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Abstract
Competition for resources is a fundamental characteristic of evolution. Auctions have 
been widely used to model competition of individuals for resources, and bidding behav-
iour plays a major role in social competition. Yet, how humans learn to bid efficiently 
remains an open question. We used model‐based neuroimaging to investigate the neural 
mechanisms of bidding behaviour under different types of competition. Twenty‐seven 
subjects (nine male) played a prototypical bidding game: a double action, with three 
“market” types, which differed in the number of competitors. We compared different 
computational learning models of bidding: directional learning models (DL), where the 
model bid is “nudged” depending on whether it was accepted or rejected, along with 
standard reinforcement learning models (RL). We found that DL fit the behaviour best 
and resulted in higher payoffs. We found the binary learning signal associated with 
DL to be represented by neural activity in the striatum distinctly posterior to a weaker 
reward prediction error signal. We posited that DL is an efficient heuristic for valuation 
when the action (bid) space is continuous. Indeed, we found that the posterior parietal 
cortex represents the continuous action space of the task, and the frontopolar prefrontal 
cortex distinguishes among conditions of social competition. Based on our findings, we 
proposed a conceptual model that accounts for a sequence of processes that are required 
to perform successful and flexible bidding under different types of competition.

K E Y W O R D S
adaptive learning, internal number line, social competition, striatum, value‐based decision‐making

1  |   INTRODUCTION

We often deal with situations where buyers and sellers meet 
to exchange goods at prices determined by fluctuations in 
supply and demand. Perceived market competition influences 
human bidding (van den Bos et al., 2008; Fischbacher, Fong, 
& Fehr, 2009) and even the value of commodities traded by 
non‐human animals. For instance, baboons (Henzi & Barrett, 
2002) and vervet monkeys (Fruteau, Voelkl, van Damme, 
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& Noë, 2009) demonstrate the effect of market competition 
on the price of natural currencies such as food or grooming. 
Indeed, biological auctions are used to model competition 
between species and individuals (Reiter, Kanodia, Gupta, 
Nowak, & Chatterjee, 2015). Despite its key importance in 
social behaviour and financial modelling, the neural mecha-
nisms of decision‐making under market competition are still 
unclear. In particular, how do we learn bidding strategies 
across different market scenarios? Here, we investigate the 
neural mechanisms underlying bidding under different con-
ditions of competition.

The study of bidding behaviour lies at the intersec-
tion of behavioural economics, game theory and cogni-
tive neuroscience. Much previous research has focused on 
simple sequential game theoretic paradigms, such as the 
ultimatum game (UG; Güth, Schmittberger, & Schwarze, 
1982; Sanfey, Rilling, Aronson, Nystrom, & Cohen, 
2003). Behavioural studies have shown that competition 
in UGs among proposers leads to higher bid offers (Roth, 
Prasnikar, Okuno‐Fujiwara, & Zamir, 1991), and in gen-
eral, it pushes players towards Nash equilibria with tell‐tale 
lower rejection rates (Fischbacher et al., 2009). A combina-
tion of fairness concerns and decision errors has been put 
forward to explain the effect of competition on offer distri-
butions in UGs (Fischbacher et al., 2009), but it is not clear 
how offers are picked in more general settings. In simul-
taneous bidding paradigms, quantal response equilibrium 
(McKelvey & Palfrey, 1995), a normative solution concept 
from game theory, has been shown to capture behaviour 
well. However, this model offers little insight into biologi-
cal learning mechanisms and requires costly computations 
based on beliefs about other players. In repeated games, 
players typically demonstrate an extended adaptation to 
the environment conditions (Fudenberg & Levine, 1998; 
Grosskopf, 2003; Roth et al., 1991), and very simple mod-
els have been shown to perform robustly as long as enough 
information about other players is provided (Fudenberg & 
Levine, 2009). Moreover, behavioural economics experi-
ments show that adaptive learning algorithms explain bar-
gaining behaviour well (Camerer & Ho, 1999; Erev & Roth, 
1998; Mookherjee & Sopher, 1994). Thus, a parsimonious 
learning model should be suitable for explaining offer dis-
tributions under changing supply and demand conditions.

Previous neuroimaging studies investigated bargain-
ing games, but focused on strategic deception and uncer-
tainty about trustworthiness (Bhatt, Lohrenz, Camerer, & 
Montague, 2010, 2012) or examined the influence of loss 
contemplation under social contexts in overbidding (Delgado, 
Schotter, Ozbay, & Phelps, 2008). In this study, we investi-
gated the neural mechanism of bidding behaviour under dif-
ferent conditions of competition. Subjects played the role of 
buyers in a double auction in three different market types, 
which differed in levels of supply and demand. To investigate 

buyer's decisions, we set the transaction price to equal the 
buyer's bid, which in case of acceptance becomes the final 
price, while rejection was set to be the worst outcome. This 
paradigm is similar to online auctions such as eBay auc-
tion, where multiple buyers bid for a good, and in financial 
transactions with buy limit orders (assuming that buyers are 
strongly incentivized to acquire the security/good). In these 
scenarios, repeated bidding serves to “probe” the market and 
estimates its current clearing price in a trial‐and‐error fash-
ion, and whereby, the buyer learns to bid more efficiently 
given the estimated clearing price and her needs.

Although traditionally theoretical accounts of adaptive 
learning in decision‐making tend to focus on model‐free re-
inforcement learning (RL), algorithms that are beyond this 
minimal account may be more suitable for bidding. One such 
framework that is particularly suitable for bidding, directional 
learning (DL), suggests a simple adaptive strategy that takes 
into account that the available bids are ordered consistently 
(Selten & Buchta, 1994) and requires a representation of a 
one‐dimensional continuum. According to DL, profitable 
bids exhibit a simple Markovian dependence on the immedi-
ately previous outcome: it is adjusted up (down) if it was too 
low (high) in the previous period.

To our knowledge, DL models have not been used in 
neuroimaging studies to probe the neural correlates of eco-
nomic decision‐making. However, numerous functional 
magnetic resonance imaging (fMRI) studies have shown 
that RL operational variables, such as expected value and 
reward prediction error (RPE), can be used to trace neu-
ral correlates of adaptive learning (e.g., Montague, King‐
Casas, & Cohen, 2006; Ruff & Fehr, 2014). For example, 
neural correlates of RPE have repeatedly been located in 
the ventromedial prefrontal cortex (vmPFC) and the ven-
tral striatum (Bartra, McGuire, & Kable, 2013; O'Doherty 
et al., 2004). But, such studies often use relatively simple 
decision‐making tasks, structured specifically to be solv-
able by RL in a reasonable time, often with discrete response 
policies, while economic tasks involving continuous deci-
sion variables and policies that need to be structured over 
such real‐value scales have been explored to a lesser extent. 
Here, we focus specifically on the neural underpinnings of 
DL and RL strategies that drive repeated bidding behaviour 
under different types of buyer/seller competition.

2  |   MATERIALS AND METHODS

2.1  |  Subjects

Twenty‐seven subjects (nine males, two left‐handed, after 
discarding two of the initial 29 subjects due to excessive head 
motion) took part in the experiment. All subjects were que-
ried to exclude histories of neurological pathologies. After a 
briefing, all subjects gave informed written consent and paid 
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upon completion of the task. The protocol was performed in 
accordance with the Declaration of Helsinki with approval of 
the University Review Board of Higher School of Economics.

2.2  |  The double auction paradigm

To probe neural mechanisms of bid learning, we used a 
modified version of the double auction, a standard paradigm 
in multiplayer game theory where players try to maximize 
their respective benefit by means of a single‐shot transaction 
(Fudenberg & Tirole, 1991). Subjects played the role of buy-
ers in a double auction with first‐price sealed bids and with 
opponents assigned by repeated random matching, in three 
different market types (Figure 1a).

The conditions differed in the number of sellers and 
buyers. In the seller competition market (SC), there were 
two sellers and one buyer (the subject); in the no competi-
tion market (NC), there were one seller and one buyer (the 
subject); and in the buyer competition market (BC), there 
were one seller and two buyers (one of them being the sub-
ject). In all market types, the outcome of the transaction 
was determined by pitting the highest buyer's bid against 
the lowest seller's ask price. If the former was strictly lower 
than the latter, then the transaction was not consummated, 
and the subject received the disagreement outcome: zero 
monetary units (MU). Otherwise, the subject received 10‐b 
MU, where b is the bid of the subject. Hence, the win/loose 
structure was asymmetric: the win from an accepted bid 
was dependent on the bid amount, while the loss of fixed 
at 10 MU. We focused exclusively on buyer behaviour, 
unlike previous studies analysing all players’ behaviour 
(Grosskopf, 2003; Güth et  al., 1982). The clearing price 
was set to be the maximum bid in order to study buyer be-
haviour specifically. In order to treat the task as a complete 
information game, we made the common assumption that 
all opponents assigned the same utility to the MU and to the 
fish. The task is a one‐shot game because opponents are as-
signed by repeated random matching. However, given that 
subjects play repeatedly in the three market types, this task 
also displays attributes of sequential games in the sense that 
what is being learned is not the type of one opponent, but 
the behaviour of a population of players as a whole. This 
topic has been previously explored from the viewpoint of 
strategic teaching (Camerer, Ho, & Chong, 2002). A co-
lour‐coded buyer's payoff matrix representation of the NC 
game normal form is provided as illustration in Figure 2a 
(top centre).

The task can be formalized within the framework of 
Markov decision processes as a 4‐tuple (S, A, R, T = p(si | sj), 
R = p(r | s, a)), denoting, respectively, the set of states consist-
ing of the three market types S={“SC”, “NC”, “BC”}; the set 
of actions consisting of all possible bids A = {0, 0.1, …, 10}; 
the state transitions probabilities, which are trivial because 

each market type evolves independently (p(si | sj) = δij, where 
si denotes market type i and δij is the Kronecker delta); and 
the state‐action‐conditional reward probabilities R = p(r | s, 
a), which depend on the behaviour of the opponents such that 
r = 10−a (where a is the action or bid) if the bid a overbids all 
opponent bids and ask prices depending on the market type, 
and r = 0 otherwise.

Crucially, here the behaviour of the opponent is unknown 
a priori and can be assume to be internally represented as a 
probability distribution over competitor buyers’ bids and sell-
ers’ ask prices. The form of this probability distribution is a 
decisive factor determining bidding behaviour, but under the 
modest assumption that subjects believe there exists a natural 
clearing price characteristic of each market with a reasonably 
small variance, we can model it approximately as a Gaussian 
distribution with centre at the estimated clearing price. For 
example, in a simple auction with one buyer and one seller, 
the buyer would hold an estimate of the (possibly varying) 
seller's ask price and would try to maximize profit by choos-
ing the lowest possible bid that does not fall below the seller's 
ask price. Then, a strategy consisting of simply tracking com-
petitor buyers’ bids and sellers’ ask prices would motivate a 
DL‐type and not RL‐type algorithms (see Figure 2a).

2.3  |  Task description

Subjects were informed that they were participating in a 
game investigating decision‐making. The game paradigm 
required buyers to fix their bids in advance. Their task was 
to buy fish on a market using a 10‐point Likert scale with 
increments of 0.1 MU. The initial position of the cursor on 
the Likert scale was randomized across trials. Collected fish 
led to a payoff: p = 10−b, where b was the bid value in task 
MU, and 10 represented the maximum endowment the player 
could make use of in every transaction. Opponents were pre-
recorded human subjects replayed by a computer. In each 
trial, subjects played in one of the market types, which were 
looped throughout the experiment (24 blocks of 3 market 
types) in the order determined by a fixed sequence without 
repetition (of SC, NC and BC). One of the six possible se-
quences was pseudo‐randomly and independently assigned 
to each subject.

At the beginning of a trial, a MARKET stage (dura-
tion = 5s, Figure 1a) informed subjects of the market type 
in the current trial. Next, a LOTTERY (duration = 2s) stage 
consisted of a lottery determining whether subjects would be 
allowed to enter the market or not. In one of every six tri-
als, subjects were not allowed to enter the market and had to 
move to the next trial. Otherwise, subjects entered the market 
and the CHOICE stage started. During the CHOICE stage 
(self‐paced, but with a prompt to answer quicker after 15s), 
subjects had to purchase (by bidding) fish in a market using 
a 101‐point slider scale. The feedback screen (OUTCOME, 
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duration = 6s) displayed the outcome of the transaction and 
the profit earned. In BC trials, when the competitor outbid 
the subject, that bid was made visible to the subject. Sellers’ 
ask prices were never disclosed. All inter‐stimulus intervals 
were jittered between 5s and 7s following a uniform distri-
bution of duration 2s. The LOTTERY stage was included to 
assess the subject's differential neural response to being re-
jected from each market type. However, we found no differ-
ences in this respect.

Every subject played 24 trials of each market type (72 
in total). The duration of each trial depended on the bid se-
lection time and ranged from 21s to 61s, with an average of 
39s. The total duration of the experiment was approximately 
50 min.

The instructions explicitly informed subjects that they 
would play against prerecorded human players who had 
played the same game before against other human opponents. 
Our design precluded subjects from trying to manipulate 
their opponents’ behaviour in a sophisticated manner (Bhatt 
et al., 2010; Camerer et al., 2002). In each trial, the actions of 
the subjects’ opponents were matched according to the trial 
order of each market type (repeated random matching). Once 
inside the scanner but before the scanning started, subjects 
were trained on 6–10 trials, encompassing all market types 
(at least two trials of each market type). The training phase 
ended after subjects successfully and consistently manipu-
lated the button box by placing their intended bid and then 
reported understanding the task.

After scanning, subjects were rewarded according to the 
following reward scheme (Roth et  al., 1991): a fixed com-
pensation of 300 Russian rubles (~5 USD) for participation, 
in addition to a bonus equal to the sum of the profit earned 
in three random trials multiplied by 15 MU (~5–12 USD in 
total).

The prerecorded data were recycled from a previous 
pilot study that implemented the same paradigm. Its de-
sign was identical to that of the present study with the 

F I G U R E  1   Task design and behavioural results. (a) Each 
trial consisted of four stages: market type announcement, lottery, 
bid selection and game outcome feedback. During the market 
announcement stage (MARKET), the subject was informed of the 
market type of the current trial. The next stage (LOTTERY) indicated 
whether the subject would go forth to the next stage or be redirected to 
the beginning of the next trial. In the former case, a Likert scale was 
displayed, and the subject had to choose her bid by sliding a vertical bar 
(CHOICE). Finally, the game outcome stage (OUTCOME) signalled 
whether the bid was accepted (ACCEPTED) or rejected (REJECTED). 
(b) Upper: behavioural learning dynamics of bids across all subjects. 
Lower: pairwise differences of bid sizes among market types. Box 
“hinges” represent first and third quartiles. (c) Bid adjustments were 
contingent on the previous trial's outcome of the same market type. 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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following exceptions: 32 subjects played with real oppo-
nents in anonymous groups on desktop computers with 
conventional keyboards, and they played against each 
other, simultaneously, in the same room. The game was 
programmed in z‐Tree (Fischbacher, 2007). Subject roles 
were randomly assigned to buyer or seller throughout the 
duration of the experiment. Both seller and buyer had to 
set their respective ask prices and bids beforehand. The 
total number of trials amounted to 240 (40 periods with 6 
rounds per period). In a post‐experiment check, we found 

that the behaviour of buyers in the prerecorded data was in-
distinguishable from the behaviour of buyers in the current 
participant cohort.

2.4  |  Stimulus presentation and 
response collection

The visual stimuli were projected with an LCD projector 
onto a rear screen. This screen was reflected by a mirror at-
tached to the MRI head coil, subtending approximately 20 

F I G U R E  2   RL‐ and DL‐type 
algorithms comparison. (a) Normal form 
(top centre) of a one seller versus one 
buyer (NC market) game: matrix cell 
colours represent the buyer's payoff. The 
buyer holds an estimate of the (possibly 
varying) seller's ask price (horizontal 
fuzzy white stripe) and tries to maximize 
profit by choosing the lowest possible 
bid that does not fall in a cell of the zero‐
profit yielding upper right triangle. (b) 
Simulations enacting bidding behaviour 
of learning algorithms. Artificial bidders 
(left column: best‐fitting DL algorithm; 
right column: best‐fitting RL algorithm) 
were pitted against the subjects of the 
prerecorded dataset for 29 sessions and their 
preferred bids averaged within each trial and 
market type. (Upper left) Estimated prior 
parametric action‐value functions (using a 
Beta distribution with rescaled support and 
range) for each market type. (Lower left) 
Simulated maxima of each market action‐
value function at each trial. (Upper right) 
Estimated initial preferred bids. (Lower 
right) Simulated preferred bids at each trial. 
Errorbars indicate s.e.m. [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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degrees of visual angle. The task was programmed using 
Presentation software (version 18.0, Neurobehavioral 
Systems). Responses were collected through three response 
buttons: the right thumb shifted the cursor to the right, the 
right index shifted it to the left and the left thumb confirmed 
bid choices.

2.5  |  Computational algorithms of 
adaptive learning

We implemented, fitted, tested and simulated six learning 
algorithms, including model‐free and model‐based RL and 
DL algorithms, with ad hoc parameters (Table 1). The data 
set consisted of the aggregated sequence of all trials played 
by the 27 subjects with the same prerecorded opponents. The 
important parameters were the learning rate (a measure of 
how much weight was given to recent feedback with respect 
to older feedback) and the randomness of choice, embodied 
in the inverse temperature of the softmax function (a measure 
of degree of action selection randomness) for RL algorithms, 
and in the dispersion parameters for DL algorithms. The dis-
persion parameters could be specific to the upper or lower 
side of the preferred bid and to the previous trial outcome 
contingency. The performance of the null algorithm, consist-
ing of assigning uniform probability to all outcomes, was 
also computed as benchmark.

In our task, there is only one state (each of the market 
types), unlike typical scenarios for RL agents, where the 
phase space comprises many states. The “native” action 
space consisted of 101 bid sizes. Although schemes for RL 
on continuous spaces have been proposed (Doya, 2000; Van 
Hasselt & Wiering, 2007), we opted to use a coarse “binned” 
representation of the native action space for our RL models, 
fitting multiple candidate algorithms informed by task‐spe-
cific assumptions. For the DL algorithms, we used the native 
action space.

To design the computational learning algorithms, based 
on preliminary data and heuristic reasoning, we devised a 
conceptual learning model of repeated bidding. The model 
requires at least three computational processes: (a) recogni-
tion of the different market types, (b) an internal representa-
tion of bid space and (c) model‐based learning optimizing 
bid choices.

2.5.1  |  Model‐free RL

First, we modelled participants’ decisions using a Rescorla–
Wagner (RW) like model‐free RL algorithm which learned 
to ascribe, maintain and update values attached to actions 
(Sutton & Barto, 1998). Here, the problem lies solely in 
choosing a single bid repeatedly. The basic action‐value up-
dating equation was

where Qm,t (i) is the action‐value function with a value for each 
possible bid i given market type m at trial t, and α is the learn-
ing rate regulating the speed of action‐value updating. Action 
values were learned independently for each of the three market 
types. The policy for selecting a bid in each trial was a conven-
tional softmax function,

where Pm(i) is the probability of choosing bid i in market type 
m, β is the inverse temperature parameter regulating the ran-
domness in action selection, and B is the space of actions (bids). 
Clearly, such naive algorithm would perform very poorly given 
that it neglects the incentive structure of the game and the 
low ratio of samples (trials) to possible actions. Therefore, we 
binned the 101 actions into 11 uniform tiles (which speeds up 
learning), and we initialized the action‐value function distribu-
tion for each market type with a modified Beta distribution fit 
to the subject‐pooled first trial bids (Figure 2b, upper left). This 
furnishes efficient priors based on the subject's pregame beliefs 
about market types. Conventional Beta distributions are param-
eterized with two shape parameters and are defined on the real 
interval [0, 1], and their definite integral equals 1, but in our 
task the action‐value space spanned the interval [0, 10], and the 
sum of action values is not constrained. Thus, we rescaled both 
the support (from [0, 1] to [0, 10]) and the range of the Beta 
distribution to yield a usable prior for the Qm functions.

2.5.2  |  Model‐based RL with 
counterfactual learning

Other models are more suitable when relevant prior infor-
mation is known about the task structure that can be cru-
cial to solve complex tasks where model‐free RL becomes 
unwieldy. We used counterfactual learning, which can be 
regarded as an extension of model‐free RL where the value 
function is updated contingent not only on the currently 
chosen action feedback, but also on non‐chosen actions 
based on a model about the contingent rewards of foregone 
actions. This model is derived from the observation that in 
auctions, any bid lower than the ask price of the seller (and 
thus lower any previously accepted bid) would have been 
also accepted, had it been chosen. Value updating occurs 
for actions that were not chosen, but which are neverthe-
less updated based on the assumption that they would have 
been updated had they been chosen. Here, counterfactual 
learning is carried into effect explicitly as a model‐based 
RL algorithm which asymmetrically updates through the 
RW or delta rule the whole domain of bid choices every 
time a bid is selected, conditional on both the bid value 
and the feedback. Overall, it can be considered a hybrid of 

Qm,t+1 (i)←Qm,t (i)+�
(
r−Qm,t (i)

)
,

Pm (i)=
e�Qm(i)

∑
j∈B e�Qm(j)

,
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value function and model‐based algorithm. Although the 
RW and delta rule refer essentially to the same concept of 
gradient‐based incremental learning, from here we will use 
the more general designation delta rule because the name 
RW is historically associated exclusively to value‐based 
learning.

We applied the following rule sketch: for every bid b 
selected, if it is accepted (rejected), increase (decrease) the 
value of the action‐value function for all actions i which sat-
isfy i > b. This, however, does not specify how much to de-
crease or increase the value of actions. We chose to update 
values conditioned on the outcome of the current transaction 
only for the higher or lower range of bids for accepted and 
rejected trials respectively, as follows.

If b accepted: for all i < b, Qm,t+1 (i)←Qm,t (i)

for all i ≥ b, Qm,t+1 (i)←Qm,t (i)+�
(
r−Qm,t (i)

)

If b rejected: for all i ≤ b, Qm,t+1 (i)←Qm,t (i)+�
(
0−Qm,t (i)

)

for all i > b, Qm,t+1 (i)←Qm,t (i),

where α is the learning rate, and ri is the counterfactual re-
ward, that is, the reward the player would have received had 
she selected the bid i. For the current trial bid b, ri  = rb = r, 
the reward actually obtained. The action‐value function dis-
tribution was initialized for each market type with a Beta dis-
tribution fit to the pooled first trial bids.

2.5.3  |  DL: a value‐free, model‐based 
learning algorithm

DL is a learning mechanism suggested for repeated games 
(Selten & Buchta, 1994). DL requires an a priori knowledge 
about the structure of the environment, and it is suitable only 
under specific circumstances: the space of feasible actions 
should be a totally ordered set (all its elements satisfy some 
mutual relationship by which they can be unambiguously 
characterized by a single index), and there should exist a 
unique optimal action associated to each game environment 
at each time point. Our task satisfies these conditions: bids 
are ordered respect to a magnitude of interest (bid size or bid 
value), and in each market scenario, there is a noisy clearing 
price whose average may or may not exhibit a time‐depend-
ent drift. If the game environment is not stationary, DL will 
track the optimal price with some lag. The optimal action will 
depend in general on the utility functions of players (which 
comprises social preferences), and on the choice randomness 
of competitor buyers and sellers, but assuming that typical 
sellers (buyers) entertain reasonably stationary ask prices 
(bids), the optimal bid should be approximately the unique 
minimal bid below which all other bids are rejected.

The DL scheme is effectively a myopic policy that oper-
ates without the need of action‐value functions, by nudging 
the bids up or down depending on a directional signature 

(DS): whether the previous bid was accepted or rejected. 
This allows to model the payoff structure of choices around 
the optimal action, which is markedly asymmetric in our 
study because overbidding entails a reduction in the profit 
proportional to the overbid, but underbidding entails zero 
profit. The difference between RL and DL is apparently the 
small implementation detail of whether to cache actions 
or values, but it's a fundamental difference (Daw, Niv, & 
Dayan, 2005).

In every trial of market type m, DL is implemented by 
picking a bid from a unimodal probability distribution Pm(b) 
centred in the preferred bid (the lowest accepted bid esti-
mate). If the selected bid is accepted (rejected), then the pre-
ferred bid is increased (decreased). The preferred bid for the 
first trial of each market type was set to equal the mean of the 
pooled first trial bids. Unlike RL algorithms, DL algorithms 
lack the notion of expected value and therefore of RPE. In the 
DL algorithm, the variables tracking currently estimated ac-
tion values are not conventional expected values, but rather, 
an estimation of the value of the maximum reward obtain-
able, namely the preferred bid value (PBV). Computing an 
expectation over a probability distribution of values associ-
ated with actions is not possible in a DL algorithm because 
there is no action‐value function over which a measure can be 
integrated, but PBVs can be interpreted as a rough equivalent 
of the conventional expected values of RL algorithms. Thus, 
it is possible to define a pseudo‐RPE signal as a RPE where 
the expected value is assumed to be the currently preferred 
bid.

This framework still leaves unspecified how much to de-
crease or increase the preferred bid, so we devised and fitted 
three adaptive learning algorithms based on DL.

2.5.4  |  DL delta rule with Gaussian noise
This is perhaps the simplest conceivable DL model. We can 
update values conditioned on the outcome of the current 
trial by making the gain depend on the PBV and the reward 
received: Am,t+1 ←Am,t +�

(
r−Am,t

)
, where α is a gain akin 

to the learning rate in RL, Am,t is the preferred bid at trial t, 
m is the market type (SC, NC, or BC), and r is the reward. 
Here, the policy for bid selection accounts for noisy deci-
sion‐making by means of a Gaussian distribution function 

of bids around the preferred bid: Pm (i)=
1√

2�2�
e

−(i−Am)
2

2�2 , 

where σ is the standard deviation and Am, which is equal to 
the preferred bid for market type m, is the mean.

2.5.5  |  Naive DL with asymmetric 
leptokurtic noise

This algorithm consists of simply “nudging” the bid up and 
down, but taking into account, the incentive structure of the 
game by doing it asymmetrically with respect to the two sides 
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of the preferred bid. Contingent on the outcome of the trans-
action, the preferred bid is updated as follows:

If accepted, Am,t+1 ←Am,t + nup, and if rejected,
We chose ad hoc a leptokurtic probability distribution 

function to model the noise around the preferred bid be-
cause it fits the data better than the Gaussian distribution (see 
Figure 1c). The distribution of bids (Figure 1c) is markedly 
asymmetric and non‐Gaussian, specifically with fatter tails 
and a thinner peak.

Pm(i)=
1

2�m

e
−|i−Am|

�m  for i > Am after previous trial rejection,

Pm(i)=
1

2�l

e
−|i−Am |

�l  for i < Am after previous trial acceptance, 

and for the rest of (rare) cases, where Pm(i) is the Laplace 
distribution of bids i for market type m, and σm, σl and σ0 are 
parameters proportional to the standard deviation of the 
(asymmetric) Laplace distribution. This is similar to the 
“RW(rew/pun)” algorithm of Guitart‐Masip et al. (2012), but 
with the important difference that here the updates occur in 
the action space instead of in the value space. This captures 
the intuition that the tail above the preferred bid after rejec-
tions is fatter than the tail below the preferred bid after 
acceptances.

2.5.6  |  DL delta rule with asymmetric 
leptokurtic noise

This algorithm incorporates both the asymmetric leptokurtic 
policy distribution and the delta rule‐based updating of the 
preferred bid. This was the best‐fitting algorithm (Figure 3a, 
Table  1). It included an additional parameter k which ac-
counted for a different proportion of trials with explorative 
(risky) versus exploitative (safe) bids.

2.6  |  Learning algorithms 
optimization and software

Following the usual approach in estimation problems with 
a small number of trials, a global objective function (the 
log‐likelihood of aggregated data) was optimized with 
yoked parameters (fixed effects) across all subjects for all 
learning algorithms (Daw, O'Doherty, Dayan, Seymour, & 
Dolan, 2006). This reduces parameter estimator variances 
at the cost of losing the ability to make between‐subject 
parameters comparisons by pooling together between‐sub-
ject and within‐subject variability, but this is deemed to 
have little impact in the quality of the algorithm simula-
tion predictions (Grinband, Wager, Lindquist, Ferrera, & 
Hirsch, 2008), and more importantly, it eschews the inter‐
subject variation among parameter estimates which results 
in a rescaling of regressors which leads to poor results at 
the group‐level in fMRI data analysis (Daw, Gershman, 
Seymour, Dayan, & Dolan, 2011). Given the scarcity of 
within‐subject samples and the jagged geometry of the 

resulting objective functions, and that the random and 
fixed‐effects analyses yielded largely consistent results 
(Table 1), we preferred this fixed effects comparison over 
the alternative of running the numerical optimizer for each 

F I G U R E  3   Algorithm fit scores and correlations with 
individual profits during the task. (a) BIC scores averaged within 
algorithm classes (DL: models 1‐3, RL: models 4‐6 in Table 1). Error 
bars indicate 95% confidence intervals. (b) Correlation of market 
differentiation index with profits averaged across the whole task. The 
line slope corresponds to a (Pearson's product‐moment) correlation 
coefficient of 0.524 (p = 0.003). (c) Scatter plot of subjects’ DL-
compliance scores and profits averaged across the whole task. The 
line slope corresponds to a correlation coefficient of 0.466 (p = 0.01). 
N = 27
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subject individually in an objective function with multi-
ple local extrema, which can lead to overfitting and bad 
performance of the numerical optimizer (but see Wilcox, 
2005). For each algorithm agent, negative log‐likelihood 
functions were constructed by making the agent play all 
27 of the subject sessions. The log‐likelihood function was

where lμ is the log‐likelihood function for model μ, θyoked 
is the parameters vector of model μ (for example, for naive 
RL, θyoked = (α, β)), and Pμ is the likelihood of model μ choos-
ing a specific bid b given parameters θ and feedback fsn in mar-
ket type m for subject s and block number n. A numerical local 
search optimizer was then run on each of the negative log‐likeli-
hood functions, and the found minima were used to recover the 
maximum likelihood parameter estimations. Bayesian informa-
tion criterion (BIC) scores were derived from the negative log‐
likelihood values (Table 1).

To check for consistency, we also performed separate 
optimization routines for each subject objective function: 
l�,s

(
�s|Ds

)
, with individual free parameters θs for subject s. 

The scarcity of data samples prevented convergence in some 
subjects, but converged instances yielded consistent BIC 
scores and parameter fits (Table 1).

Because subjects have 101 possible actions and they 
play only 60 times in all three market types, convergence 
of the model‐free RL algorithms is troublesome when pa-
rameters are fitted individually, since values are updated 
sparsely and rarely, and often the game ends without sam-
pling all possible states or actions. This is a problem for 
algorithm fitting, and in particular, estimating 101 initial 
action values depletes all useful degrees of freedom during 
optimization. Therefore, either we simplified the initial 
action values using a three‐parameter (as opposed to 101) 
density based on the Beta distribution (for RW‐type algo-
rithms; Figure 2b, upper left) or we simply used the first 
round bids as initial conditions (for DL‐type algorithms; 
Figure 2b, upper right).

Data were processed with code written in Python with the 
scientific computing packages Numpy (RRID:SCR_008633), 
Scipy (RRID:SCR_008058), Matplotlib (RRID:SCR_008624) 
and Pandas. Purpose‐specific code was written to define the 
maximum likelihood functions used to estimate the param-
eters of the learning algorithms. The numerical optimizer 
employed was a bound‐constrained version of the Broyden–
Fletcher–Goldfarb–Shanno algorithm, a local search tech-
nique which approximates local curvature. This algorithm is 
an implementation of a constrained optimizer of multivari-
ate scalar functions belonging to the Python package Scipy. 
This optimizer was combined with a basin‐hopping heuristic 

(scipy.optimize.basinhopping) with at least ten “hops” to off-
set the probability that the optimizer would converge into a 
local minimum due to the jagged geometry of the log‐likeli-
hood function.

2.7  |  fMRI data collection and analysis

2.7.1  |  Data acquisition

The fMRI data were obtained using ascending inter-
leaved slice acquisition with gradient echo T2*‐weighted 
echo‐planar imaging (EPI) sequence in a 3T Magnetom 
Verio equipped with a 32‐channel head coil (Siemens; 
Erlangen, Germany). Scanning protocol parameters were 
as follows: TE = 30 ms; flip angle = 80°; TR = 2280 m; 
slice thickness = 3 mm; no gap; slice matrix = 64 × 64; 
number of axial slices  =  35; FoV  =  192  mm; and voxel 
resolution = 3x3x3.7 mm.

High‐resolution structural MRI data acquisition used 
a T1‐weighted MP‐RAGE sequence. Parameters were as 
follows: TE  =  2.47  ms; flip angle  =  9°; TR  =  1900  ms; 
slice thickness = 0.5 mm; slice matrix = 512 × 512 × 176; 
number of slices  =  176; FoV  =  256  mm; and voxel res-
olution  =  0.508  ×  0.508  ×  1  mm. These data were used 
for anatomical localization. A corrective routine aimed at 
counteracting susceptibility angled through the slice plane 
(z‐shimming) was performed by the scanner. The slice 
angle was tilted a negative 30° with respect to the ante-
rior commissure–posterior commissure axis in the sagittal 
plane to reduce the unaccounted spatial components of 
the susceptibility gradients (Weiskopf, Hutton, Josephs, & 
Deichmann, 2006) and because this allows for better ac-
quisition of the orbitofrontal cortex (Deichmann, Gottfried, 
Hutton, & Turner, 2003). The number of volumes acquired 
was on average 1,263, corresponding to a duration of ap-
proximately 48 min.

2.7.2  |  Preprocessing

Images were processed using SPM12 (Wellcome 
Department of Imaging Neuroscience, Institute of 
Neurology, London, UK). Preprocessing of T2*‐weighted 
volumes consisted of rigid‐body model realignment within 
each session to a mean volume for head‐motion correc-
tion, unwarping of the residual variance using the field 
map, slice timing correction centred at TR/2, bias‐field 
correction, coregistration of T2*‐weighted volumes to the 
corresponding structural image (T1–weighted volume) 
and segmentation and spatial normalization to a standard 
T2*‐weighted template (Montreal Neurological Institute, 
MNI) for group analysis, spatial smoothing with an 8 mm 
Gaussian kernel and high‐pass temporal (128s) filtering. 
Fieldmaps were acquired using a dual echo 2D gradient 

l�
(
�yoked|D

)

=

∑27

s=1

∑24

n=1

∑
m=SC, NC, BC

log
(
P�

(
bsn|�yoked,fsn,m

))
,

info:x-wiley/rrid/RRID:SCR_008633
info:x-wiley/rrid/RRID:SCR_008058
info:x-wiley/rrid/RRID:SCR_008624
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echo sequence with echoes at 5.19 and 7.65 ms, and repeti-
tion time of 444 ms, and then used with the SPM FieldMap 
toolbox to correct EPIs for unwanted dropout due to varia-
tions in spatial magnetic susceptibility (Jezzard & Balaban, 
1995; Weiskopf et al., 2006).

2.7.3  |  GLM analysis

Eight event‐related regressors (delta sticks) were used to 
model the onset of the MARKET stage (MARKETxSC, 
MARKETxNC, MARKETxBC), LOTTERY outcome stage 
(for won and lost lotteries), CHOICE stage and OUTCOME 
stage (ACCEPTED and REJECTED). In addition, five 
parametrically modulated delta sticks were constructed: 
three for all stages of the task using the preferred bid value 
(PBV  =  10‐PB): MARKET_PBV, LOTTERY_PBV, 
CHOICE_PBV; one for the pseudo‐RPE signal at outcome 
(OUTCOME_pseudo‐RPE) based on the best‐fitting DL al-
gorithm; and one for the DS signal (OUTCOME_DS, con-
sisting of + 1 for positive RPEs and ‐1 for negative RPEs). 
Both parametrically modulated and non‐modulated stimuli 
onset markers were convolved (first‐order expansion) with 
the canonical hemodynamic response function (HRF) imple-
mented in SPM12 and entered into a general linear model 
(GLM). The motion parameters output from the preprocess-
ing realignment routine were added to the design matrix as 
covariates to account for residual head‐motion effects.

In a separate analysis devoted to analysing the relation-
ship between RPE and DS, two additional GLM regression 
matrices with three regressors each were constructed with 
the stimulus onset marker OUTCOME and the parametrically 
modulated regressors OUTCOME_DS and OUTCOME_
RPE orthogonalized one respect to the other and vice versa 
(including other regressors irrelevant to learning processes 
did not change the results).

ROI activity in basal ganglia and PPC was extracted with 
the SPM extension MarsBar (Brett, Anton, Valabregue, & 
Poline, 2002). Masks consisted of 8‐mm spheres with cen-
tre in‐peak cluster of activity associated with PBV in PPC 
(MNI coordinates [+−47,−48,52]), and manually delineated 
anatomical subdivisions of basal ganglia were used as in 
Palminteri, Khamassi, Joffily, and Coricelli (2015), in both 
cases with also their contralateral homologues. Coefficient 
estimates (betas) were calculated by averaging over the co-
efficients of all voxels within their ROIs separately for each 
subject.

2.7.4  |  fMRI statistics

Temporal serial correlations in fMRI data were removed 
using the residuals covariance matrix estimated by the re-
stricted maximum likelihood routine in SPM12 to satisfy the 
sphericity assumption needed for doing inference (Starke & 

Ostwald, 2017). Subject‐level effects were fitted individually 
to their design matrices, and the resulting regression coef-
ficients were taken to a random effects group‐level analysis, 
where the final coefficients values and statistics were calcu-
lated using the summary statistics trick (Holmes & Friston, 
1998). All reported fMRI statistics come from the group 
level.

Most decision‐making studies model brain activity lasting 
less than 4 s with delta sticks, but studies have shown that 
this activity often lasts until the motor response (Grinband 
et al., 2008). Therefore, to ensure that such effects were not 
being ignored, we repeated the same analysis but with box-
car‐shaped regressors functions instead of delta sticks. We 
found no additional effects.

Activations of learning signals (DS and pseudo‐RPE) 
in the striatum and outside regions of interest (ROI) 
were reported at a voxel‐level threshold of p < 0.05 after 
voxel‐based family‐wise error rate (FWER) correction. 
Activations were reported in other ROIs and also in orthog-
onalized contrasts (i.e., the second parametric modulator 
regressor for a given event in the design matrix) when they 
exceeded a voxel‐level primary threshold of whole‐brain 
p < 0.001 uncorrected and a cluster‐level extent threshold 
of 10 voxels. Because such scheme yields a FWE‐corrected 
p‐value of 0.6–0.9 (Eklund, Nichols, & Knutsson, 2016), it 
was used only in regions that previous studies consistently 
reported to be involved in value‐based decision‐making 
and mentalizing in interactive play games (Barraclough 
et al., 2004; Bartra et al., 2013; Rilling, Sanfey, Aronson, 
Nystrom, & Cohen, 2004; Carter, Bowling, Reeck, & 
Huettel, 2012), in internal representation of the number 
line and manipulation of arithmetic objects (Dehaene, 
Molko, Cohen, & Wilson, 2004; Dehaene, Piazza, Pinel, & 
Cohen, 2003). These ROIs were orbitofrontal cortex, fron-
topolar and dorsolateral prefrontal cortex, anterior cingu-
late cortex, medial prefrontal cortex and temporo‐parietal 
junction. Cluster‐defining thresholds for all types of activ-
ity inference were appropriately set at p = 0.001 (Eklund 
et  al., 2016; Flandin & Friston, 2019). Brain regions are 
displayed on a standard MNI template. All clusters from 
all figures are listed in Tables 2, 3 and 4. Thresholded clus-
ter edges are indicated with black contour lines. Activation 
maps were dual‐coded (Allen, Erhardt, & Calhoun, 2012), 
where significance level and effect size were represented 
by means of colour saturation and hue, respectively, with 
MATLAB code from Zandbelt (2017).

To localize potential brain regions involved in the com-
putation of the economic transactions, we assessed on a 
trial‐by‐trial basis the correlations between neural data and 
model proxy variables. The data set comprising all the game 
sequences from all subjects was used to fit the parameters of 
each learning algorithm. The fitting process was informed 
by plausible assumptions about the players strategies, such 
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as initializing prior bid values (see section “Computational 
algorithms of adaptive learning” for details). We selected 
the best algorithm based on BIC scores. Then, we derived 
time series of expected values (PBV) and prediction error 
(DS, pseudo‐RPE) signals from each of the learning algo-
rithms by making each of the artificial bidding agents to 
enact human subjects behaviour. This entailed pitting the ar-
tificial bidders against the same sequences of stimuli that the 
human subjects played against, and in each trial computing 
the proxy variables (PBV, pseudo‐RPE, DS) furnished by 
their underlying learning algorithm, conditioned on the fact 
that they selected the same bids as the human subject they 
were enacting.

We standardized all algorithm proxy variables as z‐scores 
across subjects before entering them as parametric regressors 
in the design matrix. In the group‐level analysis, we used this 
analysis to link between‐subject differences to activations 
(Haruno et al., 2004).

Finally, a neural model comparison routine based on a SPM 
Bayesian model selection module was performed on anatomi-
cal ROIs encompassing striatum and inferior posterior parietal 
cortex. To assess the goodness of fit of both DL and RL algo-
rithms to neural activity, we defined GLMs in OUTCOME, in-
cluding either DS or RPE parametric modulators, respectively, 
and then estimated them using Bayesian statistics, which pro-
vided a measure of the evidence of the model for each subject. 
Log evidence was then fed to a BMS random effect analysis 
(Palminteri et al., 2015; Stephan, Penny, Daunizeau, Moran, 
& Friston, 2009), which computed the exceedance probability 
of each GLM within the anatomical mask.

3  |   RESULTS

3.1.1  |  Behaviour across market types 
indicates heuristic (DL) learning of valuation

Overall, subjects successfully performed the double auc-
tion task under all types of social competition (72.47% of 
successful transactions). Transaction rates per market type 
were 92.44% (869/940) in SC, 74.68% (702/940) in NC and 
50.26% (472/939) in BC market.

To estimate subjects’ beliefs about their human opponents 
and each market type prior to learning, we compared the bids 
in the first trial of each experimental session. On average, 
subjects bid 4.96, 5.13 and 6.55 monetary units (MUs) in the 
SC, NC and BC markets, respectively. A one‐way ANOVA 
test rejected the hypothesis that first mean bids were equal: 
F2,137  =  18.93, p  =  6*10‐8. Thus, subjects discriminated 
among market types already before the beginning of the task. 
Mean reaction times (RT) were similar across market types 
(mean ± SD): 11.2 ± 3.6s, 11.1 ± 3.8s and 11.8 ± 3.8s for 
SC, NC and BC, respectively.

Next, we wanted to know how the bids and bid ad-
justments evolved over time and across markets. We 
tracked the evolution of subjects’ bid choices in each 
market (Figure  1b) by fitting a linear mixed‐effects 
model with random intercepts. Subjects gradually de-
creased bids in SC (beta  =  −0.027, t588  =  −4.44, 
p  =  5.4*10‐6) and increased bids in BC (beta  =  0.086, 
t587 = 14.264, p = 4*10‐40), whereas in NC, we found a 

T A B L E  2   Neural activity related to market type recognition and expected value (Figure 4)

Contrast (Figure) Region
Cluster p‐value 
FWE‐corrected

Cluster 
extent k

Peak T 
statistic MNI (x, y, z) 

MARKETxBC vs MARKETxNC  
(Figure 4a Left)

Left SPL 0.085 43 5.31 −33 −46 48 

Right SPL 0.044 53 4.55 36 −46 60

Right ANG     3.92 39 −46 45

MARKETxSC vs MARKETxNC  
(Figure 4a Right)

Left SPL 0.818 9  3.75 −33 −52 48

CHOICE_PBV (Figure 4b) Left SPL 0.630 15  3.99  −47 −48 52

REJECTED vs ACCEPTED, MDI‐modulated, 
group level (Figure 4c)

Right SFG 0.031 76 5.05  21 59 19

Left SFG 0.125 47 4.53 −24 53 23

Right MFC 0.582 17 4.46  6 29 −14 

Right ANG 0.301 30 4.26  60 −52 23

Right TrIFG 0.258 33 4.18  54 32 4 

Left MSFG 0.528 19 4.11  −3 50 4 

Note: Activity is thresholded at p < 0.001 (uncorrected for the whole brain), except for non‐orthogonalized contrasts in striatal areas, which are thresholded at FWER 
p < 0.05 voxelwise. x, y, z: stereotactic coordinates of the MNI template. Atlas labels were provided by Neuromorphometrics, Inc.
Abbreviations: AIns, anterior insula; ANG, angular gyrus; CblExt, cerebellum exterior; MFC, medial frontal cortex; MFG, middle frontal gyrus; MorG, medial orbital 
gyrus; MSFG, superior frontal gyrus medial segment; NAcc, accumbens area; OCP, occipital pole; SFG, superior frontal gyrus; SPL, superior parietal lobule; STG, 
superior temporal gyrus; TrIFG, triangular part of the inferior frontal gyrus.
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trend (beta = −0.009, t588 = −2.01, p = 0.045). Notice 
that the decreases in SC and increases in BC are not sym-
metric: subjects tended to increase the bids much more 
than decreasing them.

We reasoned that bid changes should depend directly on 
the subjects learning their success or failure in the previous bid 
they made. Hence, to inquire into the potential causes of bid 
evolution, we examined the effect of the previous trial outcome 

T A B L E  3   Neural activity coding error signals pseudo‐RPE and DS (Figure 5)

Contrast (Figure) Region
Cluster p‐value 
FWE‐corrected Cluster extent k Peak T statistic MNI (x, y, z)

DS (Figure 5a Left) Left Putamen <0.001 47  7.90 −30 −10 8

Right CblExt <0.001 147  7.70  33 −58 −40 

Left MorG <0.001 20  7.68 −24 35 −18 

Right Putamen <0.001 35  7.62  30 −10 4 

Left CblExt <0.001 83  7.36 −15 −52 −18

Left Caudate <0.001 16  7.30 −24 −19 23 

Right Caudate <0.001 51  7.29  24 −10 26

Right Putamen      6.99  24 14 0 

Right CblExt 0.001 9  7.11  6 −70 −33 

Right OCP 0.001 12  7.02  18 −100 8 

Left Caudate <0.001 13  6.46 −21 11 19

Right SPL 0.003 6  6.38  45 −43 60 

Pseudo−RPE (Figure 5a 
Centre Left)

Right CblExt  <0.001 119  8.49  18 −67 −22

Left OCP <0.001 25  7.26 −12 −103 4 

Right NAcc <0.001 48  7.18  12 17 −11 

Right Putamen      7.16  21 14 −11

Right Putamen <0.001 14  6.87  30 −13 8 

Left SMG 0.003 7  6.81 −57 −34 45 

Left MFG 0.001 10  6.66 −36 35 30 

Left MFG 0.002 9  6.30 −39 38 15 

Right OCP 0.004 6  6.11  15 −100 11 

Left CblExt 0.003 7  6.09 −12 −52 −22 

Ort‐pseudo‐RPE (Figure 5a 
Centre Right)

Left MFG <0.001 197  5.14 −24 20 63 

Right SPL 0.315 29  4.65  27 −61 34 

Right MFG 0.196 38  4.63  42 14 56 

Left SPL 0.023 82  4.58 −21 −46 45 

Right SFG 0.283 31  4.31  27 14 63 

Right MFG 0.501 20  4.19  36 38 30 

Right MFG 0.924 5  4.09  48 41 26 

Right ACgG 0.728 12  4.03  12 38 11 

Left Nacc 0.609 16  4.01  −9 8 −7 

Left Caudate 0.788 10  3.89 −15 −4 23 

Right MFG 0.924 5  3.88  39 47 8 

Left ACgG 0.924 5  3.65 −3 32 −11 

Ort‐DS (Figure 5a Right) Left Caudate 0.070 56 5.36 −27 −7 26 

Left Putamen     4.43 −27 −10 8

Right Caudate 0.227 34 5.06 24 −10 26

Right Putamen     4.15 27 −10 11

Right STG 0.057 60 4.87 57 −28 8 

Right Caudate 0.543 18 4.71  21 20 15
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T A B L E  4   Neural activity during OUTCOME stage associated with follow‐up bid increases (Figure 6)

Contrast (Figure) Region
Cluster p‐value 
FWE‐corrected Cluster extent k

Peak T 
statistic MNI (x, y, z)

ACCEPTED bid increase‐modu-
lated (Figure 6a)

Right Caudate 0.515 16 5.21  18 5 19 

Right Putamen 0.020 59 5.13  18 8 −11 

Right AIns     4.16  33 11 −18 

Left MFG 0.764 10 4.70 −33 56 19 

Left MFG 0.035 51 4.62 −30 41 34 

Right SMG 0.047 47 4.59  63 −34 19 

Left Putamen 0.202 28 4.50 −21 8 −7 

Right SFG 0.917 6 3.91  24 44 26

Left MSFG 0.806 9 3.82  −9 50 0 

REJECTED bid increase‐modu-
lated (Figure 6b)

Right Putamen 0.818 9  4.19 24 14 −3

F I G U R E  4   Neural activity related 
to market type recognition and expected 
value. (a) Left: stronger superior parietal 
cortex activity in BC as compared to 
NC condition during market entrance 
(MARKET_BC vs MARKET_NC). Right: 
stronger left superior parietal cortex activity 
in SC market as compared to NC market 
during market entrance (MARKET_SC vs 
MARKET_NC). (b) Activation reflecting 
modulation by the preferred bid during 
bid choice (CHOICE_PBV). (c) Feedback 
processing‐related activity (outcome stage, 
REJECTED vs ACCEPTED) modulated 
by individual differences in market 
differentiation index in the right medial 
frontal cortex (C Left) and frontopolar 
cortex (C Right). Activation maps are 
thresholded at p < 0.001 uncorrected, 
indicated by black contour lines. Clusters 
are listed in Table 2. Dual‐coded images 
represent both significance level and effect 
size by means of colour saturation and hue, 
respectively. [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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F I G U R E  5   Neural correlates of pseudo‐RPE and DS signals based on the best‐fitting DL algorithm in anterior putamen and nucleus 
accumbens area and posterior putamen during OUTCOME. (a) Correlated activity in the anterior (y = 16) and posterior (y = −10) putamen 
was stronger for pseudo‐RPE and DS, respectively, during feedback. From left to right columns: pseudo‐RPE (p < 0.05, FWER), DS (p < 0.05, 
FWER), pseudo‐RPE orthogonalized with respect to DS (p < 0.001, unc) and DS orthogonalized with respect to pseudo‐RPE (p < 0.001, unc). The 
exemplary design matrix illustrates the correspondence between first and second parametric modulators and non‐orthogonalized and orthogonalized 
regressors, respectively. (b) Barchart of signal estimation (in grand mean percentage) by brain region. Signals were averaged within anatomical ROIs 
for basal ganglia (Palminteri et al., 2015) and on an 8‐mm sphere in PPC. oDS and oRPE correspond to DS and pseudo‐RPE signals after being 
orthogonalized with respect to each other, respectively. Activation maps DS and pseudo‐RPE are thresholded at p < 0.05 FWER‐corrected, whereas 
ort‐DS and ort‐pseudo‐RPE at p < 0.001 uncorrected. Clusters are listed in Table 3. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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on the current bid. We tracked, on a trial‐by‐trial basis, the 
bid increments from one trial to the next within a given mar-
ket type (Figure 1c). The distribution of these bid increments 
conditioned on the outcome of the previous trial displayed a 
skewed shape, with opposite skewness for the previous trial‐
accept and previous trial‐reject bids. Such distribution can be 
roughly sketched as an asymmetric accept‐down/reject‐up rule 
or win‐stay/lose‐shift strategies (Nowak & Sigmund, 1994). 
Furthermore, the distributions of bid increments were quali-
tatively invariant across all market conditions, suggesting that 
the trial‐by‐trial learning rule underlying bid adjustments is 
independent of the market type. Therefore, we reasoned that 
the subjects’ market‐dependent bidding trends must be at-
tributed largely to the opponents’ behaviour. This supports a 
view where subjects’ learning strategies (or algorithm) do not 
change among market types, yet, subjects explicitly recognize 
which market type they are in. This is indeed suggested by data 
in Figure 1b showing that the bids are rapidly rescaled between 
the different market types. We thus inquired what formal learn-
ing algorithm could best account for the learning behaviour and 
the evolution of bids (irrespective of the market type): conven-
tional model‐free RL algorithms or model‐based algorithms 
that take into account the structure of the task (see below).

Finally, we examined whether subjects’ ability to bid suc-
cessfully was related to how well they learned to identify the 
different market conditions. To get a coarse index of the de-
gree to which subjects distinguished between the three mar-
ket types, we devised the market discrimination index (MDI), 
calculated as the difference between the mean bid chosen over 
all trials for BC and SC conditions. Buyers who distinguished 
more market types, as assessed by the MDI, were more likely to 
receive higher profits (Figure 2b). Indeed, we found a correla-
tion between profit earned and the MDI (r = 0.52, Pearson's 
product‐moment correlation, t = 3.20, df = 27, p = 0.003, 95% 
CI = [0.1955, 0.7473]). Thus, in our task, better market discrim-
ination is associated on average with higher profit. Because in 
our task DL‐compliance score predicts profit precisely due to 
its ability to adapt quickly by caching preferred bids between 
market types, and thence finessing discriminability among 
market types, it should be as well correlated with MDI.

The above results gave us a hint that the observed be-
haviour may be accounted for by a DL algorithm of bid 
learning, where bids are nudged up or down depending on 
previous outcome. Importantly, DL requires a model of the 
“action (bid) space” to account for the directionality of bid 
adjustments. We also note that the traditional reinforcement 
learning schemes and DL differ in the learning signals they 
use to update decision‐making variables: a continuous re-
ward prediction error (RPE) for RL and a binary error signal 
we denote by directional signature (DS) for DL (see Methods 
for details). In order to test our hunch that DL is used to learn 
bids in our task, we proceeded to test which DL or (and) RL 
algorithms could best explain the observed behaviour.

3.1.2  |  Adaptive learning algorithm fits and 
model selection

We fitted six adaptive learning algorithms to the behavioural 
data. All DL algorithms fitted better than RL algorithms 
(Figure 2a), and RL algorithms failed to explain bid evolu-
tion in all market types. We believe this is to a great extent 
due to the lack in value‐based RL algorithms of the key prior 
knowledge underlying the structure of auctions: the asym-
metric ordering of bid values around a preferred bid. Because 
of this, RL algorithms would require a large data set to learn 
action values to the point where they start being operationally 
useful. Since our subjects learned to bid successfully in the 
limited number of played trials, we argue that DL is the more 
efficient and appropriate learning strategy for our task.

Across all subjects, 74.99% (1586/2115) of the tri-
als matched the behavioural predictions of the best DL 
algorithm. Conditioned on the outcome of the previous 
trial of the same market type, subjects behaved accord-
ing to the DL algorithm in 76.26% (453/594) and 79.73% 
(1133/1421) of trials when their bids were rejected and ac-
cepted, respectively.

F I G U R E  6   (a) Neural activity during positive feedback 
(ACCEPTED) in dlPFC (Left) and striatal (Right) areas that was 
modulated by bid increases in the next trial of the same market 
type. (b) Neural activity during negative feedback (REJECTED) in 
putamen that was modulated by bid increases in the next trial of the 
same market type. Clusters are listed in Table 4. [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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To visualize differences in predictive behaviour, we per-
formed posterior predictive checks of the best‐fitting al-
gorithms of RL type and DL type (Figure  2b), that is, we 
simulated replicated data under the fitted models and then 
compared these to the observed data (Gelman & Hill, 2006). 
This confirmed that DL‐type algorithms were able to learn 
rapidly profitable bids in each market type (Figure 2b, lower 
right), whereas RL‐type algorithms learned slowly, even 
when furnished with ad hoc rules to learn faster (as indicated 
by the maxima of action‐value functions; Figure  2b, lower 
left).

Importantly, subjects with a higher DL‐compliance score 
(the fraction of trials where they behaved according to DL) 
were more likely to receive higher profits (Figure  3c). We 
found a between‐subjects correlation between the profit 
earned and the proportion of trials compliant with DL 
(r  =  0.47, Pearson's product‐moment, t  =  2.74, df  =  27, 
p = 0.011, 95% CI = [0.1204, 0.7113]). To confirm this, we 
took the best‐fitting DL and the best‐fitting RL models and 
simulated their bidding against the same prerecorded op-
ponents as the subjects. Only the DL agent's bid evolution 
resembled the human one, with progressive increase in the 
SC bids and relative invariance of the NC and SC bids (not 
shown). Next, we proceeded to determine the neural under-
pinnings of repeated bidding learning.

3.1.3  |  Fronto‐parietal cortical activity 
associated with recognition of the different 
market types

To identify the brain regions associated with subjects recog-
nizing the different market types, we analysed the neural ac-
tivity during the MARKET stage of the task, which informs 
subjects about the market type at the beginning of each trial. 
We found that neural activity in the posterior parietal cor-
tex (PPC) increased when subjects entered the competitive 
BC and SC markets (Figure  4a, Table  2) as compared to 
NC. The effect remained when the expected reward based 
on the preferred bid was regressed out, ruling out that it was 
a value‐related activation. The other pairwise subtraction 
contrasts between market types revealed no differences in 
activity.

To further investigate neural activity underlying the rec-
ognition of the different market types, we used the MDI as 
a covariate in the group‐level analysis. The between‐sub-
ject differences were manifested only in the prefrontal ac-
tivity during processing of outcomes (OUTCOME stage, 
Figure 4b), specifically in a region bridging the bilateral me-
dial frontal and superior frontal gyrus, adjacent to the fron-
topolar prefrontal cortex (fpPFC) and in mPFC (Figure 4c). 
Thus, fronto‐parietal activity was associated with the recog-
nition of market types.

3.1.4  |  Posterior parietal cortex activity 
associated with the internal representation of 
bid space

To find brain areas whose activity encoded an internal rep-
resentation of bid space, we used the preferred bids provided 
by the fitted DL algorithm as a covariate regressor at the 
CHOICE stage. We found activity modulation in the PPC 
(Figure  4b). This indicates that learned preferred bids are 
encoded in the PPC. Bids are real numbers, and their rep-
resentation in the PPC is compatible with previous studies 
showing evidence for encoding of a number line in PPC 
(Dehaene et al., 2003). Moreover, the PPC region associated 
with the preferred bid value was also strongly modulated by 
both pseudo‐RPE and DS signals (Figure 5b).

3.1.5  |  Striatal activity associated with trial‐
by‐trial adaptive learning

In order to identify the neuronal representation of the learn-
ing algorithms used, we compared the explanatory power 
of RL and DL algorithms over the neural activity in the two 
areas most relevant to the task: striatum and PPC. We cal-
culated the exceedance probability (Stephan et  al., 2009) 
for each algorithm, given the brain imaging data gathered 
from all subjects. The exceedance probability was calcu-
lated using Bayesian model comparison of GLMs regress-
ing the learning signals, DS for DL and pseudo‐RPE (the 
RPE based on the accepted preferred bids of the DL al-
gorithm, see below) for RL. The analysis confirmed the 
explanatory power of the DL algorithm to be stronger than 
that of the RL algorithms: the Pexc(DL) = 0.9533 > Pexc(R
L) = 0.0467. This yields a Bayes factor above 19, which 
indicates clearly strong evidence (Kass & Raftery, 1995) in 
favour of DL.

Therefore, we used the variables provided by the best‐
fitting DL algorithm to search for neural correlates of the 
outcome evaluation and learning during the CHOICE and 
OUTCOME stages. In particular, we asked whether DL 
and RL neural learning signals could be distinguished. We 
reasoned that it is unsound to search for correlates of vari-
ables extracted from the ill‐fitting RL algorithms (e.g.,, 
their RPEs would be grounded on possibly very inaccurate 
expected values and thus be poor indicators of learning be-
haviour). Therefore, we instead compared RPE and DS sig-
nals by using the best‐fitting DL algorithm and calculating 
RPEs based on the reward expected from accepted preferred 
bids, which we refer to as pseudo‐RPE. We then performed a 
whole‐brain analysis for the OUTCOME stage and compared 
DS and pseudo‐RPE.

Neural correlates of both DS and pseudo‐RPE were found 
in the striatum (Figure 5). Because DS and pseudo‐RPE are 
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highly correlated, we orthogonalized both regressors with 
respect to each other: ort‐pseudo‐RPE (pseudo‐RPE orthog-
onalized with respect to DS) and ort‐DS (DS orthogonalized 
with respect to pseudo‐RPE). Interestingly, ort‐DS‐related ac-
tivity was found primarily in the posterior putamen, whereas 
ort‐pseudo‐RPE strongly modulated activity of the caudate 
and ventral striatum (Figure 5). This is in line with previous 
studies reporting that neurons in the caudate nucleus could 
play a role in transforming expected reward into a spatially 
selective behaviour (Gold, 2003; Kawagoe, Takikawa, & 
Hikosaka, 1998; Lauwereyns, Watanabe, Coe, & Hikosaka, 
2002).

Our results indicate that both DS and RPE signals are en-
coded in the striatum, but in anatomically dissociated areas, 
anterior and ventral regions encode an RPE learning signal, 
whereas the dorsal and posterior regions encode a binary DS 
learning signal. We further explored averaged signals within 
anatomical ROIs. A two‐way ANOVA (regions: [posterior 
striatum, anterior striatum], learning signal: [ort‐DS, ort‐
pseudo‐RPE]) yielded an interaction (p = 0.0012; F = 11.08, 
df = 1). Although both signals are represented concomitantly, 
computational algorithm fits suggest that DS is the predomi-
nant learning signal.

Finally, we examined the relationship between learning‐re-
lated neural activity during OUTCOME and the behavioural 
adjustments. We computed a parametrical regressor modu-
lated by the size of the subsequent adjustments of bids (the 
bid in the next trial of the same market type minus the bid 
in the current trial). Given that subjects after the accepted 
trials usually repeated or sometimes decreased their bids, the 
activity of the dorsolateral prefrontal cortex (dlPFC) and the 
ventral striatum in accepted trials was associated with sub-
sequent bid repetition (Figure 6a). After the rejected trials, 
subjects most often increased or (less frequently) repeated the 
bid; activity of the right putamen during rejected trials was 
associated with subsequent bid increase (Figure  6b). Thus, 
neural activity in the dlPFC and striatum correlated with bid 
adjustments.

4  |   DISCUSSION

We investigated the neural underpinnings of learning to bid 
in double auctions. We found that buyers learned to choose 
bids using an effective decision‐making heuristic consisting 
of directional adjustments contingent on the previous trial 
outcome. As opposed to model‐free reinforcement learn-
ing, directional learning postulates the existence of a priori 
knowledge about the structure of the task. Namely, DL as-
sumes that the action values of bids bear an order relation-
ship; it and stores and updates the value of the preferred bid 
on an internal number line. Therefore, DL naturally fits mar-
ket and auction decisions in which prices or quantities are the 

main strategic variables. Although one could object that DL 
and RL are intimately related, a crucial aspect distinguishes 
them: unlike RL, DL does not learn an explicit value function 
spanning all actions, but only a single preferred action.

Analysis of the first bids in each market type revealed that 
subjects discriminated among the market types already at the 
beginning of the game. Although subjects underestimated 
the effect of social competition in the different market types, 
they gradually learned to optimize their bidding decisions. 
Indeed, the learning curve for each market type exhibited an 
incomplete convergence towards the strict Nash equilibrium 
predicted for perfectly rational agents. Importantly, the fact 
that the RTs did not differ across the market types suggests 
that the differences of learning curves in three markets were 
not confounded by cognitive effort differences.

Since numerous fMRI studies have demonstrated neural 
correlates of RPE in the striatum (e.g., Haruno & Kawato, 
2006; O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003; 
van den Bos, Talwar, & McClure, 2013), we examined in de-
tail pseudo‐RPE and DS‐related activity within this region. 
We found that the pseudo‐RPE signal was observed in the 
anterior and ventral striatal areas, whereas the DS signal was 
represented in the dorsal posterior striatal areas, particularly in 
the posterior putamen. According to the Bayesian model com-
parison analysis, the variability of the striatal activity was ex-
plained by DL better than by RL, supporting the pertinence of 
DL‐based bidding. This finding concurs with previous sugges-
tions that neural learning signals in motivated decision‐making 
are not necessarily always RPE‐like (Behrens, Hunt, Woolrich, 
& Rushworth, 2008, supplement) and that a region of striatum 
is involved in learning stimulus–response associations and ac-
tion selection (Jessup & O'Doherty, 2011). Although the co-
existence of complementary yet exclusive value signals is not 
exceptional (Daw et al., 2011; Fouragnan, Queirazza, Retzler, 
Mullinger, & Philiastides, 2017; Lebreton, Jorge, Michel, 
Thirion, & Pessiglione, 2009), the reason underlying the con-
comitant DS and pseudo‐RPE signals in the striatum is unclear, 
since only DS explains the behaviour of participants. One pos-
sibility is that both learning systems operate concurrently, per-
haps distributed over a broader network, as recent work that 
showed multiple distributed RPE valence and surprise repre-
sentations (Fouragnan et al., 2017). In connection with this, it is 
interesting to note that the pseudo‐RPE signal orthogonalized 
w.r.t. the DS signal is conceptually analogous to an unsigned 
RPE (RPE “surprise”), that DS is analogous to RPE valence 
and that both signals were found to pertain to a common net-
work for the computation of learning signals, in agreement 
with Fouragnan et al. (2017). It is also plausible that parallel 
computations could be adaptively deployed or left in standby 
by an arbitration process which decided which of them con-
trols behaviour (Collins & Koechlin, 2012; Daw et al., 2011). 
Although these learning signals are difficult to decorrelate, a 
follow‐up study could clarify their relationship, in particular, 



      |  3345MARTINEZ‐SAITO et al.

whether these signals could be partially ancillary to bidding 
behaviour and be part of a hybrid DL‐RPE architecture.

Intriguingly, we also found that feedback processing‐re-
lated neural activity was parametrically modulated by the 
degree of bid adjustment in the next trial in dlPFC and stri-
atum: activity in both regions was associated with bid in-
crease or repetition in the next trial regardless of whether 
the bid was previously accepted or rejected (Figure 6a). We 
may posit that activity of the dlPFC subserves a cognitive 
control mechanism for tracking the preferred bid, and con-
comitantly striatal activity has a role in increasing the value 
of the currently preferred bid. This parallels the previously 
reported role of the dorsal striatum in updating action values 
(Balleine, Delgado, & Hikosaka, 2007; Haruno et al., 2004; 
Lauwereyns et  al., 2002; Palminteri et  al., 2012) and the 
parametric working memory encoding in the PFC reported 
by Romo, Brody, Hernández, and Lemus (1999). Activity 
predicting bid adjustments after rejection was also present in 
the putamen when subjects’ bids were rejected. To account 
for the role of the striatum in updating bids instead of val-
ues, we speculate that because the task revolves consistently 
around the bid choice, the reference magnitude for updating 
values was not the expected reward, but the preferred bid, 
as suggested by the best‐fitting DL algorithm. Although to 
our knowledge, such function has not been attributed to the 
striatum in previous studies, it is plausible that at least some 
neuronal submodules could compute bids instead of expected 
rewards because in our task, the bid is the natural operational 
variable (bid size is the only quantity that needs to be tracked) 
and is perfectly anti‐correlated with reward when accepted. 
The activity consistently associated with “nudging up” bids, 
and a similar signal reported in the superior PPC (Figure 4b) 
lends support to this hypothesis.

The DL‐type learning strategy requires a representation of 
an internal number line where the preferred bids are stored and 
actively updated. Our results indicate that this representation 
is implemented in the PPC (Figure 4a). Accordingly, Gläscher, 
Daw, Dayan, and O'Doherty (2010) also found neural signa-
tures of model‐based prediction errors analogous to DS in the 
PPC in a Markov decision task, and the superior PPC has been 
implicated in directing spatial attention to a representation of 
an internal number line (Hubbard, Piazza, Pinel, & Dehaene, 
2005). Moreover, we found activity associated with the pre-
ferred bid size in the left superior PPC, which has been also 
found to represent the relative value or probability of different 
actions (Sugrue, Corrado, & Newsome, 2005). Thus, during 
bidding, activity of the superior PPC could not only modulate 
attention to the internal number line, but also contribute to 
decision‐making. Other neuroimaging studies show that the 
activities of the superior PPC contribute to working memory 
(Koenigs, Barbey, Postle, & Grafman, 2009), arithmetic facts 
(Dehaene et al., 2004; Pesenti, Thioux, Seron, & De Volder, 
2000) and quick value‐based decision‐making (Jocham et al., 

2014). It is also interesting to note that a mechanism affording 
the representation of the preferred bid should be very similar 
to the neural integrators that have been proposed for explain-
ing oculomotor control (Seung, 1998). Altogether, the supe-
rior PPC could participate in a calculation and representation 
of the preferred bid that is transmitted to motor areas to exe-
cute appropriate motor commands.

The ability to recognize market types is also critical for 
successful bidding. At the beginning of each trial, activity in 
the bilateral superior PPC was stronger in trials with higher 
social competition (SC and BC; Figure 4a). This activation 
could reflect neural activity monitoring the competitiveness 
in the current trial or retrieving relevant information (Vilberg 
& Rugg, 2008) about the current market type (i.e., the pre-
ferred bid). Activity in the superior PPC has been previously 
implicated in the processing of numerical information needed 
for the forthcoming motor selection (Sawamura, Shima, & 
Tanji, 2002). Thus, the PPC could set bargaining decisions 
into the appropriate social competition context by associating 
the specific market type with its associated DL‐learned pre-
ferred bid. Therefore, successful bidding could be subserved 
by the same computational processes underlying simple ar-
ithmetical calculations (Dehaene et  al., 2004) and distance 
estimation. Between‐subject differences associated with the 
ability to distinguish the different market types in our study 
affected the activity of the fpPFC and vmPFC. This might 
indicate that subjects who distinguished better among market 
types, besides earning more profits, exhibited stronger acti-
vation of the higher‐order cognitive prefrontal areas associ-
ated with the appraisal of suitable models of the environment 
(Boorman, Behrens, Woolrich, & Rushworth, 2009) and 
mentalizing (Coricelli & Nagel, 2009; Hampton, Bossaerts, 
& O'Doherty, 2008). Congruently with previous fMRI stud-
ies, fpPFC activity might be involved in appraising the be-
haviour of opponents (Koechlin & Hyafil, 2007), whereas 
vmPFC activity might be involved in appraising the subject's 
own valuation during feedback.

In this study, we used prerecorded opponent data, 
which could affect behaviour through social preferences 
(van den Bos et al., 2008) and arguably may not allow us 
to disentangle precise market‐based prior strategies from 
feedback‐based learning. Although studies using live op-
ponents (e.g., Carter et  al., 2012) eschew this limitation, 
they cannot control well for variability induced by repeated 
mutual feedback, which was necessary in our study to con-
trol the bid variability in each market type. Further studies 
are needed to verify the role of feedback‐based learning in 
double auctions.

In conclusion, while the buyers were bidding under different 
levels of supply and demand, their behaviour was explained best 
by a simple learning heuristic. Between‐subjects higher compli-
ance with DL predicted higher payoffs. Our results suggest that 
the PPC encodes an internal representation of a bid space that 
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serves as a model on top of which subjects adjust and select 
bids, and posterior striatal activity was associated with a sim-
plified learning signal characterized by a binary learning signal. 
Individual differences during feedback associated with activity 
in the dlPFC and superior PPC indicate the critical role of at 
least a rudimentary prior knowledge of the structure of the task 
and the differences among market types. In summary, we sug-
gest that a learning heuristic based on a binary learning signal 
distinct from the conventional RPE signal solves the problem 
of repeated bidding in double auctions. Showing the learning 
mechanisms underlying bidding under social competition, this 
study paves new pathways for the discovery of neural mech-
anisms engaged in competitive, dynamic, complex decisions.
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