), and Etzioni and

colleagues (Etzioni et al., 2004) have used this method by adding semantic features to identify relations

between named entities. Unsupervised learning, based on clustering techniques, was implemented by

Yates and colleagues (Yates et al., 2007) and Fader and colleagues (Fader et al., 2011) which used syn-

tactic features to train their classifiers relations between named entities. Some of these works are also

based on distributional analyses (Kotlerman et al., 2010) (Lenci and Benotto, 2012) (Fabre et al., 2014).

In the work of Kotlerman and colleagues (Kotlerman et al., 2010), they quantify distributional feature

inclusion, where the contexts of a hyponym are expected to be largely included in those of its hypernym.

Lenci and Benotto (Lenci and Benotto, 2012) explore the possibility of identifying hypernyms using a

directional similarity measure that takes into account not only the inclusion of the features of u in v,

but also the non-inclusion of the features v in u. The hypothesis from Santus and colleagues (Santus

et al., 2014) is that most typical linguistic contexts of a hypernym are less informative than those of its

hyponyms.

Beyond these works, which evaluate approaches independently of each other, few results have been

reported on the respective contributions and the complementarity of methods. Granada (Granada, 2015)

compared the performance of different methods (patterns-based, head-modifier, and distributional ones)

1http://www.irit.fr/Sempedia



for the task of hypernym relation extraction in different languages, by defining several metrics such that

density and depth of hierarchies. The evaluation was carried out on different types of corpus but does

not take into account the learning approaches. Yap and Baldwin (Yap and Baldwin, 2009) study the

impact of the corpus and the size of training sets on the performance of similar supervised methods, on

the extraction of several types of relation (hypernym, synonymy and antonymy), whereas Abacha and

Zweigenbaum (Ben Abacha and Zweigenbaum, 2011) combine patterns and a statistical learning method

based on the SVM classifier for extracting relations between specific entities (disease and treatment) from

a biomedical corpus. In the same line, we exploit methods of different nature, focusing on the specific

hypernym relation.

In particular, with respect to the approaches combining patterns and distributional methods, most of

them rely on path-based methods. It is the case, for instance, of the learning approach of Snow and col-

leagues (Snow et al., 2004), which automatically learned pattern spaces based on syntactic dependency

paths. These paths represent the relationship between hypernym/hyponym word pairs from WordNet

and are used as features in a logistic regression classifier. Variations of this method have been applied

in different tasks, such as hypernym extraction (Snow et al., 2006) (Riedel et al., 2013) and extraction

of definitions (Navigli and Velardi, 2010). However, as stated in (Kotlerman et al., 2010), one major

limitation in relying on lexico-syntactic paths is the sparsity of the feature space, since similar paths may

somewhat vary at the lexical level. In (Nakashole et al., 2012), generalizing such variations into more ab-

stract paths proved to improve the results, in particular recall. On the other hand, while those approaches

mostly rely on dependency trees extracted from well-written text, the performance of dependency parsers

has proven to be very low on poorly-written corpus. In that sense, our focus here is to exploit strategies

fitting a corpus rich in poorly-written text and where the polysemous occurs frequently (for instance, for

the term “Didier Porte”, “porte” is tagged as a verb instead of a noun). It is one of the reasons we focus

here on the complementarity of the approaches rather than on their combination.

Finally, with respect to the enrichment of DBPedia knowledge base, several tools, called “extractors”

have been developed to extract relations from the different elements present in the Wikipedia pages.

Morsey and colleagues (Morsey et al., 2012) developed 19 extractors for analyzing abstract, images,

infobox, etc. Other works focus on the hypernym relation. For example, Suchanek and colleagues

(Suchanek et al., 2007) used the ‘Category’ part of Wikipedia pages to build the knowledge base, Yago,

Kazama and Torisawa (Kazama and Torisawa, 2007) which exploited the ‘Definition’ part, and finally

Sumida and Torisawa (Sumida and Torisawa, 2008) who were interested in the menu items. We can see

that the DBPedia knowledge base is built essentially from the structural elements of the Wikipedia pages.

Works targeting relation extraction from text have been exploited in a lesser extend (Rodriguez-Ferreira

et al., 2016), which means that most of the knowledge in these pages remains under-exploited. Our aim

here is to measure the degree of enrichment of semantic resources when exploiting this kind of relation

extraction approach.

3 Material and methods

In this section, we describe the Wikipedia sub-corpus we used, its pre-processing, and the extraction

methods we have considered.

3.1 Corpus

Different types of pages can be identified within the Wikipedia encyclopedia. Among them, the dis-

ambiguation pages list the articles whose title is polysemous, giving a definition of all the accepted

meanings for this title, which refer to as many entities. Thanks to the Wikipedia’s charter guidelines,

which recommend the use of templates (for instance, Toponyms, Patronyms, etc.), these pages present

editorial as well as formatting regularities for presenting the different meanings of the term on the page.

For each meaning, a definition and a link to the corresponding page are provided. In fact, the definitions

are textual objects in which the hypernym relation is often present (Malaisé et al., 2004) (Rebeyrolle



and Tanguy, 2000). Furthermore, on these pages, the definitions take varied but predictable forms. For

instance, the following excerpt (Figure 1) which comes from the Mercure disambiguation page2 shows

different hypernym relations, expressed thanks to the lexicon (le mercure est un élément chimique), with

the help of punctuations (the comma in le Mercure, un fleuve du sud de l’Italie), taking benefit from the

lexical inclusion (appareil de mesure, implying that appareil de mesure is an appareil), or using dispo-

sitional and typographical characters (the structure substitutes the lack of complete syntax and expresses

a good part of the text meaning) especially when expressing enumerative structure (la diode à vapeur de

mercure est un appareil de mesure, la pile au mercure est un appareil de mesure, etc.).

Figure 1: Fragment of the disambiguation page Mercure.

We have compiled a corpus made of 5924 French disambiguation pages (XML version of the 2016

Wikipedia dump). From this corpus were extracted two sub-corpora:

• 20 randomly selected disambiguation pages form the reference corpus. In these pages, hypernymy

relations were manually annotated, marking the terms referring to the related entities and the zone

of the text where the relations were identified. This sub-corpus is used to qualitatively evaluate our

approach and to evaluate the potential enrichment of DBPedia (Section 4.3);

• the remaining pages form the training corpus, which is intended to train and evaluate our learning

model (Section 3.3.2).

3.2 Pre-processing

The content of each page has been labeled with morpho-syntactic tags, POS and lemma, using TreeTag-

ger3. For identifying the expression of semantic relations, the text is also annotated using terms, namely

syntagms, usually nominal, that may designate entities or conceptual classes. For example, Mercure,

système solaire, planète (Mercury, solar system, planet) are some of the terms in Figure 1. The terms

can therefore be included in each other (e.g., system in solar system). Rather than using a term extractor,

we chose to construct a priori two lists of terms:

2https://fr.wikipedia.org/wiki/Mercure
3http://www.cis.uni-muenchen.de/schmid/tools/TreeTagger



• LBabel contains the list of terms retrieved from the French labels of concepts present in the seman-

tic resource BabelNet4. This list will serve to train the learning system, as detailed in Section 3.3.2;

• LCorpus contains the list composed of the manually annotated terms from the reference corpus

(Section 4).

These lists are then respectively projected on the pre-processed learning and reference corpora. In

fact, the annotation of the corpus by terms derived from a shared semantic source ensures the validity of

the learning model. This also prevents the identification of terms biasing the relation extraction process.

3.3 Relation extraction approaches

As already stated before, we have chosen two approaches of different nature which are often opposed by

the cost of their implementation and by the precision and recall they provide: a symbolic approach based

on lexical-syntactic patterns, and a statistical approach based on supervised learning using the distant

supervision principle. While patterns represent recurring language patterns expressed through lexicon,

syntactic and punctuation elements, automatic learning allows for combining features of different natures

(morphological, syntactic, semantic or shaping) and for capturing the properties of contexts in a more

global way. These approaches are detailed below.

3.3.1 Lexico-syntactic patterns

A lexico-syntactic pattern is a regular expression composed of words, grammatical or semantic cate-

gories, and symbols aiming to identify textual segments which match this expression. In the context

of relation identification, the pattern characterizes a set of linguistic forms whose the interpretation is

relatively stable and which corresponds to a semantic relation between terms (Rebeyrolle and Tanguy,

2000). Patterns are in fact very efficient, particularly in terms of precision, as they are adapted to the

corpus. However, since their development is cost-expensive, it is conventional to implement generic

patterns such as those of Hearst (Hearst, 1992). Here, we use a more complete list of 30 patterns from

the work of Jacques and Aussenac (Jacques and Aussenac-Gilles, 2006)5. We have also extended this set

of patterns with more specific (ad-hoc) patterns which better fit the template structure of disambiguation

pages (Ghamnia, 2016). This set of enriched patterns are the one used in our experiments.

3.3.2 Distant supervision learning

We have chosen to use the principle of distant supervision proposed by Mintz and colleagues (Mintz

et al., 2009). This approach consists in aligning an external knowledge base to a corpus and in using

this alignment to learn relations. The learning ground is based on the hypothesis that “if two entities

participate in a relation, all sentences that mention these two entities express that relation”. Although

this hypothesis seems too strong, Riedel and colleagues (Riedel et al., 2010) have showed that it makes

sense when the knowledge base used to annotate the corpus is derived from the corpus itself.

As with any supervised learning method, it is necessary to create a set of examples, to train a sta-

tistical model on these examples, and to evaluate the model on a test set or by cross-validation. The

originality of this approach refers to the fact that the learning examples are automatically built with the

help of a semantic resource: the class associated to a pair of terms present in a same sentence, corre-

sponds to the the relation (if it exists) that binds these terms in the external resource. Once trained from

the learning examples, a multi-class classification algorithm makes it possible to associate a class (and

therefore a relation) with each example of a new corpus.

We have adapted this method by focusing on the hypernym relation, and proceeding to a binary

classification. A pair of terms is classified as a positive (negative) example if the two terms denoting

two concepts that exist in the semantic resource are linked (are not linked) with the hypernymy relation

4http://babelnet.org/
5A JAPE implementation of these two types of patterns is available on https://github.com/aghamnia/SemPediaPatterns



in this resource. In all other cases, the term pair is not an example of learning. Our learning examples

are constructed with reference to the semantic resource BabelNet which has the advantage of integrating

various knowledge bases including DBPedia, the semantic resource that we want to enrich in a long term.

In addition, the hypernymy relation is more straightforward expressed in BabelNet than in DBPedia.

Each example is built from a context which encompasses the two terms that are possibly linked by

a relation. A context (or window) consists in n (n being the size of the window) tokens preceding,

following and separating the two terms. The features are then extracted from that context. These features

are described in Table 1.

Scope Features Signification Type

Token POS Part Of Speech string

lemma Lemmatized form of the token string

Window distT1 Number of tokens between the token and Term1 integer

distT2 Number of tokens between the token and Term2 integer

nbMotsFenłtre Number of tokens in the window integer

distT1T2 Number of tokens between Term1 and Term2 integer

Sentence nbMotsPhrase Number of tokens in the sentence integer

presVerbe Presence of a verbal form boolean

Table 1: Features set.

Although the features we use here do not take into account more sophisticated structures, as depen-

dency trees (as discussed in Section 2), they provide quite good results, as discussed in the next sections.

We illustrate the content of a feature vector with the following example where the length of the

window is fixed to 3 (we have evaluated windows of dimensions 1, 3 and 5, the optimum being obtained

for length 3):

“Lime ou citron vert, le fruit des limettiers : Citrus aurantiifolia et Citrus latifolia”

Mapping the list of terms leads to annotate the sentence with terms Lime, citron, citron vert,

vert, fruit. Let us consider the pair <Lime, fruit> randomly chosen by the system: Term1=Lime

and Term2=fruit.

The system thus extracts:

Terme1 ou citron vert, le Terme2 des limettiers :

where tokens corresponding to terms have been replaced with Term1 and Term2. TreeTagger annotation

allows to replace the exact form of tokens by their part of speach followed by their lemma:

Terme1 KON/ou NOM/citron ADJ/vert PUN/, DET:ART/le Terme2

PRP:det/du NOM/limettier PUN/:

Finally, feature functions give distances (in number of tokens) between a token and the annotated terms in

the form of the pair of values, the number of tokens between Term1 and Term2 (here 5) and the number

of tokens in the whole sentence (here 16). The last feature indicates the presence of a verbal form to

discriminate poorly-written text from well-written text.

(1,-5) (2,-4) (3,-3) (4,-2) (5,-1) (7,1) (8,2) (9,3) 5 16 true

The entire example leads to the following representation:

Terme1 KON/ou NOM/citron ADJ/vert PUN/, DET:ART/le Terme2

PRP:det/du NOM/limettier PUN/:

(1,-5) (2,-4) (3,-3) (4,-2) (5,-1) (7,1) (8,2) (9,3) 5 16 true

This example is a positive one as a hypernym link between lime and fruit exists in BabelNet.



From the whole set of examples produced according to the process described above, we randomly

selected 3000 positive examples and 3000 negative examples (from a total of 84169 examples). From

these 6000 examples, 4000 are used as the set of training examples and 2000 form for the test set (with

a rate of 50% of positive examples, for both training and test sets). We are aware that the strategy we

follow to split the set of examples may affect the results. Although alternative strategies consider, for

instance, the zero-lexical overlapping, as adopted by Weeds and colleagues (Weeds et al., 2014) and

Levy and colleagues (Levy et al., 2015), we can not follow this kind of strategy here due to the nature of

the corpus, where each sentence of a page corresponds to a characterization or a definition of the entity

described by this page.

We have trained a binary logistic regression algorithm, the Maximum Entropy classifier MaxEnt

(Berger et al., 1996) on the training set. When applying this algorithm on the test set, we obtained a

recall of 0.63 and an accuracy of 0.71.

4 Results and discussion

In the following, we discus the results of the approaches described above and we evaluate their comple-

mentarity, as well as the advantage of combining their results.

4.1 Results

The quantitative evaluation we present in this section is not intended to measure the performance of the

approaches in absolute terms, but rather to know the order of magnitude of the number of relations found

by each of them, whether they are common or specific. This evaluation is based on the reference corpus.

The set of examples from the reference corpus contains 688 true positive examples (TP) and 267 true

negative examples (TN). We consider the relations extracted by each of the approaches as well as the

intersection and the union of the set of relations. Table 2 provides the results in terms of precision, recall,

F-measure and accuracy. We can observe that we obtain the best values of F-measure when combining

both the results of patterns and MaxEnt.

Patterns MaxEnt Patterns inter MaxEnt Patterns union MaxEnt

Precision 0.81 0.71 0.75 0.73

Recall 0.46 0.63 0.32 0.77

F-measure 0.53 0.67 0.45 0.75

Accuracy 0.54 0.55 0.43 0.63

Table 2: Evaluation of the approaches.

As we will better discuss in the next section, the two approaches do not often find the same relations,

what corroborates their complementarity.

4.2 Discussion

We have carried out an analysis of the nature of the differences in the set of extracted relations from

both approaches. We first counted the number of relations found by each approach individually, by both

of them, or by none of the two (Table 3), with respect to the true positive relations extracted from the

reference corpus.

Among the 221 TP relations found by the two approaches, few of them (9 relations) are expressed

by the verb to be, as for instance, between the terms macédoine (macedonia) and salade de fruits (fruit

salad) in the sentence “La macédoine est une salade de fruits ou de légumes” (Macedonia is a salad of

fruit or of vegetables). Almost all other relations correspond to the pattern “X, Y” as in the sentence “Le

cheval de Troie, un mythe grec” (The Trojan horse, a Greek myth).



Number TP

Found by patterns AND MaxEnt 221

Found by patterns AND NOT by MaxEnt 96

Found by MaxEnt AND NOT by patterns 210

Found neither by MaxEnt nor by patterns 161

Table 3: Number of true positives (TP) found by the approaches.

From the 96 relations found by patterns and which were not identified by MaxEnt, 19 of them are

expressed with the help of the verb to be, in particular when the relation is not expressed at the beginning

of the sentence, as the relation between Babel fish and espèce imaginaire (imaginary species) in the

sentence “Le poisson Babel ou Babel fish est une espèce imaginaire” (Babel fish or Babel fish is an

imaginary species). Most of the remaining relations match again the pattern “X, Y”. We observe as well

that the cause of the silence of MaxEnt in this case may be some specific syntactic variations, such as the

presence of dates between parentheses, different punctuation, etc. Indeed, our learning model is sensitive

to these variations as sentences are very short and present strong regularities.

Among the 210 relations found by MaxEnt, and not found by patterns, we can observe that (i) many

relations are expressed with the help of a lexical inclusion, as for instance in the noun phrase gare de

Paris Bastille (Paris Bastille railway station) used to identify the relation gare de Paris Bastille (Paris

Bastille railway station) is a gare (railway station); (ii) some relations are expressed with the help of a

state verb, as for the relation between aigle (eagle) and oiseaux (birds) in the sentence “Aigle désigne en

fran{cais certains grands oiseaux rapaces” (Eagle designates some large birds). We can notice as well

that MaxEnt is able to identify the relations expressed in textual units containing a coordination, as the

relation between poisson Babel (Babel fish) and espèce imaginaire (imaginary specie) in the sentence

“Le poisson Babel ou Babel fish est une espèce imaginaire”, or between Louis Babel and explorateur

(explorer) in the sentence “Louis Babel, prêtre-missionnaire oblat et explorateur” (Louis Babel, oblate

missionary priest and explorer). Finally, MaxEnt is also able to identify the relations within the text

using formatting as in the relation between arête (ridge) and barbe de l’épi (beard of the ear) in the

sentence “Arête, ”barbe de l’épi”” (Ridge, ’beard of the ear’) or between Aigle and chasseur de mines

(mine hunter) in the sentence “Aigle (M647), chasseur de mines” (Eagle (M647), mine hunter).

From the 161 true positive relations missed by both patterns and MaxEnt, 64 are expressed in sen-

tences that contain parenthetical clauses which separate two terms, as in the sentence “Un Appelant

(jansénisme) est, au XVIIIe siècle, un ecclésiastique qui appelle ... (An Appellant (jansenism) is, dur-

ing the XVIIIth century, an ecclesiastic who calls ...) where the relation Appelant (Appellant) is a

ecclésiastique (ecclesiastic) is not found. 55 of them correspond to the relations expressed by head

modifier. We could not precisely identify the silence of MaxEnt in this case. The remaining 42 cases

concern forms of expression not supported by the patterns and too scarce to be learned by MaxEnt, such

as “X such as Y”.

Furthermore, we could also observe that patterns were able to identify relations between common

names, rather than between named entities, whereas MaxEnt mainly finds relations between named en-

tities. The reason is that some patterns identify phrases that may not be annotated with the LCorpus

terms.

In summary, these results corroborate the gain brought by the combination of complementary meth-

ods on the same corpus. Firstly, we could notice that MaxtEnt is able to identify hypernym relations

within complex phrases or textual structures, such as vertical item lists, provided they appear with a min-

imal frequency. Secondly, the different occurrences of relations within the same sentence are identified

by the two methods, as seen above through the example “Le poisson Babel ou Babel fish est une espèce

imaginaire”. In these experiments, patterns and MaxEnt are complementary in a proportion of ˜1/3 vs.

2/3.



4.3 DBPedia enrichment

In a last stage, we evaluated how much our approach could enrich DBPedia with the extracted relations.

To do so, we manually checked their presence/absence in DBPedia. This verification had to be manual

because the annotated terms come from LCorpus and may differ from the labels in DBPedia. We queried

DBPedia to check if entities with labels close to Term1 and Term2 were linked by a path made of rdf:type

and rdf:subclassOf relations. We set to 3 the maximum path length.

From the 688 TP in the reference corpus, 199 relations were not expressed in DBPedia. 103 of these

199 relations were identified by the learning approach and 42 of them were found by patterns. Con-

sidering the union of the results of the two approaches, 125 identified relations were not in DBPedia

(20 relations belonging to the intersection of the individual results). Table 4 presents the rate of enrich-

ment of DBPedia with respect to the relations identified by each approach and the union of their results.

These figures confirm that the Wikipedia text, which is under-exploited by Wikipedia extractors, contains

hypernym relations other than those found in structured elements (infobox, categories, etc.).

Method Enrichment rate

Patterns 21%

MaxEnt 51%

Pattern union MaxEnt 63%

Table 4: DBPedia enrichment rate.

5 Conclusion and perspectives

The study reported in this paper led us to set up a methodology to compare two relation extraction ap-

proaches, in order to analyze their complementarity. The first results are encouraging and converge with

the work of (Malaisé et al., 2004) (Granada, 2015) (Buitelaar et al., 2005). We plan to push this research

further on in several directions. We want to integrate other methods, taking into account other textual

elements, for example the system of (Kamel and Trojahn, 2016) that deals with vertical and regular enu-

merative structures, or the tools developed in (Granada, 2015). For improving the performance of each

method, in addition to a better pattern encoding, we plan to add new features to the learning process.

Moreover, the method will have to be tested on another corpus including other types of Wikipedia pages.

Ultimately, our ambition is to cross the methods so that the results of some serve as richer inputs

to others, and thus improve their performance. The first step in this direction would be to annotate the

corpus using patterns and tag it to signal whether a pattern is (or is not) recognized in the context of two

terms, which would be a strong sign of the presence of the relation. This type of feature would allow the

classifier to recognize several types of relations in addition to hypernymy.
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