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Introduction

In a host of statistical signal processing and machine learning methods, distances between covariance matrices are regularly sought for. These are notably exploited to estimate centroids or distances between clusters of data vectors mostly distinguished through their second order statistics. We may non exhaustively cite brain graph signal processing and machine learning (from EEG datasets in particular) which is a field largely rooted in these approaches [START_REF] Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF], hyperspectral and synthetic aperture radar (SAR) clustering [START_REF] Chang | Hyperspectral imaging: techniques for spectral detection and classification[END_REF][START_REF] Vasile | Coherency matrix estimation of heterogeneous clutter in high-resolution polarimetric sar images[END_REF], patch-based image processing [START_REF] Houdard | High-dimensional mixture models for unsupervised image denoising[END_REF], etc. For random independent p-dimensional real or complex data vectors x (a) 1 , . . . , x (a) n a , a ∈ {1, 2}, having zero mean and covariance matrix C a , and for a distance (or divergence) D(X, Y) between covariance matrices X and Y (or probability measures associated to random variables with these covariances), the natural approach is to estimate D(C 1 , C 2 ) through the "plug-in" substitute D( Ĉ1 , Ĉ2 ). For well-behaved functions D, this generally happens to be a consistent estimator as n 1 , n 2 → ∞ in the sense that D( Ĉ1 , Ĉ2 ) → D(C 1 , C 2 ) almost surely as n 1 , n 2 → ∞ while p remains fixed. This is particularly the case for all subsequently introduced distances and divergences.

Marcenko and Pastur [START_REF] Marcenko | Distribution of eigenvalues for some sets of random matrices[END_REF], that the operator norm Ĉa -C a no longer vanishes. Consequently, this entails that the aforementioned estimator D( Ĉ1 , Ĉ2 ) for D(C 1 , C 2 ) is likely inconsistent as p, n 1 , n 2 → ∞ at a commensurable rate.

This said, it is now interesting to note that many standard matrix distances D(C 1 , C 2 ) classically used in the literature can be written under the form of functionals of the eigenvalues of C -1 1 C 2 (assuming at least C 1 is invertible). A first important example is the squared Fisher distance between C 1 and C 2 [START_REF] Costa | Fisher information distance: a geometrical reading[END_REF] given by

D F (C 1 , C 2 ) 2 = 1 p ln(C -1 2 1 C 2 C -1 2 1 ) 2 F = 1 p p i=1 ln 2 (λ i (C -1 1 C 2 ))
with • F the Frobenius norm, X 1 2 the nonnegative definite square root of X, and ln(X) ≡ U ln(Λ)U for symmetric X = UΛU (and (•) the matrix transpose) in its spectral composition. This estimator arises from information geometry and corresponds to the length of the geodesic between C 1 and C 2 in the manifold of positive definite matrices.

Another example is the Bhattacharyya distance [START_REF] Bhattacharyya | On a measure of divergence between two statistical populations defined by their probability distributions[END_REF] between two real Gaussian distributions with zero mean and covariances C 1 and C 2 , respectively (i.e., N(0, C 1 ) and N(0, C 2 )), which reads

D B (C 1 , C 2 ) = 1 2p ln det 1 2 [C 1 + C 2 ] - 1 4p ln det C 1 - 1 4p ln det C 2
which can be rewritten under the form

D B (C 1 , C 2 ) = 1 2p ln det(I p + C -1 1 C 2 ) - 1 4p ln det(C -1 1 C 2 ) - 1 2 ln(2) = 1 2p p i=1 ln(1 + λ i (C -1 1 C 2 )) - 1 4p p i=1 ln(λ i (C -1 1 C 2 )) - 1 2 ln(2). 
In a similar manner, the Kullback-Leibler divergence [START_REF] Basseville | Divergence measures for statistical data processing -an annotated bibliography[END_REF] of the Gaussian distribution N(0, C 2 ) with respect to N(0, C 1 ) is given by

D KL = 1 2p tr (C -1 1 C 2 ) - 1 2 + 1 2p ln det(C -1 1 C 2 ) = 1 2p p i=1 λ i (C -1 1 C 2 ) - 1 2 + 1 2p p i=1 ln(λ i (C -1 1 C 2 )).
More generally, the Rényi divergence [START_REF] Basor | Perturbed Laguerre Unitary Ensembles, Painlevé V and Information Theory[END_REF] of N(0, C 2 ) with respect to N(0, C 1 ) reads, for α ∈ R \ {1},

D α R = - 1 2(α -1) 1 p p i=1 ln α + (1 -α)λ i (C -1 1 C 2 ) + 1 2p p i=1 ln λ i (C -1 1 C 2 ) (1) 
(one can check that lim α→1 D α R = D KL ).

Revolving around recent advances in random matrix theory, this article provides a generic framework to consistently estimate such functionals of the eigenvalues of C -1 1 C 2 from the samples in the regime where p, n 1 , n 2 are simultaneously large, under rather mild assumptions. In addition to the wide range of potential applications, as hinted at above, this novel estimator provides in practice a dramatic improvement over the conventional covariance matrix "plug-in" approach, as we subsequently demonstrate on a synthetic (but typical) example in Table 1.

Here, for C

-1 2 1 C 2 C -1 2
1 (having the same eigenvalues as C -1 1 C 2 ) a Toeplitz positive definite matrix, we estimate the (squared) Fisher distance D F (C 1 , C 2 ) 2 (averaged over a large number of realizations of zero mean Gaussian x (a) i 's), for n 1 = 1 024, n 2 = 2 048 and p varying from 2 to 512. A surprising outcome, despite the theoretical request that p must be large for our estimator to be consistent, is that, already for p = 2 (while n 1 , n 2 ∼ 10 3 ), our proposed estimator largely outperforms the classical approach; for n a /p ∼ 10 or less, the distinction in performance between both methods is dramatic with the classical estimator extremely biased. Our main result, Theorem 1, provides a consistent estimator for functionals f of the eigenvalues of C -1 1 C 2 under the form of a complex integral, valid for all functions f : R → R that have natural complex analytic extensions on given bounded regions of C. This estimator however assumes a complex integral form which we subsequently express explicitly for a family of elementary functions f in a series of corollaries (Corollary 1 to Corollary 4). Distances and divergences of practical interest (including all metrics listed above) being linear combinations of these atomic functions, their resulting estimates follow from merely "linearly combining" these corollaries. Table 2 provides the mapping between distances and functions f . While Corollaries 1-3 provide an exact calculus of the form provided in Theorem 1, for the case f (t) = ln 2 (t), covered in Corollary 4, the exact calculus leads to an expression involving dilogarithm functions which are not elementary functions. For this reason, Corollary 4 provides a large p approximation of Theorem 1, thereby leading to another (equally valid) consistent estimator. This explains why Table 1 and the figures to come (Fig. 1 and Fig. 2) display two different sets of estimates. In passing, it is worth noticing that in the complex Gaussian case, the estimators offer a noticeable improvement on average over their real counterparts; this fact is likely due to a bias in the second-order fluctuations of the estimators, as discussed in Section 5.

Table 1: Estimation of the Fisher distance D F (C 1 , C 2 ). Simulation example for real x (a) i ∼ N(0, C a ) (top part) and complex x (a) i ∼ CN(0, C a ) (a) i ∈ C p ± 0.0171 ± 0.0146 ± 0.0114 ± 0.0082 ± 0.0064 ± 0.0047 ± 0.0038 ± 0.0030 ± 0.0034

(bottom part), [C -1 2 1 C 2 C -1 2 1 ] i j = 0.3 |i-j| , n 1 = 1 024, n 2 =
Technically speaking, our main result unfolds from a three-step approach: (i) relating the limiting (as p, n 1 , n 2 → ∞ with p/n a = O(1)) eigenvalue distribution of the sometimes called Fisher matrix Ĉ-1 1 Ĉ2 to the limiting eigenvalue distribution of C -1 1 C 2 by means of a functional identity involving their respective Stieltjes transforms (see definition in Section 3), then (ii) expressing the studied matrix distance as a complex integral featuring the Stieltjes transform and proceeding to successive change of variables to exploit the functional identity of (i), and finally (iii) whenever possible, explicitly evaluating the complex integral through complex analysis techniques. This approach is particularly reminiscent of the eigenvalue and eigenvector projection estimates proposed by Mestre in 2008 in a series of seminal articles [START_REF] Mestre | Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF][START_REF] Mestre | On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[END_REF]. In [START_REF] Mestre | Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], Mestre considers a single sample covariance matrix Ĉ setting and provides a complex integration approach to estimate the individual eigenvalues as well as eigenvector projections of the population covariance matrix C; there, step (i) follows immediately from the popular result [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] on the limiting eigenvalue distribution of large dimensional sample covariance matrices; step (ii) was then the (simple yet powerful) key innovation and step (iii) followed from a mere residue calculus. In a wireless communication-specific setting, the technique of Mestre was then extended in [START_REF] Couillet | Eigen-inference for energy estimation of multiple sources[END_REF] in a model involving the product of Gram random matrices; there, as in the present work, step (i) unfolds from two successive applications of the results of [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF], step (ii) follows essentially the same approach as in 

Metrics

f (z) Required atomic functions z ln(z) ln(1

+ sz) ln 2 (z) D 2 F ln 2 (z) × D B -1 4 ln(z) + 1 2 ln(1 + z) -1 2 ln(2) × × D KL 1 2 z -1 2 ln(z) -1 2 × × D α R -1 2(α-1) ln(α + (1 -α)z) + 1 2 ln(z) × ×
[18] (yet largely simplified) and step (iii) is again achieved from residue calculus. As the random matrix Ĉ-1 1 Ĉ2 may be seen as a single sample covariance matrix conditionally on Ĉ1 , with Ĉ1 itself a sample covariance, in the present work, step (i) is obtained rather straightforwardly from applying twice the results from [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF][START_REF] Silverstein | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF]; the model Ĉ-1 1 Ĉ2 is actually reminiscent of the so-called multivariate F-matrices, of the type Ĉ-1 1 Ĉ2 but with C 1 = C 2 , extensively studied in [START_REF] Bai | On the limiting empirical distribution function of the eigenvalues of a multivariate f matrix[END_REF][START_REF] Silverstein | The limiting eigenvalue distribution of a multivariate f matrix[END_REF][START_REF] Zheng | Central limit theorems for linear spectral statistics of large dimensional f-matrices[END_REF]; more recently, the very model under study here (that is, for C 1 C 2 ) was analyzed in [START_REF] Wang | Extreme eigenvalues of large-dimensional spiked fisher matrices with application[END_REF][START_REF] Zheng | Clt for eigenvalue statistics of large-dimensional general fisher matrices with applications[END_REF]. Step (i) of the present analysis is in particular consistent with Theorem 2.1 of [START_REF] Zheng | Clt for eigenvalue statistics of large-dimensional general fisher matrices with applications[END_REF], yet our proposed formulation is here more convenient to our purposes.

The main technical difficulty of the present contribution lies in steps (ii) and (iii) of the analysis. First, as opposed to [START_REF] Couillet | Eigen-inference for energy estimation of multiple sources[END_REF][START_REF] Mestre | Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF], the complex integrals under consideration here involve rather non-smooth functions, and particularly complex logarithms. Contour integrals of complex logarithms can in general not be treated through mere residue calculus. Instead, we shall resort here to an in-depth analysis of the so-called branch-cuts, corresponding to the points of discontinuity of the complex logarithm, as well as to the conditions under which valid integration contours can be defined. Once integrals are properly defined, an elaborate contour design then turns the study of the complex integral into that of real integrals. As already mentioned, in the particular case of the function f (t) = ln 2 (t), these real integrals result in a series of expressions involving the so-called dilogarithm function (see e.g., [START_REF] Zagier | The dilogarithm function[END_REF]), the many properties of which will be thoroughly exploited to obtain our final results.

A second difficulty arises in the complex contour determination which involves two successive variable changes. Working backwards from a contour surrounding the sample eigenvalues to reach a contour surrounding the population eigenvalues, one must thoroughly examine the conditions under which the expected mapping is achieved. The scenarios where p > n 1 or p > n 2 notably lead to non-trivial contour changes. This particularly entails the impossibility to estimate some functionals of the eigenvalues of C -1 1 C 2 under these conditions. The remainder of the article presents our main result, that is the novel estimator, first under the form of a generic complex integral and then, for a set of functions met in the aforementioned classical matrix distances, under the form of a closed-form estimator. To support the anticipated strong practical advantages brought by our improved estimators, Section 4 concretely applies our findings in a statistical learning context.

Model

For a ∈ {1, 2}, let x (a) 1 , . . . , x (a) n a ∈ R p (or C p ) be n a independent and identically distributed vectors of the form

x (a) i = C 1 2 a x(a)
i with x(a) i ∈ R p (respectively C p ) a vector of i.i.d. zero mean, unit variance, and finite fourth order moment entries, and C a ∈ R p×p (respectively C p×p ) positive definite. We define the sample covariance matrix

Ĉa ≡ 1 n a X a X a , X a = [x (a) 1 , . . . , x (a) n a ].
We will work under the following set of assumptions.

Assumption 1 (Growth Rate). For a ∈ {1, 2}, (i) denoting c a ≡ p n a , c a < 1 and c a → c ∞ a ∈ (0, 1) as p → ∞. The reader must here keep in mind that c a is a function of p; yet, for readability and since this has little practical relevance, we do not make any explicit mention of this dependence. One may in particular suppose that c a = c ∞ a for all valid p. (ii) lim sup p max( C -1 a , C a ) < ∞ with • the operator norm;

(iii) there exists a probability measure ν such that ν p ≡ 1

p p i=1 δ λ i (C -1 1 C 2 )
→ ν weakly as p → ∞ (with λ i (A) the eigenvalues of matrix A and δ x the atomic mass at x). Here again, in practice, one may simply assume that ν = ν p , the discrete empirical spectral distribution for some fixed dimension p.

The main technical ingredients at the core of our derivations rely on an accurate control of the eigenvalues of Ĉ-1 1 Ĉ2 . In particular, we shall demand that these eigenvalues remain with high probability in a compact set. Item (ii) and the finiteness of the 2 + ε moments of the entries of X 1 and X 2 enforce this request, through the seminal results of Bai and Silverstein on sample covariance matrix models [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] and [1]. Item (ii) can be relaxed but is mathematically convenient, in particular to ensure that µ p ≡ 1 p p i=1 δ λ i ( Ĉ-1

1 Ĉ2 ) has an almost sure limit, and practically inconsequential. Item (i) deserves a deeper comment. Requesting that p < n 1 and p < n 2 is certainly demanding in some practical scarce data conditions. Yet, as we shall demonstrate subsequently, our proof approach relies on some key changes of variables largely involving the signs of 1-c 1 and 1-c 2 . Notably, working under the assumption c 1 > 1 would demand a dramatic change of approach which we leave open to future work, starting with the fact that Ĉ-1 1 is no longer defined. The scenario c 2 > 1 is more interesting though. As we shall point out in a series of remarks, for some functionals f having no singularity at zero, the value f dν p can still be reliably estimated; however, dealing with f (t) = ln(t) or f (t) = ln 2 (t), unfortunately at the core of all aforementioned distances and divergences D F , D B , D KL , and D α R , will not be possible under our present scheme.

Main Results

Preliminaries

For f some complex-analytically extensible real function, our objective is to estimate

f dν p , ν p ≡ 1 p p i=1 δ λ i (C -1 1 C 2 )
from the samples x (1) i 's and x (2) i 's in the regime where n 1 , n 2 , p are all large and of the same magnitude. In particular, given the aforementioned applications, we will be interested in considering the cases where f (t) = t, f (t) = ln(t), f (t) = ln(1 + st) for some s > 0, or f (t) = ln 2 (t). Note in passing that, since C -1

1 C 2 has the same eigenvalues as

C -1 2 1 C 2 C -1 2
1 (by Sylverster's identity), the eigenvalues of C -1 1 C 2 are all real positive. It will be convenient in the following to define

µ p ≡ 1 p p i=1 δ λ i , λ i ≡ λ i ( Ĉ-1 1 Ĉ2 ), 1 ≤ i ≤ p.
By the law of large numbers, it is clear that, as n 1 , n 2 → ∞ with p fixed, µ p a.s.

-→ ν p (in law) and thus, up to some support boundedness control for unbounded f , f dµ pf dν p a.s.

-→ 0. The main objective here is to go beyond this simple result accounting for the fact that n 1 , n 2 may not be large compared to p. In this case, under Assumption 1, µ p → ν and it is unlikely that for most f , the convergence f dµ pf dν p a.s.

-→ 0 would still hold.

Our main line of arguments follows results from the random matrix theory and complex analysis. We will notably largely rely on the relation linking the Stieltjes transform of several measures (such as ν p and µ p ) involved in the model. The Stieltjes transform m µ of a measure µ is defined, for z ∈ C \ Supp(µ) (with Supp(µ) the support of µ), as

m µ (z) ≡ dµ(t) t -z
which is complex-analytic on its definition domain and in particular has complex derivative m µ (z) ≡

dµ(t) (t-z) 2 . For instance, for a discrete measure µ ≡ p i=1 α i δ λ i , m µ (z) = p i=1 α i λ i -z and m µ (z) = p i=1 α i (λ i -z) 2 .

Generic results

With the notations from the section above at hand, our main technical result is as follows.

Theorem 1 (Estimation via contour integral). Let Assumption 1 hold and f : C → C be analytic on {z ∈ C, [z] > 0}.

Take also Γ ⊂ {z ∈ C, [z] > 0} a (positively oriented) contour strictly surrounding ∪ ∞ p=1 Supp(µ p ) (this set is known to be almost surely compact). For z ∈ C \ Supp(µ p ), define the two functions

ϕ p (z) ≡ z + c 1 z 2 m µ p (z), ψ p (z) ≡ 1 -c 2 -c 2 zm µ p (z).
Then, the following result holds

f dν p - 1 2πı Γ f ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz a.s.
-→ 0.

Proof Idea. From Cauchy's integral theorem, f dν p can be related to the Stieltjes transform m ν p through the identity

f dν p = 1 2πı Γ ν f (z)m ν p (z)
dz for Γ ν a contour surrounding the eigenvalues of Supp(ν p ). The idea is to connect the population-related m ν p to the sample-related m µ p . We proceed here similarly to [START_REF] Wang | Extreme eigenvalues of large-dimensional spiked fisher matrices with application[END_REF] by applying twice the results from [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF], thereby implying two complex variable changes. A notable difference to [START_REF] Wang | Extreme eigenvalues of large-dimensional spiked fisher matrices with application[END_REF] is that, in the process, we need to track "backwards" the images of the contour Γ (from the theorem statement) by the induced variable changes. The conditions c ∞ 1 , c ∞ 2 ∈ (0, 1) are here fundamental to ensure that Γ is indeed mapped onto a contour Γ ν enclosing Supp(ν p ) with no extra singularity (such as 0).

Remark 1 (Known C 1 ). For C 1 known, Theorem 1 is particularized by taking the limit c 1 → 0, i.e.,

f dν p - 1 2πı Γ f z ψ p (z) 1 z - ψ p (z) ψ p (z) ψ p (z) c 2 dz a.s.
-→ 0 where now m µ p (z) = 1 p p i=1 2 . Basic algebraic manipulations allow for further simplification, leading up to

1 λ i (C -1 1 Ĉ2 )-z and m µ p (z) = 1 p p i=1 1 (λ i (C -1 1 Ĉ2 )-z)
f dν p - 1 2πıc 2 Γ f -1 m μp (z) m μp (z)zdz a.s.
-→ 0

where μp = c 2 µ p + (1 -c 2 )δ 0 is the eigenvalue distribution of 1 n 2 X 2 C -1 1 X 2 (and thus m μp (z) = c 2 m µ p (z) -(1 -c 2 )/z). Letting g(z) = f (1/z) and G(z) such that G (z) = g(z)
, integration by parts of the above expression further gives

f dν p - 1 2πıc 2 Γ G -m μp (z) dz a.s.
-→ 0.

For instance, for

f (z) = ln 2 (z), G(z) = z(ln 2 (z) -2 ln(z) + 2).
Remark 2 (Extension to the c 2 > 1 case). Theorem 1 extends to the case c 2 > 1 for all f : C → C analytic on the whole set C with f (0) = 0. For f defined in 0 with f (0) 0, one can obviously write f dν p = f (0) + ( ff (0))dν p and apply the result to ff (0). This excludes notably

f (z) = ln k (z) for k ≥ 1, but also f (z) = ln(1 + sz) for s > 0.
Yet, the analyticity request on f can be somewhat relaxed. More precisely, Theorem 1 still holds when c 2 > 1 if there exists a Γ as defined in Theorem 1 such that f is analytic on the interior of the contour described by (ϕ/ψ)(Γ), where ϕ and ψ are the respective almost sure limits of ϕ p and ψ p (see Appendix A for details). The main issue with the case c 2 > 1, as thoroughly detailed in Appendix C, is that, while Γ ⊂ {z ∈ C, [z] > 0}, the interior of (ϕ/ψ)(Γ) necessarily contains zero. This poses dramatic limitations to the applicability of our approach for f (z) = ln k (z) for which we so far do not have a workaround. For f (z) = ln(1 + sz) though, we will show that there exist sufficient conditions on s > 0 to ensure that -1/s (the singularity of z → ln(1 + sz)) is not contained within (ϕ/ψ)(Γ), thereby allowing for the extension of Theorem 1 to f (t) = ln(1 + st).

Special cases

While Theorem 1 holds for all well-behaved f on Γ, a numerical complex integral is required in practice to estimate f dν p . It is convenient, when feasible, to assess the approximating complex integral in closed form, which is the objective of this section. When f is analytic in the inside of Γ, the integral can be estimated merely through a residue calculus. This is the case notably of polynomials f (t) = t k . If instead f exhibits singularities in the inside of Γ, as for f (t) = ln k (t), more advanced contour integration arguments are required.

Importantly, Theorem 1 is linear in f . Consequently, the contour integral calculus for elaborate functions f , such as met in most metrics of practical interest, can be reduced to the integral calculus of its linear components. Table 2 lists these components for the distances and divergences introduced in Section 1.

In the remainder of this section, we focus on the integral calculus for these atomic functions f .

Corollary 1 (Case f (t) = t). Under the conditions of Theorem 1,

tdν p (t) -(1 -c 1 ) tdµ p (t)
a.s.

-→ 0.

and in the case where c 1 → 0, this is simply tdν p (t)tdµ p (t) a.s.

-→ 0.

As such, the classical sample covariance matrix estimator tdµ p (t) needs only be corrected by a product with (1c 1 ). This results unfolds from Theorem 1 via a simple residue calculus.

Corollary 2 (Case f (t) = ln(t)). Under the conditions of Theorem 1,

ln(t)dν p (t) - ln(t)dµ p (t) - 1 -c 1 c 1 ln(1 -c 1 ) + 1 -c 2 c 2 ln(1 -c 2 )
a.s.

-→ 0.

When c 1 → 0, ln(t)dν p (t)ln(t)dµ p (t)

+ 1-c 2 c 2 ln(1 -c 2 ) + 1 a.s.
-→ 0.

Note that for f (t) = ln(t) and c 1 = c 2 , the standard estimator is asymptotically p, n 1 , n 2 -consistent. This is no longer true though for c 1 c 2 but only a fixed bias is induced. This result is less immediate than Corollary 1 as the complex extension of the logarithm function is multi-valued, causing the emergence of branch-cuts inside the contour. We evaluate the integral here, and in the subsequent corollaries, by means of a careful contour deformation subsequent to a thorough study of the function ln(ϕ p (z)/ψ p (z)) and of its branch-cut locations.

Corollary 3 (Case f (t) = ln(1 + st)). Under the conditions of Theorem 1, let s > 0 and denote κ 0 the unique negative solution to 1 + s ϕ p (x)

ψ p (x) = 0. Then we have ln(1 + st)dν p (t) - c 1 + c 2 -c 1 c 2 c 1 c 2 ln c 1 + c 2 -c 1 c 2 (1 -c 1 )(c 2 -sc 1 κ 0 ) + 1 c 2 ln (-sκ 0 (1 -c 1 )) + ln 1 - t κ 0 dµ p (t)
a.s.

-→ 0.

In the case where c 1 → 0, this is simply

ln(1 + st)dν p (t) -(1 + sκ 0 + ln(-sκ 0 ))/c 2 + ln (1 -t/κ 0 ) dµ p (t) a.s.
-→ 0.

The proof of Corollary 3 follows closely the proof of Corollary 2, yet with a fundamental variation on the branchcut locations as the singularities of ln(1 + sϕ p (z)/ψ p (z)) differ from those of ln(ϕ p (z)/ψ p (z)).

Remark 3 (Limit when s → ∞ and s → 0). It is interesting to note that, as s → ∞, κ 0 behaves as -(1c 2 )/s. Plugging this into the expression above, we find that

ln(1 + st)dν p (t) -ln(s) ∼ s→∞ ln(t)dµ p (t) + 1 -c 2 c 2 ln(1 -c 2 ) - 1 -c 1 c 1 ln(1 -c 1 )
therefore recovering, as one expects, the result from Corollary 2.

Checking similarly the case where s → 0 demands a second-order expansion of κ 0 . It is first clear that κ 0 must grow unbounded as s → 0, otherwise there would be a negative solution to ψ p (x) = 0, which is impossible. This said, we then find that κ 0 ∼ -1

(1-c 1 )s + c 1 +c 2 -c 1 c 2 1-c 1 1 p p i=1 λ i + o(1)
. Plugging this into Corollary 3, we find

1 s ln(1 + st)dν p (t) ∼ s→0 (1 -c 1 ) tdµ p (t)
therefore recovering the results from Corollary 1, again as expected.

Remark 4 (Location of κ 0 ). For numerical purposes, it is convenient to easily locate κ 0 . By definition,

κ 0 = 1 -c 2 -c 2 κ 0 m µ p (κ 0 ) -s(1 + c 1 κ 0 m µ p (κ 0 )) .
Along with the bound -1 < xm µ p (x) < 0, for x < 0, we then find that

-(s(1 -c 1 )) -1 < κ 0 < 0.
As such, κ 0 may be found by a dichotomy search on the set (-1/(s(1c 1 )), 0).

Remark 5 (The case c 2 > 1). For f (t) = ln(1 + st), Theorem 1 and Corollary 3 may be extended to the case c 2 > 1, however with important restrictions. Precisely, let µ -≡ inf{Supp(µ)} for µ the almost sure weak limit of the empirical measure µ p , and let

x -≡ lim x↑µ -ϕ(x) ψ(x) , for ϕ(z) ≡ z(1 + c ∞ 1 zm µ (z)) and ψ(z) ≡ 1 -c ∞ 2 -c ∞ 2 zm µ (z)
the respective almost sure functional limits of ϕ p and ψ p . Also redefine κ 0 in Corollary 3 as the smallest real (non-necessarily negative) solution to 1 + s ϕ p (x) ψ p (x) = 0. Then, for all s > 0 satisfying 1 + sx -> 0, we have the following results (i) Theorem 1 holds true, however for a contour Γ having a leftmost real crossing within the set (κ 0 , µ -);

(ii) Corollary 3 extends to

ln(1 + st)dν p (t) - c 1 + c 2 -c 1 c 2 c 1 c 2 ln c 1 + c 2 -c 1 c 2 (1 -c 1 )|c 2 -sc 1 κ 0 | + 1 c 2 ln |-sκ 0 (1 -c 1 )| + ln 1 - t κ 0 dµ p (t)
a.s.

-→ 0.

For instance, for

C 1 = C 2 , i.e., C -1 1 C 2 = I p , we have µ -=        1 -c ∞ 1 + c ∞ 2 -c ∞ 1 c ∞ 2 1 -c ∞ 1        2 , x -= 1 -c ∞ 1 + c ∞ 2 -c ∞ 1 c ∞ 2 1 -c ∞ 1 so that x -< 0 when c ∞ 2 > 1;
so, there, Theorem 1 and Corollary 3 hold true as long as

0 < s < (1 -c ∞ 1 )/ c ∞ 1 + c ∞ 2 -c ∞ 1 c ∞ 2 -1 . (2) 
It is clear from the second part of the remark that, as c ∞ 2 increases, the range of valid s values vanishes. Perhaps surprinsingly though, as c ∞ 1 ↑ 1, this range converges to the fixed set (0, 2/(c ∞ 2 -1)) and thus does not vanish.

As opposed to the previous scenarios, for the case f (t) = ln 2 (t), the exact form of the integral from Theorem 1 is non-trivial and involves dilogarithm functions (see its expression in (B.4) in the appendix) which originate from numerous real integrals of the form ln(xa)/(xb)dx appearing in the calculus. This involved expression can nonetheless be significantly simplified using a large-p approximation, resulting in an estimate only involving usual functions, as shown subsequently.

Corollary 4 (Case f (t) = ln 2 (t)). Let 0 < η 1 < . . . < η p be the eigenvalues of Λ - √ λ √ λ p-n 1 and 0 < ζ 1 < . . . < ζ p the eigenvalues of Λ - √ λ √ λ n 2
, where λ = (λ 1 , . . . , λ p ) , Λ = diag(λ), and √ λ is understood entry-wise. Then, under the conditions of Theorem 1,

ln 2 (t)dν p (t) -        1 p p i=1 ln 2 ((1 -c 1 )λ i ) + 2 c 1 + c 2 -c 1 c 2 c 1 c 2 ∆ η ζ M ∆ η λ + (∆ η λ ) r - 2 p ∆ η ζ N1 p -2 1 -c 2 c 2 1 2 ln 2 ((1 -c 1 )(1 -c 2 )) + (∆ η ζ ) r a.s.
-→ 0

where we defined ∆ b a the vector with (∆ b a ) i = b ia i and, for i, j ∈ {1, . . . , p}, r i = ln((1-c 1 )λ i )

λ i and M i j =            λ i λ j -1-ln λ i λ j (λ i -λ j ) 2
, i j

1 2λ 2 i , i = j , N i j =          ln λ i λ j λ i -λ j , i j 1 λ i , i = j.
In the limit c 1 → 0 (i.e., for C 1 known), this becomes

ln 2 (t)dν p (t) -        1 p p i=1 ln 2 (λ i ) + 2 p p i=1 ln(λ i ) - 2 p ∆ λ ζ Q1 p -2 1 -c 2 c 2 1 2 ln 2 (1 -c 2 ) + ∆ λ ζ q        a.s. -→ 0 with Q i j =          λ i ln λ i λ j -(λ i -λ j ) (λ i -λ j ) 2
, i j,

1 2λ i , i = j,
and q i = ln(λ i ) λ i .

Experimental Results

Validation of Theoretical Results

This section presents experimental verifications, completing Table 1 in Section 1. In all cases presented below, we consider the squared Fisher distance (i.e., the case f (t) = ln 2 (t)) between C 1 and C 2 , where C

-1 2 1 C 2 C -1 2
1 is a Toeplitz matrix with entry (i, j) equal to .3 |i-j| . Fig. 1 displays the normalized estimation error (i.e., the absolute difference between genuine and estimated squared distance over the genuine squared distance) for x (a) i real N(0, C a ), for varying values of the size p of C 1 and C 2 but for n 1 and n 2 fixed (n 1 = 256 and n 2 = 512 in the left-hand display, n 1 = 1024, n 2 = 2048 in the right-hand display); results are averaged over 10 000 independent realizations. We compare the classical n 1 , n 2 -consistent estimator to the proposed n 1 , n 2 , p-consistent estimators obtained from both Theorem 1, or equivalently here from the closed-form expression (B.4) form the appendix, and from Corollary 4. We also add in dashed lines the distance estimate for C 1 a priori known.

It is seen from the figures, provided in log scale, that the relative error of the standard n 1 , n 2 -consistent approach diverges with p, while the error of the proposed estimator remains at a low, rather constant, value. As already observed in Table 1, the large-p approximation formula from Corollary 4 even exhibits a better behavior than the exact integral expression from Theorem 1 in this real Gaussian setup.

In the same setting, Fig. 2 subsequently shows the performances in terms of relative error for simultaneously growing n 1 , n 2 , p, with a constant ratio p/n 1 = 1/4 and p/n 2 = 1/2. As expected from our theoretical analysis, the proposed estimators display a vanishing error as n 1 , n 2 , p → ∞. The standard estimator, on the opposite, shows a high saturating relative error.

Application to Spectral Clustering

In this section, we develop a practical application of our theoretical findings to the machine learning context of kernel spectral clustering [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. In several application domains, such as in brain signal processing [START_REF] Rodrigues | Multivariate time-series analysis via manifold learning[END_REF] or hyperspectral 

D 2 F (C 1 , C 2 ). Relative estimation error for x (a) i ∼ N(0, C a ) with [C -1 2 1 C 2 C -1 2 1 ] i j = .3 |i-j| ; (left) n 1 = 256, n 2 =
(a) i ∼ N(0, C a ) with [C -1 2 1 C 2 C -1 2 1 ] i j = .3 |i-j| , p n 1 = 1 4 , p n 2 = 1 2 , varying p.
imaging [START_REF] Chang | Hyperspectral imaging: techniques for spectral detection and classification[END_REF], the relevant discriminative data "features" are the population covariance matrices of the data vectors (psensor brain activities, p-frequency spectra). Classification in these contexts is thus performed by comparing the population covariance distances for each data-pair. Not being directly accessible, the population covariances are classically substituted by their sample estimates. We will show here that this method has strong limitations that our proposed improved distance estimates overcome. Specifically, we consider m = 200 data X 1 , . . . , X m to be clustered. Datum X i is a p × n i independent generation of n i independent p-dimensional zero mean Gaussian samples

X i = [x (i) 1 , . . . , x (i) n i ] ∈ R p×n i . Half of the samples have covariance E[x (i) j x (i) j ] = E[ 1 n i X i X i ] = C 1 (
they will be said to belong to class 1) and half have covariance C 2 (they belong to class 2). For clarity, let us say that E

[x (i) j x (i) j ] = C 1 for i ≤ m/2 and E[x (i) j x (i) j ] = C 2 for i > m/2.
We then define the kernel matrix K ∈ R m×m by

K i j ≡ exp - 1 2 DF (X i , X j ) 2
with DF either the classical (naive) estimator of D F or our proposed random matrix-improved estimator. The purpose of spectral clustering is to retrieve the mapping between data indices and classes. It can be shown (see e.g., [START_REF] Luxburg | Consistency of spectral clustering[END_REF] but more fundamentally [START_REF] Couillet | Kernel spectral clustering of large dimensional data[END_REF] for large dimensional data) that, for sufficiently distinct classes (so here covariance matrices), the eigenvectors v 1 and v 2 of K associated to its largest two eigenvalues are structured according to the classes. Thus, the classes can be read out of a two-dimensional display of v 2 versus v 1 . This is the procedure we follow.

A fundamental, but at first unsettling, outcome arises as we let n 1 = . . . = n m . In this case, for all tested values of p and m, the eigenvectors of K for either choice of DF are extremely similar. Consequently, spectral clustering performs the same, despite the obvious inaccuracies in the estimations of D F by the classical estimator. This result can be explained from the following fact: spectral clustering is of utmost interest when C 1 and C 2 are close matrices; in this case, the classical estimator for D F is systematically biased by a constant, almost irrespective of the covariance (since both are essentially the same). This constant bias does affect K but not its dominant eigenvectors. This observation collapses when the values of the n i 's differ. This is depicted in Fig. 3. The left display provides a scatter plot of the dominant eigenvectors v 2 versus v 1 of K under the same conditions as above but now with n i chosen uniformly at random in [2p, 4p], with p = 128, m = 200, C 1 = I p and [C 2 ] i j = .05 |i-j| . There, for the classical estimator, we observe a wide spreading of the eigenvector entries and a smaller inter-class spacing. This suggests poor clustering performance. On the opposite, the well-centered eigenvectors achieved by the proposed estimator imply good clustering performances. In a likely more realistic setting in practice, the right display considers the case where n 1 = . . . = n m-1 = 512 and n m = 256. This situation emulates a data retrieval failure for one observation (only half of the samples are seen). In this scenario, the classical estimator isolates one entry-pair in (v 1 , v 2 ) (corresponding to their last entries). This is quite expected. However, more surprisingly, the presence of this outlier strongly alters the possibility to resolve the other data. This effect is further exacerbated when adding more outliers, which are not displayed here. This most likely follows from an adversarial effect between the outliers and the genuine clusters, which all tend to "drive" the dominant eigenvectors.

Concluding Remarks

As pointed out in the introduction, the series of estimators derived in this article allow the practitioner to assess a large spectrum of covariance matrix distances or divergences based on sample estimators when the number n 1 , n 2 of available data is of similar order of magnitude as the size p of the individual samples. For instance, the Rényi divergence (1) between N(0, C 2 ) and N(0, C 1 ) can be expressed as a linear combination of the estimator of Corollary 3 with s = 1-α α and of the estimator of Corollary 2. In particular, the results from Corollaries 1-4 are sufficient to cover all matrix distances and divergences discussed in the introductory Section 1. For other distances involving "smooth" linear functionals of the eigenvalues of C -1 1 C 2 , the generic result from Theorem 1 can be used to retrieve (at least) a numerical estimate of the sought-for distance or divergence. As exemplified by kernel spectral clustering in Section 4.2, applications of the present estimators to specific contexts of signal and data engineering at large, and specifically to the areas of statistical signal processing, artificial intelligence, and machine learning, are numerous. Further note that, while only proposed for metrics involving the eigenvalues of C -1 1 C 2 , the methodology devised here can be flexibly adapted to distances based on the eigenvalues of other matrix models, such as C 1 C 2 . This encompasses the Wasserstein distance between two centered Gaussian as well as the Frobenius distance.

The analysis of the slope in the log-log plot of Fig. 2 of the relative error for the proposed estimator reveals that, for fixed ratios p/n 1 and p/n 2 , the error behaves as p -1 , or equivalent as n -1

1 or n -1 2 . This suggests that, as opposed to classical n-consistent estimators for which optimal fluctuations of the estimators are usually expected to be of order n -1 2 , the proposed n 1 , n 2 , p-consistent estimator exhibits a quadratically faster convergence speed. This observation is in fact consistent with previous findings, such as [START_REF] Yao | Fluctuations of an Improved Population Eigenvalue Estimator in Sample Covariance Matrix Models[END_REF] which demonstrated a central limit theorem with speed p -1 for the eigenvalue functional estimators proposed by Mestre in [START_REF] Mestre | Improved estimation of eigenvalues of covariance matrices and their associated subspaces using their sample estimates[END_REF]. This is also reminiscent from the numerous central limit theorems of eigenvalue functionals derived in random matrix theory [START_REF] Hachem | A CLT for information theoretic statistics of Gram random matrices with a given variance profile[END_REF][START_REF] Najim | Gaussian fluctuations for linear spectral statistics of large random covariance matrices[END_REF][START_REF] Zheng | Clt for eigenvalue statistics of large-dimensional general fisher matrices with applications[END_REF] since the early findings from Bai and Silverstein [START_REF] Bai | CLT of linear spectral statistics of large dimensional sample covariance matrices[END_REF]. This fast convergence speed partly explains the strong advantage of the proposed estimator over standard large-n alone estimates, even for very small ratios p/n, as shown in our various simulations.

For practical purposes, it would be convenient to obtain a result similar to [START_REF] Yao | Fluctuations of an Improved Population Eigenvalue Estimator in Sample Covariance Matrix Models[END_REF] in the present context, that is a central limit theorem for the fluctuations of the estimator of Theorem 1. This would allow practitioners to access both a consistent estimator for their sought-for matrix distance as well as a confidence margin. This investigation demands even more profound calculi (as can be seen from the detailed derivations of [START_REF] Yao | Fluctuations of an Improved Population Eigenvalue Estimator in Sample Covariance Matrix Models[END_REF]) and is left to future work.

Also, recall from Table 1 that the estimator from Theorem 1 has a much better behavior on average in the complex Gaussian rather than in the real Gaussian case. This observation is likely due to a systematic bias of order O(1/p) which is absent in the complex case. Indeed, the results from [START_REF] Zheng | Clt for eigenvalue statistics of large-dimensional general fisher matrices with applications[END_REF] show that the difference p(m µ p (z)m µ (z)) satisfies a central limit theorem with in general non-zero mean apart from the complex Gaussian case (or, to be more exact, apart from the cases where the x (a)

i 's have complex independent entries with zero mean, unit variance, and zero kurtosis). Coupling this result with [START_REF] Yao | Fluctuations of an Improved Population Eigenvalue Estimator in Sample Covariance Matrix Models[END_REF] strongly suggests that the proposed estimators in the present article exhibit a systematic order-p -1 bias but in the complex Gaussian case. As this bias can likely be itself estimated from the raw data, this observation opens the door to a further improvement of the estimator in Theorem 1 that would discard the bias. This would not change the order of magnitude of the error (still of order 1/p) but reduces its systematic part.

A last important item to be discussed at this point lies in the necessary condition n 1 > p and n 2 > p in the analysis. We have shown in the proof of Theorem 1 (in Appendix A and Appendix C) that the requirements c 1 < 1 and c 2 < 1 are both mandatory for our estimation approach to remain valid on a range of functions f analytic on {z ∈ C, [z] > 0} (which notably includes here logarithm functions). Yet, as discussed throughout the article, while n 1 > p is mandatory for our proof approach to remain valid, the constraint n 2 > p can be relaxed to some extent. Yet, this excludes functions f that are not analytic in a neighborhood of zero, thereby excluding functions such as powers of 1/z or of ln(z). More advanced considerations, and possibly a stark change of approach, are therefore demanded to retrieve consistent estimators when p > n 2 for these functions. If one resorts to projections, dimension reductions, or regularization techniques to obtain an invertible estimate for Ĉ1 , one may even allow for p > n 1 , but this would dramatically change the present analysis. As such, the quest for n 1 , n 2 , p-consistent estimators of the matrix distances when either n 1 < p or n 2 < p also remains an interesting open research avenue.

Appendices

We provide here the technical developments for the proof of Theorem 1 and Corollaries 1-4. The appendix is structured as follows: Appendix A provides the proof of Theorem 1 following the same approach as in [START_REF] Couillet | Eigen-inference for energy estimation of multiple sources[END_REF], relying mostly on the results from [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF][START_REF] Silverstein | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF]. Appendix B then provides the technical details of the calculi behind Corollaries 1-4; this is undertaken through a first thorough characterization of the singular points of ϕ p and ψ p and functionals of these (these singular points are hereafter denoted λ i , η i , ζ i and κ i ), allowing for a proper selection of the integration contour, and subsequently through a detailed calculus for all functions f (t) under study. Appendix C discusses in detail the question of the position of the complex contours when affected by change of variables. Finally, Appendix D provides some analysis of the extension of Theorem 1 and the corollaries to the c 2 > 1 scenario.

1 2 x(2)
i with x(2) i ∈ R p a vector of i.i.d. zero mean and unit variance entries, where

C ≡ C -1 2 1 C 2 C -1 2 1 .
Indeed, with our initial notations (Section 2), Ĉ-

1 1 Ĉ2 = 1 n 1 C -1 2 1 X1 X 1 C -1 2 1 1 n 2 C 1 2 2 X2 X 2 C 1 2
2 (here Xa = [ x(a) 1 , . . . , x(a) n a ]), the eigenvalue distribution of which is the same as that of the matrix ( 1

n 1 X1 X 1 )( 1 n 2 C -1 2 1 C 1 2 2 X2 X 2 C 1 2 2 C -1 2 
1 ) and we may then consider that the x (1) i 's actually have covariance I p , while the

x (2) i 's have covariance C = C -1 2 1 C 2 C -1 2 1
, without altering the spectra under study.

We then from now on redefine Ĉa = 1 n a X a X a with X a = [x (a) 1 , . . . , x (a) n a ] ∈ R p×n a for x (a) i given by (i) and (ii) above. With these definitions, we first condition with respect to the x (2) i 's, and study the spectrum of Ĉ-1 1 Ĉ2 , which is the same as that of Ĉ 1

2 2 Ĉ-1 1 Ĉ 1 2 2 . A useful remark is the fact that Ĉ 1 2 2 Ĉ-1 1 Ĉ 1 2 2 is the "inverse spectrum" of Ĉ-1 2 2 Ĉ1 Ĉ-1 2 
2 , which is itself the same spectrum as that of 1 n 1 X 1 Ĉ-1 2 X 1 except for n 1p additional zero eigenvalues. Denoting μ-1 p the eigenvalue distribution of 1 n 1 X 1 Ĉ-1 2 X 1 , we first know from [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] that, under Assumption 1, as p → ∞, μ-1 p a.s.

-→ μ-1 , where μ-1 is the probability measure with Stieltjes transform m μ-1 defined as the unique (analytical function) solution to

m μ-1 (z) =       -z + c ∞ 1 tdξ -1 2 (t) 1 + tm μ-1 (z)       -1
with ξ 2 the almost sure limiting spectrum distribution of Ĉ2 and m ξ 2 its associated Stieltjes transform; note importantly that, from [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] and Assumption 1, ξ 2 has bounded support and is away from zero. Recognizing a Stieltjes transform from the right-hand side integral, this can be equivalently written

m μ-1 (z) = -z + c ∞ 1 m μ-1 (z) - c ∞ 1 m μ-1 (z) 2 m ξ -1 2 - 1 m μ-1 (z) -1 . (A.1)
Accounting for the aforementioned zero eigenvalues, μ-1 relates to µ -1 , the (a.s.) limiting spectrum distribution

of Ĉ-1/2 2 Ĉ1 Ĉ-1/2 2 , through the relation μ-1 = c ∞ 1 µ -1 + (1 -c ∞ 1
)δ 0 with δ x the Dirac measure at x and we have

m μ-1 (z) = c ∞ 1 m µ -1 (z) -(1 -c ∞ 1 )/z. Plugging this last relation in (A.1) leads then to m ξ -1 2 z/(1 -c ∞ 1 -c ∞ 1 zm µ -1 (z)) = m µ -1 (z) 1 -c ∞ 1 -c ∞ 1 zm µ -1 (z) . (A.2)
Now, with the convention that, for a probability measure θ, θ -1 is the measure defined through

θ -1 ([a, b]) = θ [ 1 a , 1 b ] ,
we have the Stieltjes transform relation m θ -1 (z) = -1/zm θ (1/z)/z 2 . Using this relation in (A.1), we get

zm µ (z) = (z + c ∞ 1 z 2 m µ (z))m ξ 2 (z + c ∞ 1 z 2 m µ (z)) = ϕ(z)m ξ 2 (ϕ(z)) (A.3)
where we recall that ϕ(z) = z(1 + c ∞ 1 zm µ (z)). It is useful for later use to differentiate this expression along z to obtain

m ξ 2 (ϕ(z)) = 1 ϕ(z) m µ (z) + zm µ (z) ϕ (z) -m ξ 2 (ϕ(z)) = 1 ϕ(z) - ψ (z) c ∞ 2 ϕ (z) -m ξ 2 (ϕ(z)) . (A.4)
We next determine m ξ 2 as a function of ν. Since Ĉ2 is itself a sample covariance matrix, we may apply again the results from [START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF]. Denoting ξ2 the almost sure limiting spectrum distribution of 1

n 2 X 2 C X2 , we first have mξ 2 (z) = -z + c ∞ 2 tdν(t) 1 + tmξ 2 (z) -1 . (A.5)
Similar to previously, we have the relation

mξ 2 (z) = c ∞ 2 m ξ 2 (z) - (1-c ∞ 2 ) z which, plugged in (A.5), yields m ν -z/(c ∞ 2 zm ξ 2 (z) -(1 -c ∞ 2 )) = -m ξ 2 (z) c ∞ 2 zm ξ 2 (z) -(1 -c ∞ 2 ) . (A.6)
Relations (A.3) and (A.5) will be instrumental to relating f dν to the observation measure µ p , as described next.

Remark 6 (The case c 2 > 1). The aforementioned reasoning carries over to the case c 2 > 1. Indeed, since the equation (A.1) is now meaningless (as the support of ξ 2 contains the atom {0}), consider the model Ĉ-1

1 ( Ĉ2 +εI p ) = Ĉ-1 1 Ĉ2 +ε Ĉ-1 1
for some small ε > 0. Then (A.3) holds with now ξ 2 the limiting empirical spectral distribution of Ĉ2 + εI p . Due to ε, Equation (A.5) now holds with mξ 2 (z) replaced by mξ 2 (z + ε). By continuity in the small ε limit, we then have that (A.3) and (A.6) still hold in the small ε limit. Now, since Ĉ-1 1 ( Ĉ2 + εI p ) -Ĉ-1 1 Ĉ2 = ε Ĉ-1 1 , the operator norm of which amost surely vanishes as ε → 0 from the almost sure boundedness of lim sup p Ĉ-1 1 , we deduce that µ p → µ defined through (A.3) and (A.6), almost surely, also for c ∞ 2 > 1. 13

Appendix A.2. Integral formulation over m ν With the formulas above, we are now in position to derive the proposed estimator. We start by using Cauchy's integral formula to obtain

f dν = - 1 2πı Γ ν f (z)m ν (z)dz
for Γ ν a complex contour surrounding the support of ν but containing no singularity of f in its inside. This contour is carefully chosen as the image of the mapping ω

→ z = -ω/(c ∞ 2 ωm ξ 2 (ω)-(1-c ∞ 2 
)) of another contour Γ ξ 2 surrounding the limiting support of ξ 2 ; the details of this (non-trivial) contour change are provided in Appendix C (where it is seen that the assumption c ∞ 2 < 1 is crucially exploited). We shall admit here that this change of variable is licit and that

Γ ν ⊂ {z ∈ C | [z] > 0}.
Operating the aforementioned change of variable gives

f dν = 1 2πı Γ ξ 2 f -ω c ∞ 2 ωm ξ 2 (ω)-(1-c ∞ 2 ) m ξ 2 (ω) c ∞ 2 ω 2 m ξ 2 (ω) + (1 -c ∞ 2 ) c ∞ 2 ωm ξ 2 (ω) -(1 -c ∞ 2 ) dω (A.7)
where we used (A.6) to eliminate m ν .

To now eliminate m ξ 2 and obtain an integral form only as a function of m µ , we next proceed to the variable change

u → ω = ϕ(u) = u + c ∞ 1 u 2 m µ (u).
Again, this involves a change of contour, which is valid as long as Γ ξ 2 is the image by ϕ of a contour Γ µ surrounding the support of µ, which is only possible if c ∞ 1 < 1 (see Appendix C for further details). With this variable change, we can now exploit the relations (A.3) and (A.4) to obtain, after basic algebraic calculus (using in particular the relation um µ

(u) = (-ψ(u) + 1 -c ∞ 2 )/c ∞ 2 ) f dν = -1 2πı Γ µ f ϕ(u) ψ(u) 1 c ∞ 2 ϕ(u) ϕ(u)ψ (u) -ψ(u)ϕ (u) du = 1 2πı Γ µ f ϕ(u) ψ(u) ψ(u) c ∞ 2 ϕ (u) ϕ(u) - ψ (u) ψ(u) du - 1 -c ∞ 2 c ∞ 2 1 2πı Γ µ f ϕ(u) ψ(u) ϕ (u) ϕ(u) - ψ (u) ψ(u) du.
Performing the variable change backwards (u → z = ϕ(u)/ψ(u)), the rightmost term is simply

1 2πı Γ µ f ϕ(u) ψ(u) ϕ (u) ϕ(u) - ψ (u) ψ(u) du = 1 2πı Γ µ f ϕ(u) ψ(u) ψ(u) ϕ(u) ϕ(u) ψ(u) du = 1 2πı Γ ν f (z) z dz = 0 since Γ ν ⊂ {z ∈ C | [z] > 0}.
Note in passing that, if Γ ν were to contain 0 (which occurs when c ∞ 2 > 1), then an additional residue equal to -(1-c ∞ 2 ) f (0)/c ∞ 2 would have to be accounted for; this justifies the need to impose f (0) = 0 in Remark 2. We thus conclude that -→ m µ , along with the fact that the eigenvalues Ĉ-1 1 Ĉ2 almost surely do not escape the limiting support µ as p → ∞ (this is ensured from [1], Item 1 of Assumption 1 and the analyticity of the involved functions), to retrieve Theorem 1 by uniform convergence on the compact contour (see also [START_REF] Couillet | Eigen-inference for energy estimation of multiple sources[END_REF] for a similar detailed derivation).

f dν = 1 2πı Γ µ f ϕ(u) ψ(u) ψ(u) c ∞ 2 ϕ (u) ϕ(u) - ψ ( 
Remark 7 (Case C 1 known). The case where C 1 is known is equivalent to setting c ∞ 1 → 0 above, leading in particular to m µ = m ξ 2 and to the unique functional equation

m ν z/(1 -c ∞ 2 -c ∞ 2 zm µ (z)) = m ν (z) 1 -c ∞ 2 -c ∞ 2 zm ν (z) .
In particular, if

C 1 = C 2 , this reduces to -m µ (z)(z -ψ(z)) = 1 with ψ(z) = 1 -c ∞ 2 -c ∞ 2 zm µ (z)
, which is the functional Stieltjes-tranform equation of the Marcenko-Pastur law [START_REF] Marcenko | Distribution of eigenvalues for some sets of random matrices[END_REF].

Appendix B. Integral Calculus

To compute the complex integral, note first that, depending on f , several types of singularities in the integral may arise. Of utmost interest (but not always exhaustively, as we shall see for f (t) = ln(1 + st)) are: (i) the eigenvalues λ i of Ĉ-1 1 Ĉ2 , (ii) the values η i such that ϕ p (η i ) = 0, (iii) the values ζ i such that ψ p (ζ i ) = 0.

In the following, we first introduce a sequence of intermediary results of interest for most of the integral calculi.

Appendix B.1. Rational expansion

At the core of the subsequent analysis is the function

ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 .
As this is a mere rational function, we first obtain the following important expansion, that will be repeatedly used in the sequel:

ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 = 1 p - c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 1 z -λ j + 1 -c 2 c 2 1 z + c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 1 z -η j . (B.1)
This form is obtained by first observing that the λ j 's, η j 's and 0 are the poles of the left-hand side expression. Then, pre-multiplying the left-hand side by (z -λ j ), z, or (z -η j ) and taking the limit when these terms vanish, we recover the right-hand side, using in particular the following estimates, which easily entail from the definitions of ϕ p and ψ p :

ϕ p (z) = c 1 p λ 2 i λ i -z -2c 1 λ i p + λ i + c 1 p j i λ 2 i λ j -λ i + O(λ i -z), ϕ p (z) = c 1 p λ 2 i (λ i -z) 2 + O(1), ψ p (z) = - c 2 p λ i λ i -z + c 2 p + 1 -c 2 - c 2 p j i λ i λ j -λ i + O(λ i -z), ψ p (z) = - c 2 p λ i (λ i -z) 2 + O(1) in the vicinity of λ i , along with ψ p (η i ) = c 1 +c 2 -c 1 c 2 c 1 and ψ p (0) = 1 -c 2 .
From this expression, we have the following immediate corollary.

Remark 8 (Residue for f analytic at λ i ). If f • (ϕ p /ψ p ) is analytic in a neighborhood of λ i , i.e., if f is analytic in a neighborhood of -(c 1 /c 2 )λ i , then λ i is a first order pole for the integrand, leading to the residue

Res(λ i ) = -f - c 1 c 2 λ i c 1 + c 2 -c 1 c 2 c 1 c 2 - 1 p .
Appendix B.2. Characterization of η i and ζ i , and ϕ p /ψ p First note that the η i (the zeros of ϕ p (z)) and ζ i (the zeros of ψ p (z)) are all real as one can verify that, for

[z] 0, [ϕ p (z)] [z] > 0 and [ψ p (z)] [z] < 0.
Before establishing the properties of ϕ p and ψ p in the vicinity of η i and ζ i , let us first locate these values. A study of the function M p : R → R, x → xm µ p (x) (see Fig. B.4) reveals that M p is increasing, since x/(λ ix) = -1 + 1/(λ ix), and has asymptotes at each λ i with lim

x↑λ i M p (x) = ∞ and lim x↓λ i M p (x) = -∞. As a consequence, since ϕ p (x) = 0 ⇔ M p (x) = -1 c 1 < -1
, there exists exactly one solution to ϕ p (x) = 0 in the set (λ i , λ i+1 ). This solution will be subsequently called η i . Since M p (x) → -1 as x → ∞, there exists a last solution to ϕ p (x) = 0 in (λ p , ∞), hereafter referred to as η p . Similarly, ψ p (x) = 0 ⇔ M p (x) = (1c 2 )/c 2 > 0 and thus there exists exactly one solution, called ζ i in (λ i-1 , λ i ). When x → 0, M p (x) → 0 so that a further solution is found in (0, λ 1 ), called ζ 1 . Besides, due to the asymptotes at every λ i , we have that

ζ 1 < λ i < η 1 < ζ 2 < . . . < η p .
As such, the set Γ defined in Theorem 1 exactly encloses all η i , λ i , and ζ i , for i = 1, . . . , p, possibly to the exception of the leftmost ζ 1 and the rightmost η p , as those are not comprised in a set of the form [λ i+1 , λ i ]. To ensure that the latter do asymptotically fall within the interior of Γ, one approach is to exploit Theorem 1 for the elementary function f (t) = 1. There we find that

1 2πı Γ ν m ν (z)dz - 1 2πı Γ ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz a.s.
-→ 0. The left integral is easily evaluated by residue calculus and equals -1

(each λ i (C -1 1 C 2 ), 1 ≤ i ≤ p
, is a pole with associated residue -1/p), while the right integral can be computed from (B.1) again by residue calculus and equals -1

+ c 1 +c 2 -c 1 c 2 c 1 c 2 (p -#{η i ∈ Γ • }) with Γ • the "interior" of Γ.
As such, since both integrals are (almost surely) arbitrarily close in the large p limit, we deduce that #{η i ∈ Γ • } = p for all large p and thus, in particular, η p is found in the interior of Γ. To obtain the same result for ζ 1 , note that, from the relation

ψ p (z) = c 1 +c 2 -c 1 c 2 c 1 -c 2 c 1 ϕ p (z)
z along with the fact that ϕ p (z)

ϕ p (z) - ψ p (z)
ψ p (z) is an exact derivative (of ln(ϕ p /ψ p )), the aforementioned convergence can be equivalently written

1 2πı Γ ν m ν (z)dz - -1 2πı Γ ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ϕ p (z)
zc 1 dz a.s.

-→ 0.

Reproducing the same line of argument, with an expansion of (

ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ) ϕ p (z)
zc 1 equivalent to (B.1), the same conclusion arises and we then proved that both ζ 1 and η p , along with all other ζ i 's and η i 's, are asymptotically found within the interior of Γ.

One can also establish that, on its restriction to R + , ϕ p is everywhere positive but on the set ∪ p i=1 (λ i , η i ). Similarly, ψ p is everywhere positive but on the set ∪ p i=1 (ζ i , λ i ). As a consequence, the ratio ϕ p /ψ p is everywhere positive on R + but on the set ∪ p i=1 (ζ i , η i ). These observations are synthesized in Fig. B.5.

In terms of monotonicity, since ψ p (x) = 1c 2 t t-x dµ p (t), ψ p is decreasing. As for ϕ p , note that 2 , and therefore ϕ p (x) > (t -(1c 1 )x) 2 /(tx) 2 dµ p (t) > 0, ensuring that ϕ p is increasing on its restriction to R. Showing that x → ϕ p (x)/ψ p (x) is increasing is important for the study of the case f (t) = ln(1 + st) but is far less direct. This unfolds from the following remark, also of key importance in the following. Remark 9 (Alternative form of ϕ p and ψ p ). It is interesting to note that, in addition to the zero found at z = 0 for ϕ p , we have enumerated all zeros and poles of the rational functions ϕ p and ψ p (this can be ensured from their definition as rational functions) and it thus comes that

ϕ p (x) = 1 + 2c 1 x t -x dµ p (t) + c 1 x 2 (t -x) 2 dµ p (t) = t 2 -2(1 -c 1 )xt + (1 -c 1 )x 2 (t -x) 2 dµ p (t). Since c 1 < 1, we have 1 -c 1 > (1 -c 1 )
ϕ p (z) = (1 -c 1 )z p j=1 (z -η j ) p j=1 (z -λ j ) , ψ p (z) = p j=1 (z -ζ j ) p j=1 (z -λ j ) , ϕ p (z) ψ p (z) = (1 -c 1 )z p j=1 (z -η j ) p j=1 (z -ζ j ) . (B.2)
where the constants 1c 1 and 1 unfold from ϕ p (x)/x → 1c 1 and

ψ p (x) → 1, as z = x ∈ R → ∞.
A further useful observation is that the η i 's are the eigenvalues of Λ -

√ λ √ λ /(p -n 1 )
, where Λ = diag({λ i } p i=1 ) and λ = (λ 1 , . . . , λ p ) . Indeed, these eigenvalues are found by solving

0 = det       Λ - √ λ √ λ p -n 1 -xI p       = det(Λ -xI p ) det       I p -(Λ -xI p ) -1 √ λ √ λ p -n 1       = det(Λ -xI p ) 1 - 1 p -n 1 √ λ (Λ -xI p ) -1 √ λ = det(Λ -xI p )        1 - 1 p -n 1 p i=1 λ i λ i -x       
which, for x away from the λ i (not a solution to ϕ p (x) = 0), reduces to 1 p p i=1

λ i λ i -x = 1-1 c 1 , which is exactly equivalent to m µ p (x) = -1 c 1 x , i.e., ϕ p (x) = 0. Similarly, the ζ i 's are the eigenvalues of the matrix Λ - √ λ √ λ /n 2 .
These observations allow for the following useful characterization of ϕ p /ψ p :

ϕ p (z) ψ p (z) = (1 -c 1 )z det zI p -Λ -1 n 1 -p √ λ √ λ det zI p -Λ + 1 n 2 √ λ √ λ = (1 -c 1 )z        1 - n 1 + n 2 -p n 2 (n 1 -p) √ λ zI p -Λ + 1 n 2 √ λ √ λ -1 √ λ       
after factoring out the matrix in denominator from the determinant in the numerator. The derivative of this expression is

ϕ p (z) ψ p (z) = (1 -c 1 ) 1 + n 1 + n 2 -p n 2 (n 1 -p) √ λ Q Λ - 1 n 2 √ λ √ λ Q √ λ . for Q = (zI p -Λ + 1 n 2 √ λ √ λ ) -1 . Since Λ -1 n 2 √ λ √
λ is positive definite (its eigenvalues being the ζ i 's), on the real axis the derivative is greater than 1c 1 > 0 and the function x → ϕ p (x)/ψ p (x) is therefore increasing. Since we now know that the contour Γ from Theorem 1 encloses exactly all η i 's and ζ i 's, it is sensible to evaluate the residues for these values when f (z) is analytic in their neighborhood. 

ζ i + ε + 0 + ı, λ i -ε + 0 + ı] and [ζ i + ε + 0 -ı, λ i -ε + 0 -ı]. Similarly the set I D i is the disjoint union of the segments [λ i + ε + 0 + ı, η i -ε + 0 + ı] and [λ i + ε + 0 -ı, η i -ε + 0 -ı].
The sets I A i , I C i and I E i are the disjoint unions of semi-circles (in the upper-or lower-half complex plane) of diameters ε surrounding ζ i , λ i and η i respectively.

Remark 10 (Residue for f analytic at η i and ζ i ). If f is analytic with no singularity at zero, then the integral has a residue at η i easily found to be Res(η

i ) = f (0)(c 1 +c 2 -c 1 c 2 )/c 2 .
Similarly, if f (ω) has a well defined limit as |ω| → ∞, then no residue is found at ζ i .

As a consequence of Remarks 8 and 10, we have the following immediate corollary.

Remark 11 (The case f (t) = t). In the case where f (t) = t, a singularity appears at ζ i , which is nonetheless easily treated by noticing that the integrand then reduces to

f ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 = ϕ p (z) c 2 - ψ p (z)ϕ p (z) c 2 ψ p (z)
and thus, with

ψ p (z) = (z -ζ i )ψ p (ζ i ) + O((z -ζ i ) 2 ), we get Res { f (t)=t} (ζ i ) = -1 c 2 ϕ p (ζ i ) = -ζ i (c 1 + c 2 -c 1 c 2 )/c 2 2 .
Together with Remarks 8 and 10, along with the fact that Γ encloses all η i and λ i , for i = 1, . . . , p, we then find

tdν p (t) -        c 1 + c 2 -c 1 c 2 c 2 2 p i=1 (λ i -ζ i ) - c 1 c 2 1 p p i=1 λ i        a.s.
-→ 0.

Noticing that i ζ i = tr (Λ -1 n 2 √ λ √ λ ) = (1 -c 2 /p) i λ i , we retrieve Corollary 1. Appendix B.3. Development for f (t) = ln(t)
The case f (t) = ln(t) leads to an immediate simplification since, then, ln det( Ĉ-1 1 Ĉ2 ) = ln det( Ĉ2 )ln det( Ĉ1 ); one may then use previously established results from the random matrix literature (e.g., the G-estimators in [START_REF] Girko | Introduction to general statistical analysis[END_REF] or more recently [START_REF] Kammoun | Performance of mutual information inference methods under unknown interference[END_REF]) to obtain the sought-for estimate. Nonetheless, the full explicit derivation of the contour integral in this case is quite instructive and, being simpler than the subsequent cases where f (t) = ln 2 (t) or f (t) = ln(1 + st) that rely on the same key ingredients, we shall here conduct a thorough complex integral calculus.

For z ∈ C, define first f (z) = ln(z) where ln(z) = ln(|z|)e i arg(z) , with arg(z) ∈ (-π, π]. For this definition of the complex argument, since ϕ p (x)/ψ p (x) is everywhere positive but on ∪ p i=1 (ζ i , η i ), we conclude that arg(ϕ p (z)/ψ p (z)) abruptly moves from π to -π as z moves from x + 0 + ı to x + 0 -ı for all x ∈ ∪ p i=1 (ζ i , η i ). This creates a set of p branch cuts [ζ i , η i ], i = 1, . . . , p as displayed in 

= Γ + p i=1       I A i + I B i + I C i + I D i + I E i       .
We start by the evaluation of the integrals over I B i and I D i , which can be similarly handled. To this end, note that, since arg( ϕ p ψ p ) moves from π to -π across the branch cut, we have

1 2πı I B i = 1 2πı λ i -ε ζ i +ε ln - ϕ p (x) ψ p (x) + ıπ -ln - ϕ p (x) ψ p (x) + ıπ ϕ p (x) ϕ p (x) - ψ p (x) ψ p (x) ψ p (x) c 2 dx = λ i -ε ζ i +ε ϕ p (x) ϕ p (x) - ψ p (x) ψ p (x) ψ p (x) c 2 dx.
We first exploit the rational form expansion (B.1) of (

ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ) ψ p (x)
c 2 to obtain the integral over

I B i 1 2πı I B i = 1 p - c 1 + c 2 -c 1 c 2 c 1 c 2         j i ln λ i -λ j ζ i -λ j + ln ε ζ i -λ i         + 1 -c 2 c 2 ln λ i ζ i + c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 ln λ i -η j ζ i -η j + o(ε).
The treatment is similar for the integral over I D i which results, after summation of both integrals, to

1 2πı I B i ∪I D i = 1 p - c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 ln η i -λ j ζ i -λ j + 1 -c 2 c 2 ln η i ζ i + c 1 + c 2 -c 1 c 2 c 1 c 2         j i ln η i -η j ζ i -η j + ln ε ζ i -η i         + o(ε).
Note here the asymmetry in the behavior of the integrand in the neighborhood of ζ i (+ε) and η i (-ε); in the former edge, the integral is well defined while in the latter it diverges as ln ε which must then be maintained.

Summing now over i ∈ {1, . . . , p}, we recognize a series of identities. In particular, from the product form (B.2),

p j=1 p i=1 ln η i -λ j ζ i -λ j = p j=1 ln ψ p ϕ p (λ j ) (1 -c 1 )λ j = ln c 1 c 2 (1 -c 1 ) , p j=1 ln η i ζ i = lim z→0 ln          ψ p ϕ p (z) (1 -c 1 )z          = -ln ((1 -c 1 )(1 -c 2 )) p i=1 j i ln η i -η j ζ i -η j + p i=1 ln 1 ζ i -η i = lim z→η i p j=1 ln ψ p ϕ p (z) (1 -c 1 )z(z -η j ) = p j=1 ln ψ p ϕ p (η j ) (1 -c 1 )η j .
As such, we now find that 1 2πı

p i=1 I B i ∪I D i = ln c 1 c 2 (1 -c 1 ) + c 1 + c 2 -c 1 c 2 c 1 c 2 p ln ε - 1 -c 2 c 2 ln ((1 -c 1 )(1 -c 2 )) - c 1 + c 2 -c 1 c 2 c 1 c 2              p ln c 1 c 2 (1 -c 1 ) - p j=1 ln ψ p ϕ p (η j ) (1 -c 1 )η j              + o(ε).
The diverging term in ln ε is compensated by the integral over I E i . Indeed, letting z = η i + εe iθ , we may write

1 2πı I E i ln ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ(z) c 2 dz = ε 2πc 2 0 + π + -π 0 - ln        (1 -c 1 )(η i + εe iθ ) p j=1 (η i -η j + εe iθ ) p j=1 (η i -ζ j + εe iθ )        ×         p j=1 1 p -c 1 +c 2 -c 1 c 2 c 1 c 2 η i + εe ıθ -λ j + 1-c 2 c 2 η i + εe ıθ + p j=1 c 1 +c 2 -c 1 c 2 c 1 c 2 η i + εe ıθ -η j         e iθ dθ.
To evaluate the small ε limit of this term, first remark importantly that, for small ε, the term in the logarithm equals

(1 -c 1 ) η i η i -ζ i j i (η i -η j ) j i (η i -ζ j ) εe iθ + o(ε)
the argument of which equals that of θ. As such, on the integral over (π, 0), the log term reads ln | • | + ıθ + o(ε), while on (0, -π), it reads ln | • | -ıθ + o(ε). With this in mind, keeping only the non-vanishing terms in the small ε limit (that is: the term in ln ε and the term in 1 ε ) leads to

1 2πı I E i ln ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ(z) c 2 dz = c 1 + c 2 -c 1 c 2 c 1 c 2 ln ε + c 1 + c 2 -c 1 c 2 c 1 c 2 ln ϕ p ψ p (η i ) + o(ε)
where we used the fact that lim ε→0

1 εe ıθ ϕ p ψ p (η i + εe ıθ ) = ϕ p ψ p (η i ).
We proceed similarly to handle the integral over

I C i 1 2πı I C i ln ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ(z) c 2 dz = ε 2πc 2 0 + π + -π 0 - ln        (1 -c 1 )(λ i + εe iθ ) p j=1 (λ i -η j + εe iθ ) p j=1 (λ i -ζ j + εe iθ )        ×         p j=1 1 p -c 1 +c 2 -c 1 c 2 c 1 c 2 λ i + εe ıθ -λ j + 1-c 2 c 2 λ i + εe ıθ + p j=1 c 1 +c 2 -c 1 c 2 c 1 c 2 λ i + εe ıθ -η j         e iθ dθ.
Here, for small ε, the angle of the term in the argument of the logarithm is that of

ϕ p ψ p (λ i ) + ϕ p ψ p (λ i )εe ıθ + o(ε) = - c 1 c 2 λ i + εe ıθ c 1 c 2 p c 1 + c 2 -c 1 c 2 c 1 c 2 -1 + o(ε).
That is, for all large p, the argument equals π + o(ε) < π uniformly on θ ∈ (0, π) and -π + o(ε) > -π uniformly on θ ∈ (-π, 0); thus the complex logarithm reads ln

| • | + ıθ + o(ε) on (π, 0), while on (0, -π), it reads ln | • | -ıθ + o(ε).
Proceeding as previously for the integral over I E i , we then find after calculus that

1 2πı I C i ln ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ(z) c 2 dz = c 1 + c 2 -c 1 c 2 c 1 c 2 - 1 p ln c 1 c 2 λ i .
Note that this expression is reminiscent of a "residue" at λ i (with negatively oriented contour), according to Remark 8, however for the function ln | • | and not for the function ln(•), due to the branch cut passing through λ i .

The final integral over I A i is performed similarly. However, here, it is easily observed that the integral is of order O(ε ln ε) in the small ε limit, and thus vanishes.

Finally, summing up all contributions, we have

1 2πı Γ = - p i=1 1 2πı       I A i + I B i + I C i + I D i + I E i       = -ln c 1 (1 -c 2 ) c 2 + ln((1 -c 1 )(1 -c 2 )) c 2 + 1 p p i=1 ln c 1 c 2 λ i - c 1 + c 2 -c 1 c 2 c 1 c 2        p ln(1 -c 1 ) + p i=1 ln λ i - p i=1 ln((1 -c 1 )η i )        = -ln(1 -c 2 ) + 1 c 2 ln((1 -c 1 )(1 -c 2 )) + 1 p p i=1 ln λ i + c 1 + c 2 -c 1 c 2 c 1 c 2 p i=1 ln η i λ i = 1 p p i=1 ln λ i + 1 -c 2 c 2 ln(1 -c 2 ) - 1 -c 1 c 1 ln(1 -c 1 )
where in the last equality we used, among other algebraic simplifications, the fact that p i=1 ln( η i λ i ) = lim x→0 ln( The development for f (t) = ln(1 + st) is quite similar to that of f (t) = ln(t), with some noticeable exceptions with respect to the position of singularity points.

A few important remarks are in order to start with this scenario. First note from Fig. B.5 and the previous discussions that the function z → ln(1 + sϕ p (z)/ψ p (z)) has a singularity at z = κ i , i = 1, . . . , p, for some κ i ∈ (ζ i , η i ) solution to 1 + sϕ p (x)/ψ p (x) = 0 (indeed, ϕ p (x)/ψ p (x) is increasing on (ζ i , η i ) with opposite asymptotes and thus κ i exists and is uniquely defined). In addition, ln(1 + sϕ p (z)/ψ p (z)) has a further singularity satisfying 1 + sϕ p (x)/ψ p (x) = 0 in the interval (-∞, 0) which we shall denote κ 0 .

A few identities regarding κ i are useful. Using the relation between ϕ p and ψ p , we find in particular that

ϕ p (κ i ) = - 1 s c 1 + c 2 -c 1 c 2 c 2 κ i -1 s + c 1 c 2 κ i , ψ p (κ i ) = c 1 + c 2 -c 1 c 2 c 2 κ i -1 s + c 1 c 2 κ i , (ψ p + sϕ p ) c 2 c 1 s = c 1 + c 2 -c 1 c 2 c 1 .
With the discussions above, we also find that

1 + s ϕ p (z) ψ p (z) = (1 -c 1 )s(z -κ 0 ) p i=1 (z -κ i ) p i=1 (z -ζ i ) , ψ p (z) + sϕ p (z) = s(1 -c 1 )(z -κ 0 ) p i=1 (z -κ i ) p i=1 (z -λ i ) . (B.3) Note now importantly that λ i > c 1 c 2 s is equivalent to -c 2 c 1 λ i < -1 s which is also ϕ p (λ i )/ψ p (λ i ) < ϕ p (κ i )/ψ p (κ i ); then, as ϕ p /ψ p is increasing, λ i > c 1
c 2 s is equivalent to λ i < κ i . On the opposite, for λ i < c 1 c 2 s , we find λ i > κ i . As such, to evaluate the contour integral in this setting, one must isolate two sets of singularities (see Fig. B.8): (i) those for which κ i > λ i (which are all the largest indices i for which λ i > c 1 c 2 s ) and (ii) those for which κ i < λ i . This affects the relative position of the branch cut with respect to λ i and therefore demands different treatments. In particular, the integrals over I B i and I D i may be restricted to integrals over shorter (possibly empty) segments. Nonetheless, the calculus ultimately reveals that, since the branch cut does not affect the local behavior of the integral around λ i , both cases entail the same result. In particular, in case (i) where λ i > κ i , recalling (B.1), one only has to evaluate

κ i -ε ζ i +ε ϕ p (x) ϕ p (x) - ψ p (x) ψ p (x) ψ p (x) c 2 dx = κ i -ε ζ i +ε 1 p - c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 1 x -λ j + 1 -c 2 c 2 1 x + c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 1 x -η j dx = 1 p p j=1 ln κ i -λ j ζ i -λ j + c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 ln κ i -η j κ i -λ j -ln ζ i -η j ζ i -λ j + 1 -c 2 c 2 ln κ i ζ i + o(ε).
In case (ii), subdividing the integral as

λ i -ε ζ i +ε + κ i -ε
λ i +ε brings immediate simplification of the additional terms in λ i and thus the result remains the same.

The integral over I C i is slightly more delicate to handle. In case (i), in the limit of small ε,

1 + s ϕ p ψ p (λ i + εe iθ ) = 1 -s c 1 c 2 λ i + εs c 1 c 2 p c 1 + c 2 -c 1 c 2 c 1 c 2 -1 e iθ + o(ε)
the angle of which is 0 + o(ε) uniformly on θ ∈ (-π, π] (since 1s c 1 c 2 λ i > 0). As such, for all small ε, the sum of the integrals over (-π, 0) and (0, π] reduces to the integral over (-π, π], leading up to a mere residue calculus, and

1 2πı I C i ln 1 + s ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz = ln 1 -s c 1 c 2 λ i c 1 + c 2 -c 1 c 2 c 1 c 2 - 1 p + o(ε).
In case (ii), 1s c 1 c 2 λ i < 0 and thus the angle of 1 + s ϕ p ψ p (λ i + εe iθ ) is close to π; for θ ∈ (0, π), this leads to an argument equal to π + o(ε) < π and for θ ∈ (-π, 0) to an argument equal to -π + o(ε) > -π. All calculus made, we then find that in either case (i) or (ii)

1 2πı I C i ln 1 + s ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz = ln 1 -s c 1 c 2 λ i c 1 + c 2 -c 1 c 2 c 1 c 2 - 1 p + o(ε).
As in the case of f (t) = ln(t), the integral over I A i is of order o(ε) and vanishes. As a consequence, summing over i ∈ {1, . . . , p}, we find that

1 2πı Γ = - 1 p p i, j=1 ln κ i -λ j ζ i -λ j - 1 -c 2 c 2 p i=1 ln κ i ζ i + c 1 + c 2 -c 1 c 2 c 1 c 2 p i, j=1 ln ζ i -η j ζ i -λ j -ln κ i -η j κ i -λ j - c 1 + c 2 -c 1 c 2 c 1 c 2 - 1 p p i=1 ln 1 -s c 1 c 2 λ j + o(ε).
Before reaching the final result, note that, from (B.3),

p i=1 1 p p j=1 ln |κ i -λ j | |ζ i -λ j | = 1 p p j=1 ln 1 + s ϕ p (λ j ) ψ p (λ j ) 1 λ j -κ 0 1 (1 -c 1 )s = 1 p p j=1 ln 1 - c 1 c 2 sλ i - 1 p p j=1 ln(λ j -κ 0 ) -ln((1 -c 1 )s)
and similarly p i, j=1

ln ζ i -η j ζ i -λ j = p i=1 ln ϕ p (ζ i ) (1 -c 1 )ζ i = p ln c 1 + c 2 -c 1 c 2 c 2 (1 -c 1 ) , p i=1 ln κ i ζ i = ln         1 + s ϕ p ψ p (0) -(1 -c 1 )sκ 0         = -ln (-(1 -c 1 )sκ 0 ) p i, j=1 ln κ i -η j κ i -λ j = p i=1 ln ϕ p (κ i ) (1 -c 1 )κ i = p i=1 ln c 1 + c 2 -c 1 c 2 c 2 (1 -c 1 ) 1 1 -c 1 c 2 s κ i
Using now (B.3) (right), we find that

p i=1 ln       1 -s c 1 c 2 λ i 1 -s c 1 c 2 κ i       = p i=1 ln       c 2 c 1 s -λ i c 2 c 1 s -κ i       = ln         ψ p c 2 c 1 s + sϕ p c 2 c 1 s s(1 -c 1 ) c 2 c 1 s -κ 0         = ln         c 1 + c 2 -c 1 c 2 sc 1 (1 -c 1 ) c 2 c 1 s -κ 0         .
Combining the previous results and remarks then leads to

1 2πı Γ = c 1 + c 2 -c 1 c 2 c 1 c 2 ln c 1 + c 2 -c 1 c 2 (1 -c 1 )(c 2 -sc 1 κ 0 ) + 1 -c 2 c 2 ln (-sκ 0 (1 -c 1 )) + ln((1 -c 1 )s) + 1 p p i=1 ln(λ i -κ 0 ) = c 1 + c 2 -c 1 c 2 c 1 c 2 ln c 1 + c 2 -c 1 c 2 (1 -c 1 )(c 2 -sc 1 κ 0 ) + 1 c 2 ln (-sκ 0 (1 -c 1 )) + 1 p p i=1 ln 1 - λ i κ 0 .
This concludes the proof for the case c 1 > 0. In the limit where c 1 → 0, it suffices to use the Taylor expansion of the leftmost logarithm in the small c 1 limit, i.e., ln(c 2 (1c 1 ) + c 1 ) ∼ ln(c 2 (1c 1 )) + c 1 /(c 2 (1c 1 )) and ln(c 2 (1c 1 ) -

sc 1 κ 0 (1 -c 1 )) ∼ ln(c 2 (1 -c 1 )) -sc 1 κ 0 /c 2 .

Appendix B.5.1. The dilogarithm function

The (real) dilogarithm is defined as the function Li 2 (x) = -x 0 {ln(1u)/u}du for x ∈ (-∞, 1]. The dilogarithm function intervenes in many instances of the evaluation of the contour integral of Theorem 1, through the subsequently defined function F(X, Y; a). This function assumes different formulations depending on the relative position of X, Y, a on the real axis.

Lemma 1 (Dilogarithm integrals). We have the following results and definition

(X, Y ≥ a > 0) X Y ln(x -a) x dx ≡ F(X, Y; a) = Li 2 a X -Li 2 a Y + 1 2 ln 2 (X) -ln 2 (Y) (X, Y > 0 > a) X Y ln(x -a) x dx ≡ F(X, Y; a) = -Li 2 X a + Li 2 Y a + ln X Y ln(-a) (a > X, Y, 0 & XY > 0) X Y ln(a -x) x dx ≡ F(-X, -Y; -a) = -Li 2 X a + Li 2 Y a + ln X Y ln(a) (X, Y > 0) X Y ln(x) x dx ≡ F(X, Y; 0) = 1 2 ln 2 (X) - 1 2 ln 2 (Y).
Lemma 2 (Properties of Dilogarithm functions [30, Section I-2]). The following relations hold

(x < 0) Li 2 1 x + Li 2 (x) = - 1 2 ln 2 (-x) - π 2 6 (0 < x < 1) Li 2 (1 -x) + Li 2 (x) = -ln(x) ln(1 -x) + π 2 6 (0 < x < 1) Li 2 (1 -x) + Li 2 1 - 1 x = - 1 2 ln 2 (x) (x < 1, ε 1) Li 2 (x + ε) = Li 2 (x) -ε ln(1 -x) x + ε 2 (1 -x) ln(1 -x) + x 2(1 -x)x 2 + O(ε 3 ). Appendix B.5.2

. Integral evaluation

As in the case where f (t) = ln(t), we shall evaluate the complex integral based on the contour displayed in Fig. B.7. The main difficulty here arises in evaluating the real integrals over the segments I B i and I D i . Again, we start from the Equation (B.1). In particular, the integral over I B i reads

1 2πı I B i ln 2 ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz = 2 λ i -ε ζ i +ε ln - ϕ p (x) ψ p (x) ϕ p (x) ϕ p (x) - ψ p (x) ψ p (x) ψ p (x) c 2 dx = 2 λ i -ε ζ i +ε         ln(1 -c 1 ) + ln(x) + l<i ln(x -η l ) + l>i ln(η l -x) + ln(η i -x) - l≤i ln(x -ζ l ) - l>i ln(ζ l -x)         ×         1 p - c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 1 x -λ j + 1 -c 2 c 2 1 x + c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 1 x -η j         dx.
Note that we have chosen to write the logarithms in such a way that every integral is a well-defined real integral.

Using now the fact that

X Y ln(x -a) x -b dx = F(X -b, Y -b; a -b), X Y ln(a -x) x -b dx = F(b -X, b -Y; b -a)
which we apply repetitively, and very carefully, to the previous equality, we find after simplification and addition of the contributions from I D i , which is treated together with I B i , along with those from I A i , I C i and I E i (details are provided in Supplementary Material)

1 2πı Γ ln 2 ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz = c 1 + c 2 -c 1 c 2 c 1 c 2        p i=1 ln 2 ((1 -c 1 )η i ) -ln 2 ((1 -c 1 )λ i ) +2 1≤i, j≤p Li 2 1 - ζ i λ j -Li 2 1 - η i λ j + Li 2 1 - η i η j -Li 2 1 - ζ i η j         - 1 -c 2 c 2        ln 2 (1 -c 2 ) -ln 2 (1 -c 1 ) + p i=1 ln 2 (η i ) -ln 2 (ζ i )        - 1 p         2 1≤i, j≤p Li 2 1 - ζ i λ j -Li 2 1 - η i λ j - p i=1 ln 2 ((1 -c 1 )λ i )         (B.4)
which provides an exact, yet rather impractical, final expression for the integral since the expression involves the evaluation of O(p 2 ) dilogarithm terms which may be computationally intense for large p.

At this point, it is not easy to fathom why the retrieved expression would remain of order O(1) with respect to p. In order to both simplify the expression and retrieve a visually clear O(1) estimate, we next proceed to a large p Taylor expansion of the above result. In particular, from the last item in Lemma 2, we perform a (second order) Taylor expansion of all Li 2 (1 -X) terms above in the vicinity of λ i /λ j . This results in

i, j Li 2 1 - ζ i λ j -Li 2 1 - η i λ j + Li 2 1 - η i η j -Li 2 1 - ζ i η j = (∆ η ζ ) T M(∆ η λ ) + o p (1) 1 p i, j Li 2 1 - ζ i λ j -Li 2 1 - η i λ j = - 1 p (∆ η ζ ) T N1 p + o p (1)
with ∆ b a , M and N defined in the statement of Corollary 4. With these developments, we deduce the final approximation

1 2πı Γ ln 2 - ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz = 2 c 1 + c 2 -c 1 c 2 c 1 c 2        ∆ η ζ T M ∆ η λ + i ln ((1 -c 1 )λ i ) λ i (η i -λ i )        - 2 p ∆ η ζ T N1 p + 1 p i ln 2 ((1 -c 1 )λ i ) -2 1 -c 2 c 2        1 2 ln 2 (1 -c 2 ) - 1 2 ln 2 (1 -c 1 ) + i (η i -ζ i ) ln(λ i ) λ i        + o p (1).
For symmetry, it is convenient to finally observe that ln(1

-c 1 ) i (η i -ζ i )/λ i ∼ ln(1 -c 1 ) i ln(η i /ζ i ) = -ln 2 (1 -c 1 )
; replacing in the last parenthesis provides the result of Corollary 4 for c 1 > 0.

To determine the limit as c 1 → 0, it suffices to remark that in this limit η i = λ i + c 1 p λ i +o(c 1 ) (this can be established using the functional relation ϕ p (η i ) = 0 in the small c 1 limit). Thus it suffices to replace in the above expression the vector ηζ by the vector ηλ, the vector c 1 +c 2 -c 1 c 2 c 1 c 2 (η -λ) by the vector 1 p λ, and taking c 1 = 0 in all other instances (where the limits for c 1 → 0 are well defined).

Appendix C. Integration contour determination

This section details the complex integration steps sketched in Appendix A. These details rely heavily on the works of [START_REF] Silverstein | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF] and follow similar ideas as in, e.g., [START_REF] Couillet | Eigen-inference for energy estimation of multiple sources[END_REF].

Our objective is to ensure that the successive changes of variables involved in Appendix A move any complex contour closely encircling the support of µ onto a valid contour encircling the support of ν; we will in particular be

ω - ω + z - z + S ξ 2 S ν z ω • (z) ω - ω + z - z + S ξ 2 S ν z ω • (z) Fig. C.9: Variable change z → ω • (z) = z + c ∞ 2 zdν(t) z-t for c ∞ 2 < 1 (left) and c ∞ 2 > 1 (right). S θ is the support of the probability measure θ. For 0 < ω -= ω(z -) < inf S ν , the pre-image z -is necessarily negative for c ∞ 2 > 1.
careful that the resulting contour, in addition to encircling the support of ν, does not encircle additional values possibly bringing undesired residues (such as 0). We will proceed in two steps, first showing that a contour encircling µ results on a contour encircling ξ 2 and a contour encircling ξ 2 results on a contour encircling ν.

Let us consider a first contour Γ ξ 2 closely around the support of ξ 2 (in particular not containing 0). We have to prove that any point ω of this contour is mapped to a point of a contour Γ ν closely around the support of ν.

The change of variable performed in (A.6) reads, for all ω ∈ C \ Supp(ξ 2 ),

z ≡ z(ω) = -ω -(1 -c ∞ 2 ) + c ∞ 2 ωm ξ 2 (ω) = -1 m ξ2 (ω) where we recall that ξ2 = c ∞ 2 ξ 2 +(1-c ∞ 2 )δ 0 . Since [ω] [m ξ2 (ω)] > 0 for [ω] 0, we already have that [z] [ω] > 0 for all non-real ω.
It therefore remains to show that real ω's outside the support of ξ 2 project onto properly located real z's, i.e., on either side of the support of ν. This conclusion follows from the seminal work [START_REF] Silverstein | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF] on the spectral analysis of sample covariance matrices. The essential idea is to note that, due to (A.5), the relation z(ω) = -1/m ξ2 (ω) can be inverted as

ω ≡ ω(z) = - 1 m ξ2 + c ∞ 2 tdν(t) 1 + tm ξ2 = z + c ∞ 2 tdν(t) 1 -t z .
In [START_REF] Silverstein | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF], it is proved that the image by ω(•) of z(R \ Supp(ξ 2 )) coincides with the increasing sections of the function ω • : R \ Supp(ν) → R, z → ω(z). The latter being an explicit function, its functional analysis is simple and allows in particular to properly locate the real pairs (ω, z). Details of this analysis are provided in [START_REF] Silverstein | Analysis of the limiting spectral distribution of large dimensional random matrices[END_REF] as well as in [START_REF] Couillet | Analysis of the limit spectral measure of large random matrices of the separable covariance type[END_REF], which shall not be recalled here. The function ω • is depicted in Fig. C.9; we observe and easily prove that, for c ∞ 2 < 1, any two values z -< inf(Supp(ν)) ≤ sup(Supp(ν)) < z + have respectively images ω -and ω + satisfying w -< inf(Supp(ξ 2 )) ≤ sup(Supp(ξ 2 )) < w + as desired. This is however not the case for c ∞ 2 > 1 where {z -, z + } enclose not only Supp(ν) but also 0 and therefore do not bring a valid contour. This essentially follows from the fact that (ϕ p /ψ p ) (0) is positive for c ∞ 2 < 1 and negative for c ∞ 2 > 1.

The same reasoning now holds for the second variable change. Indeed, note that here

ω = u(1 + c ∞ 1 um µ (u)) = u 1 -c ∞ 1 - c ∞ 1 u m µ -1 1 u = -m μ-1 1 u .
Exploiting (A.1) provides, as above, a functional inverse given here by

u ≡ u(ω) = 1 ω + c ∞ 1 dξ 2 (t) t -ω -1
and the analysis follows the same arguments as above (see display in Recall the dilogarithm definition (depending on the position of the arguments on the real axis)

(X, Y ≥ a > 0) X Y ln(x -a) x dx ≡ F(X, Y; a) = Li 2 a X -Li 2 a Y + 1 2 ln 2 (X) -ln 2 (Y) (X, Y > 0 > a) X Y ln(x -a) x dx ≡ F(X, Y; a) = -Li 2 X a + Li 2 Y a + ln X Y ln(-a) (a > X, Y, 0 & XY > 0) X Y ln(a -x) x dx ≡ F(-X, -Y; -a) = -Li 2 X a + Li 2 Y a + ln X Y ln(a) (X, Y > 0) X Y ln(x) x ≡ F(X, Y; 0) = 1 2 ln 2 (X) - 1 2 ln 2 (Y).
and the two lemmas Lemma 1 (Dilogarithm integrals). We have the following results and definition

(X, Y ≥ a > 0) X Y ln(x -a) x dx ≡ F(X, Y; a) = Li 2 a X -Li 2 a Y + 1 2 ln 2 (X) -ln 2 (Y) (X, Y > 0 > a) X Y ln(x -a) x dx ≡ F(X, Y; a) = -Li 2 X a + Li 2 Y a + ln X Y ln(-a) (a > X, Y, 0 & XY > 0) X Y ln(a -x) x dx ≡ F(-X, -Y; -a) = -Li 2 X a + Li 2 Y a + ln X Y ln(a) (X, Y > 0) X Y ln(x) x dx ≡ F(X, Y; 0) = 1 2 ln 2 (X) - 1 2 ln 2 (Y).
Lemma 2 (Properties of Dilogarithm functions [1, Section I-2]). The following relations hold

(x < 0) Li 2 1 x + Li 2 (x) = - 1 2 ln 2 (-x) - π 2 6 (0 < x < 1) Li 2 (1 -x) + Li 2 (x) = -ln(x) ln(1 -x) + π 2 6 
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(0 < x < 1) Li 2 (1 -x) + Li 2 1 - 1 x = - 1 2 ln 2 (x) (x < 1, ε 1) Li 2 (x + ε) = Li 2 (x) -ε ln(1 -x) x + ε 2 (1 -x) ln(1 -x) + x 2(1 -x)x 2 + O(ε 3 ).
We start from the expression of the integral over I B i (and equivalently over

I D i ) 1 2πı I B i ln 2 ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz = 2 λ i -ε ζ i +ε ln - ϕ p (x) ψ p (x) ϕ p (x) ϕ p (x) - ψ p (x) ψ p (x) ψ p (x) c 2 dx = 2 λ i -ε ζ i +ε         ln(1 -c 1 ) + ln(x) + l<i ln(x -η l ) + l>i ln(η l -x) + ln(η i -x) - l≤i ln(x -ζ l ) - l>i ln(ζ l -x)         ×         1 p - c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 1 x -λ j + 1 -c 2 c 2 1 x + c 1 + c 2 -c 1 c 2 c 1 c 2 p j=1 1 x -η j         dx.
From this expression and the dilogarithm definition, we have the summation over the integrals on I B i and

I D i 1 2πı       I B i + I D i       ln 2 ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz = 2 λ i -ε ζ i +ε + η i -ε λ i +ε ln - ϕ p (x) ψ p (x) ϕ p (x) ϕ p (x) - ψ p (x) ψ p (x) ψ p (x) c 2 dx = 2 1 p - c 1 + c 2 -c 1 c 2 c 1 c 2         ln(1 -c 1 ) j i ln η i -λ j ζ i -λ j +F(-ε, ζ i -λ i + ε; -λ i ) + F(η i -λ i -ε, ε; -λ i ) + j i F(η i -λ j , ζ i -λ j ; -λ j ) + l<i j (i,l) F(η i -λ j , ζ i -λ j ; η l -λ j ) -F(η i -λ j , ζ i -λ j ; ζ l -λ j ) + l<i F(η i -λ l , ζ i -λ l ; η l -λ l ) -F(η i -λ l , ζ i -λ l ; ζ l -λ l ) + l<i F(-ε, ζ i -λ i + ε; η l -λ i ) + F(η i -λ i -ε, ε; η l -λ i ) - l<i F(-ε, ζ i -λ i + ε; ζ l -λ i ) + F(η i -λ i -ε, ε; ζ l -λ i ) + l>i j (i,l) F(-η i + λ j , -ζ i + λ j ; -η l + λ j ) -F(-η i + λ j , -ζ i + λ j ; -ζ l + λ j ) + l>i F(-η i + λ l , -ζ i + λ l ; -η l + λ l ) -F(-η i + λ l , -ζ i + λ l ; -ζ l + λ l ) + l>i F(ε, -ζ i + λ i -ε; -η l + λ i ) + F(-η i + λ i + ε, -ε; -η l + λ i ) - l>i F(ε, -ζ i + λ i -ε; -ζ l + λ i ) + F(-η i + λ i + ε, -ε; -ζ l + λ i ) + j i F(-η i + λ j , -ζ i + λ j ; -η i + λ j ) -F(η i -λ j , ζ i -λ j ; ζ i -λ j ) +F(ε, λ i -ζ i -ε; λ i -η i ) + F(λ i -η i + ε, -ε; λ i -η i ) -F(-ε, ζ i -λ i + ε; ζ i -λ i ) -F(η i -λ i -ε, ε; ζ i -λ i )) + 2 1 -c 2 c 2 ln(1 -c 1 ) ln η i ζ i + F(η i , ζ i ; 0) + F(-η i , -ζ i ; -η i ) -F(η i , ζ i ; ζ i ) + l<i F(η i , ζ i ; η l ) -F(η i , ζ i ; ζ l ) + l>i F(-η i , -ζ i ; -η l ) -F(-η i , -ζ i ; -ζ l )        + 2 c 1 + c 2 -c 1 c 2 c 1 c 2         ln(1 -c 1 ) j i ln η i -η j ζ i -η j + j i F(η i -η j , ζ i -η j ; -η j ) + j (i,l) l<i F(η i -η j , ζ i -η j ; η l -η j ) + j (i,l) l>i F(-η i + η j , -ζ i + η j ; -η l + η j ) + j i F(-η i + η j , -ζ i + η j ; -η i + η j ) - j (i,l) l<i F(η i -η j , ζ i -η j ; ζ l -η j ) - j (i,l) l>i F(-η i + η j , -ζ i + η j ; -ζ l + η j ) - j i F(η i -η j , ζ i -η j ; ζ i -η j ) + ln(1 -c 1 ) ln ε η i -ζ i + l<i F(-ε, ζ i -η i + ε; η l -η i ) -F(-ε, ζ i -η i + ε; ζ l -η i ) + l>i F(ε, η i -ζ i -ε; η i -η l ) -F(ε, η i -ζ i -ε; η i -ζ l ) +F(ε, -ζ i + η i -ε, ε) -F(-ε, ζ i -η i + ε, ζ i -η i ) + F(-ε, ζ i -η i + ε, -η i ) + l<i F(η i -η l , ζ i -η l ; 0) + l>i F(-η i + η l , -ζ i + η l ; 0) - l<i F(η i -η l , ζ i -η l ; ζ l -η l ) - l>i F(-η i + η l , -ζ i + η l ; -ζ l + η l )        + 2 1 p - c 1 + c 2 -c 1 c 2 c 1 c 2 ln(1 -c 1 ) ln η i -λ i λ i -ζ i + o ε (1).
To retrieve the expression above, particular care was taken on the relative positions of the λ i, j,l , η i, j,l and ζ i, j,l to obtain the proper form of the F function; besides, to avoid further complications, a small ε approximation was used whenever the F function has a finite limit when ε → 0 (hence the trailing o ε (1) in the formula).

To go further, we now make use of additional identities obtained from Lemma 2 (these are easily proved).

Lemma 3 (Properties of the function F). We have the following properties of the function F: Exploiting the relations from the previous lemma, we have the following first result:

(X ≥ Y > 0) F(-X, -Y; -X) -F(X, Y; Y) = 1 2 ln 2 X Y (Y ≥ X > 0) F(X, Y; X) -F(-X, -Y; -Y) = 1 2 ln 2 X Y (X, Y > 0) F(-X + ε, -ε; -X) + F(ε, Y -ε; -X) -F(X -ε, ε; -Y) -F(-ε, -Y + ε; -Y) = - π 2 2 + 1 2 ln 2 X Y + o ε (1) (T, Z ≥ X, Y > 0) F(-ε, -Y + ε; -T ) + F(X -ε, ε; -T ) -F(-ε, -Y + ε; -Z) -F(X -ε, ε; -Z) + F(T, Z; -X) -F(T, Z; Y) = ln X Y ln T Z + o ε (1) (T, Z ≥ X, Y > 0) F(ε, -Y -ε; -T ) + F(-X + ε, -ε; -T ) -F(ε, X -ε; -Z) -F(-Y + ε, -ε; -Z) + F(T, Z; X) -F(T, Z; -Y) = ln X Y ln T Z + o ε ( 1 
p i=1 F(-ε, ζ i -λ i + ε; -λ i ) + F(η i -λ i -ε, ε; -λ i ) = p i=1 Li 2 1 - ζ i λ i -Li 2 1 - η i λ i + ln(λ i ) ln η i -λ i λ i -ζ i
The terms involving double or triple sums (over i, l or i, j, l) are more subtle to handle. By observing that i l>i G il = l i<l G il which, up to a switch in the notation (i, l) into (l, i), is the same as i l<i G li , we have that

i l>i G il + i l<i G il = i l>i G il + G li .
Using this observation to gather terms together, we find notably from Lemma 3 that i l<i j (i,l)

F(η i -λ j , ζ i -λ j ; η l -λ j ) -F(η i -λ j , ζ i -λ j ; ζ l -λ j ) + i l>i j (i,l)

F(-η i + λ j , -ζ i + λ j ; -η l + λ j ) -F(-η i + λ j , -ζ i + λ j ; -ζ l + λ j )

= i l<i j (i,l) ln λ j -η i λ j -ζ i ln λ j -η l λ j -ζ l = 1 2 i l i j (i,l) ln λ j -η i λ j -ζ i ln λ j -η l λ j -ζ l
Similarly, 

= i l<i F(-ε, ζ i -λ i + ε; η l -λ i ) + F(η i -λ i -ε, ε; η l -λ i ) - i l<i F(-ε, ζ i -λ i + ε; ζ l -λ i ) + F(η i -λ i -ε, ε; ζ l -λ i ) + i l<i F(-η l + λ i , -ζ l + λ i ; -η i + λ i ) -F(-η l + λ i , -ζ l + λ i ; -ζ i + λ i ) = i l<i ln η i -λ i ζ i -λ i ln λ i -η l λ i -ζ l + o ε (1)
and, symmetrically,

i l>i F(ε, -ζ i + λ i -ε; -η l + λ i ) + F(-η i + λ i + ε, -ε; -η l + λ i ) - i l>i F(ε, -ζ i + λ i -ε; -ζ l + λ i ) + F(-η i + λ i + ε, -ε; -ζ l + λ i ) + i l<i F(η i -λ l , ζ i -λ l ; η l -λ l ) -F(η i -λ l , ζ i -λ l ; ζ l -λ l ) = i l>i F(ε, -ζ i + λ i -ε; -η l + λ i ) + F(-η i + λ i + ε, -ε; -η l + λ i ) = i>l ln η i ζ i ln η l ζ l = 1 2 i l i ln η i ζ i ln η l ζ l i F(-η i , -ζ i ; -η i ) -F(η i , ζ i ; ζ i ) = 1 2 i ln 2 η i ζ i so that i l i F(η i , ζ i ; η l ) -F(η i , ζ i ; ζ l ) + i F(-η i , -ζ i ; -η i ) -F(η i , ζ i ; ζ i ) = 1 2        i ln η i ζ i        2 .
Recall now the already established identity i ln( η i ζ i ) =ln((1c 1 )(1c 2 )) from which

i l i F(η i , ζ i ; η l ) -F(η i , ζ i ; ζ l ) + i F(-η i , -ζ i ; -η i ) -F(η i , ζ i ; ζ i ) = 1 2 ln 2 ((1 -c 1 )(1 -c 2 )).
Continuing, we also have

j i ln η i -λ j ζ i -λ j = ln - c 1 c 2 (1 -c 1 )
ln

η i -λ i ζ i -λ i = ln c 1 c 2 (1 -c 1 ) η i -λ i λ i -ζ i .
By Lemma 3 again, we next find The next term also simplifies through the definition of ϕ p /ψ p :

i j i ln η i -η j ζ i -η j = j ln c 1 c 1 + c 2 -c 1 c 2 ϕ p (η j ) (ζ j -η j ) (1 -c 1 )η j .
Still from Lemma 3 and with the same connection to ϕ p /ψ p , we have j l<i F(η i -η j , ζ i -η j ; η l -η j ) + j l>i F(-η i + η j , -ζ i + η j ; -η l + η j )

+ j i F(-η i + η j , -ζ i + η j ; -η i + η j ) - j l<i F(η i -η j , ζ i -η j ; ζ l -η j ) - j l>i F(-η i + η j , -ζ i + η j ; -ζ l + η j ) - j i F(η i -η j , ζ i -η j ; ζ i -η j ) = i j (i,l) l<i ln η i -η j ζ i -η j ln η l -η j ζ l -η j + 1 2 ln 2 η j -η i η j -ζ i = 1 2 i j (i,l) l i ln η i -η j ζ i -η j ln η l -η j ζ l -η j + 1 2 ln 2 η j -η i η j -ζ i = 1 2 i l j (i,l) ln η i -η j ζ i -η j ln η l -η j ζ l -η j = 1 2 j ln 2 c 1 c 1 + c 2 -c 1 c 2 ϕ (η j ) (ζ j -η j ) (1 -c 1 )η j .
Again from Lemma 3, we next have

i l<i F(-ε, ζ i -η i + ε; η l -η i ) -F(-ε, ζ i -η i + ε; ζ l -η i ) - l>i F(-η i + η l , -ζ i + η l ; -ζ l + η l ) = i l<i ln ε η i -ζ i ln η i -η l η i -ζ l - 1 2 ln 2 (η i -η l ) + 1 2 ln 2 (η i -ζ l ) + o ε (1).
We also have the following relations

i l>i F(ε, η i -ζ i -ε; η i -η l ) -F(ε, η i -ζ i -ε; η i -ζ l ) - l<i F(η i -η l , ζ i -η l ; ζ l -η l ) = i l>i 1 2 ln 2 (ζ l -η i ) - 1 2 ln 2 (η l -η i ) + ln η l -η i ζ l -η i ln ε η i -ζ i + o ε (1)
and l<i F(-ε,

ζ i -η i + ε; η l -η i ) -F(-ε, ζ i -η i + ε; ζ l -η i ) - l>i F(-η i + η l , -ζ i + η l ; -ζ l + η l ) = i l<i ln ε η i -ζ i ln η i -η l η i -ζ l - 1 2 ln 2 (η i -η l ) + 1 2 ln 2 (η i -ζ l ) + o ε (1)
which together gives

i l>i F(ε, η i -ζ i -ε; η i -η l ) -F(ε, η i -ζ i -ε; η i -ζ l ) - l<i F(η i -η l , ζ i -η l ; ζ l -η l ) + l<i F(-ε, ζ i -η i + ε; η l -η i ) -F(-ε, ζ i -η i + ε; ζ l -η i ) - l>i F(-η i + η l , -ζ i + η l ; -ζ l + η l ) = i l i ln ε η i -ζ i ln η i -η l η i -ζ l .
The next term is 

F(ε, -ζ i + η i -ε, ε) -F(-ε, ζ i -η i + ε, ζ i -η i ) = 1 
+ i Li 2 1 - ζ i λ i -Li 2 1 - η i λ i + ln(λ i ) ln η i -λ i λ i -ζ i + i j i F(η i -λ j , ζ i -λ j ; -λ j ) + 1 2 p ln 2 c 1 c 2 (1 -c 1 ) - π 2 2 p              ln(1 -c 1 ) j ln c 1 c 1 + c 2 -c 1 c 2 ϕ (η j ) (ζ j -η j )
(1c 1 )η j + i j i F(η i -η j , ζ i -η j ; -η j )

+ 1 2 j ln 2 c 1 c 1 + c 2 -c 1 c 2 ϕ (η j ) (ζ j -η j ) (1 -c 1 )η j + i Li 2 1 - ζ i η i + i ln ϕ ψ (η i ) ln ε η i -ζ i + ln(η i -ζ i ) ln ε η i -ζ i + i 1 2 ln 2 ε η i -ζ i - π 2 6        + i c 1 + c 2 -c 1 c 2 c 1 c 2 -ln 2 ϕ p (η i ) c 1 c 1 + c 2 -c 1 c 2 -ln 2 (ε) -2 ln(ε) ln ϕ ψ (η i ) - π 2 3 + i ln 2 c 1 c 2 λ i -π 2 c 1 + c 2 -c 1 c 2 c 1 c 2 - 1 p + o ε (1).
which, in the limit of small ε, can be simplified as

1 2πı Γ ln 2 ϕ p (z) ψ p (z) ϕ p (z) ϕ p (z) - ψ p (z) ψ p (z) ψ p (z) c 2 dz = -2 1 p - c 1 + c 2 -c 1 c 2 c 1 c 2        p ln(1 -c 1 ) ln c 1 c 2 (1 -c 1 ) + i Li 2 1 - ζ i λ i -Li 2 1 - η i λ i + ln(λ i ) ln η i -λ i λ i -ζ i c 1 + c 2 -c 1 c 2 c 1 c 2         ln(1 -c 1 ) j ln c 1 c 1 + c 2 -c 1 c 2 ϕ (η j ) (ζ j -η j ) (1 -c 1 )η j + i j i F(η i -η j , ζ i -η j ; -η j ) - i ln ϕ ψ (η i ) ln (η i -ζ i ) + i Li 2 1 - ζ i η i - 1 2 ln 2 (η i -ζ i )        - i c 1 + c 2 -c 1 c 2 c 1 c 2 -ln 2 η i -ζ i (1 -c 1 )η i + 2 ln η i -ζ i (1 -c 1 )η i ln c 1 c 1 + c 2 -c 1 c 2 ϕ (η i ) (ζ i -η i ) (1 -c 1 )η i - i ln 2 c 1 c 2 λ i c 1 + c 2 -c 1 c 2 c 1 c 2 - 1 p .
After further book-keeping and simplifications, we ultimately find:

1 2πı Γ ln 2 ϕ p (z) ψ p (z) ϕ p (z)
ϕ p (z) -ψ p (z)

ψ p (z)
ψ p (z)

c 2 dz = c 1 + c 2 -c 1 c 2 c 1 c 2        p i=1 ln 2 ((1 -c 1 )η i ) -ln 2 ((1 -c 1 )λ i ) +2 1≤i, j≤p Li 2 1 - ζ i λ j -Li 2 1 - η i λ j + Li 2 1 - η i η j -Li 2 1 - ζ i η j         - 1 -c 2 c 2        ln 2 (1 -c 2 ) -ln 2 (1 -c 1 ) + p i=1 ln 2 (η i ) -ln 2 (ζ i )        - 1 p         2 1≤i, j≤p Li 2 1 - ζ i λ j -Li 2 1 - η i λ j - p i=1 ln 2 ((1 -c 1 )λ i )        
as desired.
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 1 Fig. 1: Estimation of the squared Fisher distance D 2 F (C 1 , C 2 ). Relative estimation error for x (a) i ∼ N(0, C a ) with [C

Fig. 2 :

 2 Fig. 2: Estimation of the squared Fisher distance D 2 F (C 1 , C 2 ). Relative estimation error for x (a) i ∼ N(0, C a ) with [C

Fig. 3 :

 3 Fig. 3: First and second eigenvectors of K for the traditional estimator (red circles) versus the proposed one (blue crosses); (left) random number of snapshots n i ; (right) n 1 = . . . = n m-1 = 512 and n m = 256.

  u) ψ(u) du as requested. It then remains to use the convergence ν p → ν and m µ p a.s.

Fig. B. 4 :Fig. B. 5 :

 45 Fig. B.4: Visual representation of x → M p (x) = xm µp (x); here for p = 4, n 1 = 8, n 2 = 16. Solutions to M p (x) = -1/c 1 (i.e., η i 's) and to M p (x) = (1c 2 )/c 2 (i.e., ζ i 's) indicated in red crosses. Green solid lines indicate sets of negative ϕ p /ψ p .

Fig. B. 6 :

 6 Fig. B.6: Example of visual representation of ϕ p /ψ p : R → R, x → ϕ p (x)/ψ p (x); here for p = 4, n 1 = 8, n 2 = 16. In green solid lines are stressed the sets over which ϕ p (x)/ψ p (x) < 0 (which correspond to branch cuts in the study of f (z) = ln k (z)). Possible real crossings of the contour Γ are indicated, notably showing that no branch cut is passed through when f (z) = ln k (z).

  Fig. B.6 displays the behavior of ϕ p /ψ p when restricted to the real axis.

Fig. B. 7 :

 7 Fig. B.7: Chosen integration contour. The set I B i is the disjoint union of the segments [ζ i + ε + 0 + ı, λ i -ε + 0 + ı] and [ζ i + ε + 0 -ı, λ i -ε + 0 -ı]. Similarly the set I D i is the disjoint union of the segments [λ i + ε + 0 + ı, η i -ε + 0 + ı] and [λ i + ε + 0 -ı, η i -ε + 0 -ı].The sets I A i , I C i and I E i are the disjoint unions of semi-circles (in the upper-or lower-half complex plane) of diameters ε surrounding ζ i , λ i and η i respectively.

Fig. B. 6 .

 6 This naturally leads to computing the complex integral estimate of f dν based on the contour displayed in Fig. B.7, which avoids the branch cuts. This contour encloses no singularity of the integrand and therefore has a null integral. With the notations of Fig. B.7, the sought-for integral (over Γ) therefore satisfies 0

Fig. B. 8 :

 8 Fig. B.8: Visual representation of the signs of ϕ p and ψ p around singularities for the function f (t) = ln(1 + st). Left: case where κ i > λ i . Right: case where κ i > λ i .

  Fig. C.10 of the extension to u • (ω) = u(ω) for all ω ∈ R \ Supp(ξ 2 )).
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3 (

 3 ) (X, Y, Z, T > 0) F(X, Y; T ) + F(T, Z; X) -F(X, Y; Z) -F(T, Z; Y) = ln X Y ln T Z XY > 0 & ZT > 0) F(X, Y; -Z) + F(Z, T ; -X) -F(X, Y; -T ) -F(Z, T ; -Y) = ln X Y ln T Z (Y, Z > 0 & εX > 0) F(ε, X; -Y) + F(ε, X; -Z) -F(Y, Z; -X) = ln ε

  ε, ζ i -λ i + ε; η l -λ i ) + F(η i -λ i -ε, ε; η l -λ i ) i l<i F(-ε, ζ i -λ i + ε; ζ l -λ i ) + F(η i -λ i -ε, ε; ζ l -λ i ) + i l>i F(-η i + λ l , -ζ i + λ l ; -η l + λ l ) -F(-η i + λ l , -ζ i + λ l ; -ζ l + λ l )

1 -

 1 η i , -ζ i ; -η l ) -F(-η i , -ζ i ; -ζ l ) + l<i F(η i , ζ i ; η l ) -F(η i , ζ i ; ζ l ) = η i , -ζ i , -η i ) -F(η i , ζ i ; ζ i ) + i l>i F(-η i , -ζ i ; -η l ) -F(-η i , -ζ i ; -ζ l ) + l<i F(η i , ζ i ; η l ) -F(η i , ζ i ; ζ l ) c 1 )(1c 2 )) .

2 ln 2 1 2 i l i ln 2 1 + c 2 -c 1 c 2 c 1 c 2 

 212122 ε η i -ζ i and finally the last term gives l<i F(η i -η l , ζ i -η l ; 0) + l>i F(-η i + η l , -ζ i + η l ; 0) = |η i -η l |ln 2 |ζ i -η l | .Putting all results above together, we obtain

  2 048, as a function of p. The "±" values correspond to one standard deviation of the estimates. Best estimates stressed in boldface characters.

	p	2	4	8	16	32	64	128	256	512
	D F (C 1 , C 2 ) 2	0.0980	0.1456	0.1694	0.1812	0.1872	0.1901	0.1916	0.1924	0.1927
	Proposed est.	0.0993	0.1470	0.1708	0.1827	0.1887	0.1918	0.1933	0.1941	0.1953
	Th. 1, x (a)									
	Proposed est.	0.0979	0.1455	0.1693	0.1811	0.1871	0.1902	0.1917	0.1926	0.1940
	Cor. 4, x (a)									
	Classical est.	0.1024	0.1529	0.1826	0.2063	0.2364	0.2890	0.3954	0.6339	1.2717
	x (a)									
	Proposed est.	0.0982	0.1455	0.1691	0.1811	0.1877	0.1901	0.1917	0.1922	0.1924
	Th. 1, x (a) i ∈ C Proposed est.	0.0968	0.1441	0.1675	0.1796	0.1861	0.1886	0.1903	0.1913	0.1931
	Cor. 4, x (a)									
	Classical est.	0.1012	0.1515	0.1809	0.2048	0.2354	0.2873	0.3937	0.6318	1.2679
	x									

i ∈ R p ± 0.0242 ± 0.0210 ± 0.0160 ± 0.0120 ± 0.0089 ± 0.0067 ± 0.0051 ± 0.0045 ± 0.0046 i ∈ R p ± 0.0242 ± 0.0210 ± 0.0160 ± 0.0120 ± 0.0089 ± 0.0067 ± 0.0051 ± 0.0045 ± 0.0046 i ∈ R p ± 0.0242 ± 0.0210 ± 0.0160 ± 0.0120 ± 0.0089 ± 0.0068 ± 0.0052 ± 0.0048 ± 0.0056 p ± 0.0171 ± 0.0145 ± 0.0114 ± 0.0082 ± 0.0063 ± 0.0046 ± 0.0037 ± 0.0028 ± 0.0028 i ∈ C p ± 0.0171 ± 0.0145 ± 0.0114 ± 0.0082 ± 0.0063 ± 0.0046 ± 0.0037 ± 0.0028 ± 0.0028

Table 2 :

 2 Distances and divergences, and their corresponding f (z) and related atomic functions.

  512, and (right) n 1 = 1024, n 2 = 2048, varying p.

		10 2	
	Relative error	10 0	slope -1
		10 -2	
		10 1	10 2
		p	

Classical approach, C 1 , C 2 unknown Classical approach, C 1 known, C 2 unknown Proposed approach, C 1 , C 2 unknown, Theorem 1 Proposed approach, C 1 , C 2 unknown, Corollary 4 Proposed approach, C 1 known, C 2 unknown, Theorem 1 Proposed approach, C 1 known, C 2 unknown, Corollary 4

ψ p (x) (1-c 1 )x ) = ln(1c 1 ). This is the sought-for result.

Couillet's work is supported by ANR RMT4GRAPH (ANR-14-CE28-0006)

Appendix A. Integral Form

We start by noticing that we may equivalently assume the following setting: (i) x (1) 1 , . . . , x (1) n 1 ∈ R p are vectors of i.i.d. zero mean and unit variance entries; (ii) x (2) 1 , . . . , x (2) n 2 ∈ R p are of the form x (2) i = C Appendix B.5. Development for f (t) = ln 2 (t)

The function f (t) = ln 2 (t) is at the core of the Fisher distance and is thus of prime importance in many applications. The evaluation of the complex integral in Theorem 1 for this case is however quite technical and calls for the important introduction of the dilogarithm function. We proceed with this introduction first and foremost.

. S θ is the support of the probability measure θ.

Appendix D. The case c ∞ 2 > 1 Allowing for c ∞ 2 > 1 brings along some key difficulties. First recall from Appendix C that, for a contour Γ surrounding Supp(µ), if c ∞ 2 > 1, the image (ϕ/ψ)(Γ) necessarily surrounds Supp(ν) ∪ {0}, while for c ∞ 2 < 1, 0 is excluded from the interior of (ϕ/ψ)(Γ) if 0 is not contained within Γ. This implies that, if f (z) has a singularity at z = 0, the relation f dν(t) = 1 2πı (ϕ/ψ)(Γ) f (z)m ν (z)dz no longer holds. For f (z) a polynomial in z, e.g., for f (z) = z, this poses no problem, thereby implying the validity of Corollary 1 for all c ∞ 2 > 0. For f (z) = ln(z) k (k ≥ 1) and similarly for f (z) = 1/z, to the best of our knowledge, there is no recovering from this technical difficulty. Notably, for f (z) = ln k (z), one cannot pass a closed path around Supp(ν) ∪ {0} without crossing a branch cut for the logarithm. This problem is reminiscent of the simpler-posed, yet still open problem, consisting in evaluating 1 p tr C -1 based on samples, say, x 1 , . . . , x p ∼ N(0, C), for p > n. While a consistent so-called G-estimator [START_REF] Girko | Introduction to general statistical analysis[END_REF] does exist for all p < n, this is not the case when p > n.

The case f (z) = ln(1 + sz) is more interesting. As the singularity for ln(1 + sz) is located at z = -1/s < 0, one can pass a contour around Supp(ν)∪{0} with no branch cut issue. However, one must now ensure that there exists a contour Γ surrounding Supp(µ) such that the leftmost real crossing of (ϕ/ψ)(Γ) is located within (-1/s, inf{Supp(ν)}). This cannot always be guaranteed. Precisely, one must show that there exists u -< inf{Supp(µ)} such that 1 + s(ϕ/ψ)(u -) > 0. In the case c ∞ 2 < 1 where (ϕ/ψ)(0) = 0, the increasing nature of ϕ/ψ ensures that for all u -∈ (0, inf{Supp(µ)}), 1 + s(ϕ/ψ)(u -) > 1 and the condition is fulfilled; however, for c ∞ 2 > 1, it is easily verified that (ϕ/ψ)(0) < 0. As a consequence, a valid u -exists if and only if 1 + s lim u↑inf{Supp(µ)} (ϕ/ψ)(u) > 0. When this condition is met, a careful calculus reveals that the estimators of Corollary 3 are still valid when c ∞ 2 > 1, with additional absolute values in the logarithm arguments (those were discarded in the proof derivation of Corollary 3 for c ∞ 2 < 1 as the arguments can be safely ensured to be positive). This explains the conclusion drawn in Remark 5. For generic ν, inf{Supp(µ)} is usually not expressible in explicit form (it can still be obtained numerically though by solving the fundamental equations (A.3) and (A.6), or estimated by min i {λ i , λ i > 0} in practice). However, for ν = δ 1 , i.e., for C 1 = C 2 , [28, Proposition 2.1] provides the exact form of inf{Supp(µ)} and of m µ (z); there, a simple yet cumbersome calculus leads to lim u↑inf{Supp

, which completes the results mentioned in Remark 5. Pursuing on the comments above on the estimation of tr C -1 , the fact that there exists a maximal value for s allowing for a consistent estimate of ln(1 + st)dν(t), and thus not of ln(t)dν(t) which would otherwise be retrieved in a large s approximation, is again reminiscent of the fact that consistent estimators for 1 p tr (C + sI p ) -1 are achievable when p > n, however for not-too small values of s, thereby not allowing for taking s → 0 in the estimate. This problem is all the more critical that p/n is large, which we also do observe from Equation 2for large values of c 2 .

Also, using Items 1 and 2 of Lemma 3, we find

Again from Lemma 3, we also have

Before going further, remark that the last four established relations can be assembled to reach

+ o ε (1).

Next, we have