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Abstract. Homeostasis is a problem for all living agents. It entails predictively regulating internal states within the bounds compatible 

with survival in order to maximise fitness. This can be achieved physiologically, through complex hierarchies of autonomic 

regulation, but it must also be achieved via behavioural control. Here we review some of the major theories of homeostatic control 

and their historical cognates, addressing how they tackle the optimisation of both physiological and behavioural homeostasis. We start 

with optimal control approaches, setting up key concepts, and expanding on their limitations. We then move onto contemporary 

approaches, in particularly focusing on a branch of reinforcement learning known as homeostatic reinforcement learning (HRL). We 

explain its main advantages, empirical applications, and conceptual insights. We then outline some challenges to HRL and 

reinforcement learning in general, and how survival constraints and Active Inference models could circumvent these problems. 
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Homeostasis as a problem 

Physiological states are insulated from hazardous fluctuations in the external environment by the operational and computational 

processes known as homeostasis [1-3]. These homeostatic processes unfold over deep hierarchies of biophysical structure, molecules 

to networks of agents, and over a spectrum of timescales, milliseconds to years. Such physiological systems need to be highly regulated 

because the space of homeostatic states that support survival is so restricted. In other words, staying alive entails keeping to a small 

subset of highly frequented internal states, because excursions from those are punished either by death, or reproductive failure. 

Indeed, in this regard, death can be defined circularly as the extreme and irreversible loss of homeostasis. 

The stability of homeostatic states is thus a prerequisite to life. Stability here is coarsely analogous to the stability of mechanical 

equillibria, in which with the system returns to its equillibria point from small perturbations. These equillibria points are known as 

setpoints in physiology, and can themselves be perturbed, modulated and controlled. Following from its definition above, death can 

thus be considered as occurring from large enough perturbations that cannot be returned from. To take some common human 

examples, death reliably results from surprisingly narrow excursions in internal states from setpoint (Fig. 1a & b); for core body 

temperature it is an excursion from setpoint of +5 or -11 degrees Celsius; for blood osmolality it is +/-25 mOm/kg; and for blood 

glucose it is -2mM or +10mM outside of the normal range of 4-8mM. Whilst these limits depend on the duration of the excursion, 

and the joint trajectory of other homeostasis variables, it is a somewhat humbling fact that, surrounded by a vast ocean of possible 

mortality, all biological agents live on a tiny island of habitable internal states (Fig. 1b). From this perspective, the fitness afforded by 

any behavioural policy is determined (by definition) by its ability to steer the agent as close as possible to the trajectories of internal 

states that maximize survival. 

The stability of physiological systems extends even to rheostasis (also known as allostasis), the dynamic process by which homeostatic 

equillibria themselves shift - for instance through stress, illness,  or hibernation, through to longer scale circadian or circannual 

rhythms, developmental or reproductive phases [4]. Under these processes equillibria are still stable, with return to equillibria points 

still occurring after perturbations, however the equillibria points themselves maybe non-stationary over longer timescales, or under 

sudden changes of behavioral or autonomic priorities. This underscores the point that homeostatic stability does not necessarily entail 

homeostatic stationarity. The ultimate goal of homeostatic regulation is not to preserve the constancy of the internal milieu per se, but 

to continually adjust the milieu in order to maximize fitness [5]. In other words setpoints should always be defended, but they should 

also be dynamically adjusted. We will use the term homeostasis in its broadest sense to include this rheostasis. 

In any treatment of homeostasis, a useful but coarse distinction is between automated physiological processes - physiological 

homeostasis (PH henceforth), and homeostasis mediated via overt behaviour - behavioural homeostasis (BH). To contrast the two, 

consider what happens to an inactive organism as time passes. Basal metabolic needs will manifests in state variables either 

continually drifting, or eventually becoming volatile. PH cannot mitigate these excursions indefinitely. Eventually the coordinated 

mechanisms of PH are insufficient on their own to maintain physiological stability as deprivation sets in. The consequential increase 
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in homeostatic error, defined as the distance of current state from the setpoint (Fig. 1, lower) can only reliably be rectified by some 

exchange with the environment. The behavioural control of homeostasis is thus a perpetual problem throughout the lifecourse for all 

motile agents. Such homeostatic control, if it is to be evolutionarily adaptive, consists of tracking, estimating, predicting and 

prioritizing trajectories of homeostatic errors as a function of the fitness that those trajectories afford. At bottom, this is a 

computational problem, and a deeply challenging one.  

Our aim in this paper is to provide an overview of theories of homeostatic control addressing how they tackle this conjoint 

optimisation. We start with optimal control approaches, setting up key concepts, and expanding on their limitations. We then move 

onto contemporary approaches, in particularly focusing on a recent branch of reinforcement learning known as homeostatic 

reinforcement learning (HRL). We explain its main advantages, empirical applications, and conceptual insights. We then outline 

some challenges to HRL and reinforcement learning in general, and how Active Inference models attempt to circumvent these 

problems. 
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Figure 1 | Homeostatic state space, survival probability, and surprise. The lower tier shows a 2-dimensional homeostatic state 

space, where ℎ∗ denotes a homeostatic setpoint, ℎt the current state at time 𝑡, and the homeostatic error defined as the Euclidean 

distance between 𝜀!. The middle tier illustrates a homeostatic survival probability surface, depicted over the same state space, thus 

highlighting the relation between occupation of that homeostatic state and the conditional probability of survival (over some arbitrary 

time interval) in that state. This probability surface is an illustration, since actual survival probabilities have to our knowledge never 

been systematically inferred with any precision for higher organisms. Upper tier shows a homeostatic surprise surface, where surprise 

is defined as the negative log probability of observing a given homeostatic state.  
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A brief history of homeostatic theory 

Early models of homeostasis were adapted from Control Theory, a mathematical branch of engineering that relied on exploiting 

varieties of feedback architectures [6]. In order to maintain steady-state equilibria, a controller (the brain) converts an input into a 

motor command, which is relayed to the plant (the body) resulting in a motor response, resulting in a new input. This idea of error 

correction encapsulates the logic of those early models, where correction was deployed to keep vital variables close to their setpoints. 

In a homeostatic context (Fig. 2a), the input to the controller would be a homeostatic error, which is generates a motor command, 

resulting in a behavioural exchange with the environment. This exchange may result in a modulation of the current physiological 

state, thus determining an update to the homeostatic error for the next timestep, that then inputs again onto the controller for 

iterative error correction. A simple rendering of this in terms of energy homeostasis, would be where the homeostatic error is a 

glucosensory error, computed as the difference between current states (inferred from central and peripheral glucose sensors) and a 

euglycemic reference state (setpoint), where a glucosensory controller translates these errors into commands sent to the viscero-motor 

plant (for autonomic gluco-regulatory responses) and to the skeletal motor system (for overt behavioural responses such as foraging) 

until homeostatic error is minimized. 

Generally, apart from being over-simplified for biological applications, direct feedback systems are observed to be noisy and unstable 

[6]. For example, delay or noise in the time taken from information to pass through the control system can lead to hunting, a 

phenomenon that results in the system perpetually oscillating. There are several ways to solve this problem. In systems biology, 

integral feedback control [7] relies on approximately the same architecture as direct feedback, but feedback is in the form of the time-

integral of the output. As a result, the system only performs its regulatory action when its steady-state undergoes some perturbation. 

This typically is aimed at generating perfect and robust adaptation, whereby the system variable returns to its baseline, after a 

sustained state change, irrespective of its magnitude. Whilst this might have desirable properties for a sensory system minimizing 

redundancy, it has undesirable properties for homeostatic control, because survival probabilities are most likely stationary with 

respect to homeostatic state and thus the control structures need to retain this stationarity by not adapting, in order to implement an 

effective survival optimisation.  

Another control solution is to insert a forward dynamic module into the regulatory loop. Like direct feedback control, the controller 

receives a homeostatic error, from which it outputs a command for the plant, which acts on the variable of interest (Fig. 2b) to reduce 

the error. Unlike in simple direct feedback control, an efference copy is sent in parallel to the forward model, which predicts the 

sensory state that will follow from the action, which is compared to the desired state. This results in a homeostatic prediction error 

that inputs back onto the controller, and this error is then recursively minimized over time by the same system. Importantly, 

introducing a forward model moves the control system into a regime of predictive processing, and thus these models can offer 

opportunities for explaining anticipatory control phenomena that cannot be explained by the purely reactive schemes (Fig. 2a). To 
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keep the forward model calibrated, a prediction error between the current state and what was predicted by the forward model, is then 

used to update the forward dynamic model (Fig. 2c). 

The forward models can work well if it reliably predicts future homeostatic errors, allowing the controller to act to minimize 

homeostatic error. However, these frameworks are challenged when confronted with the question of what actually constitutes the 

homeostatically rational behaviour that the commands should prescribe. These models assume that the controller already knows what 

commands to execute under which conditions. However in most ecological settings, this is not possible, because there are few (if any) 

stationary mappings between homeostatic errors and homeostatically rational behaviours. This is especially the case if the external 

and internal environments are uncertain. An even deeper problem with these types of model is that homeostatic error minimization 

per se, is not necessarily the overarching objective of homeostatic control, since homeostatic errors are scaled arbitrarily by setting the 

units of measurement. This becomes apparent when focusing on the problem of how to prioritize the urgency of actions that 

remediate different bundles of homeostatic error, say how to arbitrate between minimizing one unit of hydration error, and three 

units of energetic error, versus three hydration units and one energetic unit. As suggested in the lower tier of Fig. 1, one might simply 

compute a homeostatic error as the Euclidean distance from setpoint, and optimise action around minimizes that error. However, it 

can be shown that, under this strategy, changing the units of measurement inherently imposes a an arbitrary re-prioritization of 

homeostatic dimensions. The more challenging question is then how to motivate prioritization between homeostatic dimensions in a 

way that is biologically plausible as a strategy for fitness maximisation.  

Drive reduction theory (DR), proposed by Clark Leonard Hull, was arguably the first theory to directly apply ideas homeostasis to 

motivation and behaviour [8,9]. On DR, instead of directly minimising homeostatic error, primary drive was proposed as an 

overarching minimandum, minimized over the long-run, guiding biological agents to select actions that promote survival. The 

probability of a given action (the reaction potential), is then determined by the product of habit strength and drive. Drive-reducing 

actions are reinforced into habits, which provides a means by which behaviour minimizes homeostatic error. Drive was thus a 

negative valenced states that the agent works to attenuate, and in so doing attenuates the associated homeostatic deficits that cause it. 

Inherent in the evolutionary logic of DR, though implicitly formulated, is a calibration of drive to the statistics of survival, such that 

homeostatic states are afforded drive as a function of their survival hazard. “…when any of the commodities or conditions necessary for 

individual or species survival are lacking, or when they deviate materially from the optimum, a state of primary need is said to exist.” [8], 

noting that need here is synonymous with drive. 

By analogy to mechanical systems, drive can be thought of as the potential energy that a simple mechanical system minimises. If 

evolution works to select phenotypic drive functions to match the homeostatic realities of survival, then it should set drive minima to 

homeostatic equillibria points (setpoints) where survival probabilities are highest, and it should ensure stable as opposed to unstable 

equillibria points, which like mechanical systems it can engineer via its second derivative. Concave drive functions would be unstable, 

whereas convex will be stable.  
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Though conceptually insightful as formal models of simple control, direct feedback models have shortcomings that made their 

candidacy for explaining agent-level adaptive behaviour short-lived. Those shortcomings were also to plague DR theory, which was 

criticised for its inability to explain certain empirical observations: first, animals develop drives before any homeostatic errors have 

developed [10] such as eating when still satiated [11], drinking when still hydrated [12], and even shivering before becoming cold 

[13,14]; second, its mechanistic account of learning was generally acknowledged as being poorly predictive of behaviour, even in 

narrow experimentally controlled conditions.  

 

 

Figure 2 | Optimal control theory. a, The upper subsystem of this schematic depicts direct feedback control. This subsystem 

combines a controller (the sensory system), with a plant (the motor system) that performs actions in order to control the current 

homeostatic state. Homeostatic state is sensed by interoceptive input, which via comparison to setpoint results in a homeostatic error 

to be forwarded to the controller. Further commands iteratively work at minimising this homeostatic error. b, In the middle 

subsystem, a copy of the motor command is sent to the forward dynamic model which acts to predict the future interoceptive input, 

conditioned on the motor command having been executed. Any residual errors between the setpoint and this predicted state are again 

iteratively minimised with further commands. c, In the lower subsystem a prediction error, computed as the error between the current 

and the predicted state is used to update this forward dynamic model. Figure adapted from [6] also appears in pre-print [15]. 
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Homeostatic Reinforcement Learning 

Despite the move away from DR theory, some of these problems were addressed in the following decades outside of this literature. 

Reinforcement learning addresses some of those shortcomings by effectively combining behavioural psychology and optimal control 

theory. Rather than ground reward in terms of drive, homeostasis, or survival, RL generally asserts the existence of rewards and their 

distribution in the environment. This approach ultimately entails designing algorithms aimed at maximizing cumulative reward over 

specific temporal horizons. In any environment endowed with some temporal regularity, maximizing expected future reward, 

necessitates RL algorithms capable of anticipatory action. The RL policies to solve this anticipatory problem thus have an important 

bearing on the problems of anticipatory responding for DR. 

From this perspective it makes sense to bridge between reinforcement learning and DR theory. DR theory offers a foundational 

definition of reward, which RL lacks, and RL provides a sophisticated suite of tools by which actions can be learnt to maximize 

reward, which DR lacks. Indeed HRL, achieves this by inserting a drive-reduction definition of reward into a toolbox of standard RL 

algorithms [16,17]. The non-linear shape of the drive function determines the overarching change in drive for any action, given the 

current homeostatic state. This replaces the arbitrary concept of reward in RL, by defining drive with respect to homeostatic state, and 

by defining reward as the drive reduction that attends homeostatic error reduction. The HRL framework shows (in eqs. 5-9) that an 

agent minimizing drive will maximize reward, which minimizes homeostatic error. Interestingly HRL is able to replicate some of the 

anticipatory responding phenomena that had originally troubled the original DR theory [18] (see eqs. 11-17). This can be considered a 

special case of optimal control theory, which shows that for any environment with temporal structure, acting predictively on expected 

future deviations instead of reactively, can be more effective in minimising long-run error [19]. Thus, a simple interpretation of this 

would be, that an agent whose superordinate objective was to minimise drive in the ways described by Hull, would be more effective 

in that minimisation by deploying anticipatory responding strategies. Ironically, HRL shows that the anticipatory control issues that 

where problematic for DR, are in fact mandated for effective drive reduction. 

Homeostatic state space and the drive function. The ansatz of HRL is to define a homeostatic state space as a multidimensional 

metric space where each dimension represents one regulated physiological variable (the horizontal plane in Figs. 1b & 3). The 

homeostasis state of the animal can thus be represented as its position in this N-dimensional space, denoted by 

𝐻! = (ℎ!,! , ℎ!,! , . . , ℎ!,!), where ℎ!,! represents the state of the 𝑗-th homeostatic variable at time 𝑡. For example, ℎ!,! can refer to the 

animal’s glucose level, or body temperature, and so forth. The homeostatic setpoint, defined as the survival optimal internal state 

(assuming for simplicity that this is stationary and thus suppressing subscript 𝑡), is denoted by 𝐻∗ = (ℎ!∗ , ℎ!∗ , . . , ℎ!∗ ). In calling it a 

setpoint we make no wider assertion that it should be stationary over time, though for parsimony, in many of our examples we will 

assume it to be. As a mapping from homeostasis state to motivational state, we construct a drive function with the following 

functional form (depicted as the vertical dimension of the surface in Fig. 3): 
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𝐷 𝐻! = ℎ!∗ − ℎ!,!
!!

!!!

!
.# 1  

Notice that this function is chosen to have a single minimum and to be smoothly differentiable almost everywhere. The unique 

minimum ensures there is a unique setpoint, and that by virtue of its positive second derivative at the setpoint, yields a stable 

equillibria point. Parameters 𝑚 and 𝑛 are free, and we will see that judicious choices of such parameter values gives additional 

explanatory power and biological plausibility to the behaviour of putative HRL agents. 

Defining reward value. Having defined drive, we can now provide a formal definition for reward, that is conceptually derived from 

DR. Assume that as the result of an action 𝑎!, the animal receives an outcome 𝑜! at time 𝑡. The impact of this outcome on different 

dimensions of the animal’s internal state can be denoted by 𝐾! = (𝑘!,! , 𝑘!,! , . . , 𝑘!,!). For example, 𝑘!,! can be the quantity of glucose 

received, as the outcome was consumed. Consumption of such an outcome will result in a transition of the homeostatic state from 𝐻! 

to 𝐻!!! = 𝐻! + 𝐾! and consequently, a transition of the drive state (Fig. 3) from 𝐷(𝐻!) to 𝐷 𝐻!!! = 𝐷(𝐻! + 𝐾!). Accordingly, the 

reward value of this outcome can be defined as the consequent reduction in drive: 

𝑟 𝐻! ,𝐾! = 𝐷 𝐻! − 𝐷 𝐻!!!  

= 𝐷 𝐻! − 𝐷 𝐻! + 𝐾!  .# 2  

Intuitively, the reward value of an outcome depends on the ability of its components in reducing the homeostatic distance from the 

setpoint. Reward value can then be incorporated into any RL algorithm to estimate the values of the states and actions to be taken. We 

can take Q-learning as a paradigmatic example of RL, where the key learning term is the (reward) prediction error signal, 𝛿! (Fig. 3, 

right). This signal is computed each time the agent takes an action and experiences an outcome from its environment. This prediction 

error is calculated by comparing the prior expected value 𝑄 𝑠! , 𝑎!  of taking that action 𝑎! starting from a state 𝑠!, and the realized 

value after receiving reward 𝑟!: 

𝛿! = 𝑟! + 𝛾 ∙ 𝑉 𝑠!!! − 𝑄 𝑠! , 𝑎! .# 3  

𝑉 𝑠!!!  is the maximum value of all feasible actions available at 𝑠!!! that is discounted by the temporal discounting factor � ∈ (0,1). 

Note that state 𝑠! is more general than homeostatic state, in the sense that it can represent environmental and agent-level states, where 

the latter can include both cognitive and homeostatic states. This prediction error signal is hypothesized to be reported by the phasic 

firing of midbrain dopamine neurons [21]. This signal can be used to update the estimated value of actions 

𝑄 𝑠! , 𝑎! ← 𝑄 𝑠! , 𝑎! + 𝛼 ∙ 𝛿! ,# 4  

where 𝛼 is the learning rate, representing the degree to which the prediction error iteratively adjusts the 𝑄-values. 

Reward maximisation via drive minimisation. The HRL theory as formulated above is normative, in the sense that following 

behavioural policies based on the minimization of homeostatic error is equivalent to maximizing the sum of future discounted 
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reward, obtained as a result of this policy. In order to show this, we note that the behavioural policies result in a sequence of outcomes 

that alter the internal state of the agent, and thus can be evaluated as a function of their trajectory through homeostatic state space. 

We define 𝒫(𝐻!) as the set of all homeostatic trajectories that start at 𝐻!, and end at 𝐻∗. Hence the homeostatic consequences of a 

policy can be described as a homeostatic trajectory, denoted by 𝑝 = {𝐾!,𝐾!,… }, an ordered sequence of 𝑁-dimensional homeostatic 

states, resulting in a total of 𝑤 instances of homeostatic states. Each 𝐾! is an 𝑁-dimensional vector, determining the length and 

direction of a homeostatic transition caused by each outcome. Here we assume that 𝑝! ∈ 𝒫 𝐻!  is a sample trajectory consisting of 

𝑤 − 1 transitions between homeostatic states. For each homeostatic trajectory 𝑝! we can define 𝑆𝐷𝐷 as the sum of discounted drives 

through that trajectory: 

 𝑆𝐷𝐷!! 𝐻! = 𝛾!
!!!

!!!

⋅ 𝐷 𝐻!!! .#5  

Similarly, we define 𝑆𝐷𝑅 as the sum of discounted rewards through trajectory 𝑝!: 

𝑆𝐷𝑅!! 𝐻! = 𝛾!
!!!

!!!

⋅ 𝑟! 

= 𝛾!
!!!

!!!

⋅ 𝐷 𝐻! − 𝐷 𝐻!!! # 6  

As a trajectory 𝑝! denotes the ordered sequence of homeostatic states: 𝐻! = 𝐻!,!,𝐻!,!,𝐻!,!,… ,𝐻!,! = 𝐻∗ . For simplicity, denoting 

𝐷 𝐻!,!  by 𝐷!,!, drive for trajectory 𝑝! will evolve in the following sequence: {𝐷! = 𝐷!,!,𝐷!,!,𝐷!,!,… ,𝐷!,! = 𝐷∗ = 0}. Thus, we can 

rewrite eq. 5 to express the sum of discounted drives as: 

𝑆𝐷𝐷!! 𝐻! = 𝐷!,! + 𝛾 ∙ 𝐷!,! + 𝛾! ∙ 𝐷!,! +⋯+ 𝛾!!! ∙ 𝐷∗ .# 7  

This can be expressed as the sum of discounted rewards: 

𝑆𝐷𝑅!! 𝐻! = 𝑟!,! + 𝛾 ∙ 𝑟!,! + 𝛾! ∙ 𝑟!,! +⋯+ 𝛾!!! ∙ 𝑟!,!!!                 

= 𝐷! − 𝐷!,! +  𝛾 ∙ 𝐷!,! − 𝐷!,! + 𝛾! ∙ 𝐷!,! −  𝐷!,!  

+𝛾!!!(𝐷!,!!! − 𝐷∗ ) 

= 𝐷! + 𝛾 − 1 ∙ 𝑆𝐷𝐷!! 𝐻!  .# 8 	

Since 𝐷! is fixed for all policies, and (𝛾 − 1) is negative, it can thus be concluded that if a certain trajectory from 𝒫(𝐻!) maximizes 

𝑆𝐷𝑅 𝐻! , then it will also minimize 𝑆𝐷𝐷 𝐻! , and vice versa: 

𝑎𝑟𝑔𝑚𝑖𝑛
! �𝒫(!!)

𝑆𝐷𝐷! 𝐻! = 𝑎𝑟𝑔𝑚𝑎𝑥
!�𝒫(!!)

𝑆𝐷𝑅! 𝐻! .# 9  

Temporal discounting. We should note that the temporal discounting factor plays a key role in this derivation. Had this factor been 

set to unity (meaning no discounting of rewards in the future) then the value of any given behavioural policy would depend only on 
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its start and end point in homeostatic state space. Hence, any policies that had the same endpoints but embodied different 

homeostatic trajectories would have the same value, and would thus be path independent. This is biologically untenable, since 

trajectories which incur large excursions to hazardous homeostatic states are necessarily dangerous for the organism’s survival, and 

thus any adaptive motivational system should be able to score these trajectories as an approximate function of their fitness prospects. 

As a corollary, with temporal discounting, HRL allows the agent to learn behavioural policies that keep it away from hazardous 

homeostatic states. In other words, temporal discounting of rewards over time may be an adaptation that ensures homeostatic 

stability and thus survival. 

 

 
Figure 3 | Homeostatic reinforcement learning. Upper left, the surface shows a putative drive function, mapping from homeostatic 

state space to drive. In comparing the estimated value of the reward to the actual reward experienced (with negative reward defined as 

drive inflation), a reward prediction error is computed, which then updates future value estimates. Behavioral actions are selected as a 

function of these estimated values,. Note that 𝑑 𝐻!  in this figure is identical to 𝐷 𝐻!  in this paper. Adapted from [22] with 

permission. 
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What HRL has achieved 

HRL as formulated above has a number of inherent properties that align well with observed behavioural data as well as providing 

formal explanations. We begin with behavioural phenomena before proceeding to applications in the domain of the reward 

dysfunctions of addiction. 

State-dependent valuation. One of the more interesting phenomena observed behaviourally is that animals are able to seemingly 

adjust their valuation of outcomes according to their current or anticipated homeostatic states, even if the same outcome has never 

been experienced in these new states. For example, in rats that have previously experienced a salty-flavoured solution, induction of 

sodium appetite enhances their preference for the salt-associated flavour, even though they have never experienced a sodium 

deficiency before [23,24]. This shift in preference can be generalized, such that induction of a hunger state in an animal can energise 

both their food-seeking and water-seeking habitual responses. HRL suggests that this outcome-independent energizing effect is an 

approximate way of updating the value of state-action pairs when the homeostatic, and thus motivational, state shifts instantaneously. 

Assuming that the animal is trained under the fixed homeostatic state 𝐻, and then tested in a novel internal state 𝐻!, the 𝑄-values can 

be approximated in the new motivational state by 

𝑄! 𝑠, 𝑎 =
𝐷 𝐻!

𝐷 𝐻
∙ 𝑄! 𝑠, 𝑎  ,# 10  

where 𝑄! 𝑠, 𝑎  represents action-values learned by the habitual system after the training period, and 𝑄!represents the updated 𝑄-

value. According to this update rule, all the prepotent actions will be energized if deviation from the homeostatic setpoint increases in 

the new homeostatic state, whether or not the outcome of those actions are more desired in the new state. This value adjustment 

equation is optimal only when the updated state is a scalar multiple of the old state, such that 𝐻′ = 𝑐 ∙ 𝐻. Thus, having this value 

update allows the agent to estimate the reward associated with an outcome in a state-dependent manner without having to have 

previously experienced the outcome in this given state beforehand. This in turn automatically biases actions away from those likely to 

incur hazardous excursions (see [25] for further discussion). Interestingly this state dependent modulation of value can be seen as a 

model for incentive sensitization [26] having multiplicative form [27]. 

Anticipatory control. HRL as defined above yields an important property for the policies that are learned in order to defend 

homeostasis. Notably, HRL leads to optimal policies that can be either pre-emptive, corrective, or some combination of the two, as 

opposed to only being corrective. Pre-emptive action is paramount for the slow dynamics of most physiological systems, as well as for 

exploiting complex environments, in which corrective actions alone are not efficient in delivering long-run homeostasis. Given that 

rewards are temporally discounted, HRL will generate policies that take a pre-emptive action upon cues that predict future 

homeostatic excursions (see [25] for a simulated example). A demonstration of this anticipatory faculty is as follows. Let us consider a 

single internal homeostatically variable regulated over time ℎ! with a setpoint value ℎ∗. And let us consider that when an animal is at 

ℎ!, a sensory cue predicts a future homeostatic challenge 𝑙 that perturbs ℎ! further away from ℎ∗. For simplicity, and without loss of 



13 
 

generality, assume that this challenge occurs two time-steps into the future. Similarly, for clarity of presentation, we will cap the future 

horizon to a total of three time-steps. Let us assume that the animal has learned to take a pre-emptive action 𝑎 that results in an 

outcome moving the internal state by 𝑘. For simplicity, we suppress time notation in 𝑎, 𝑘, and 𝑙. We can now see what should the 

optimal action should be. Here we define optimality as a function of minimizing the sum of discounted drives (again the 𝑆𝐷𝐷). Note 

again, that with temporal discounting in place, under the HRL framework, minimizing 𝑆𝐷𝐷 entails maximizing 𝑆𝐷𝑅. Here we 

explore what outcome will maximize the 𝑆𝐷𝑅. 

Starting from ℎ∗, taking the pre-emptive action 𝑎 following the predictive cue, changes the homeostatic state by 𝑘 such that 

homeostatic state evolves as follows: 

ℎ! = ℎ∗   →    ℎ! =  ℎ∗ +  𝑘 .# 11  

The reward value of this change 𝑘 is then given by 

𝑟! ℎ∗, ℎ∗ + 𝑘 = 𝐷 ℎ∗ − 𝐷 ℎ∗ + 𝑘  .# 12  

The homeostatic challenge 𝑙 will cause the homeostatic state to change as 

ℎ! =  ℎ∗ + 𝑘  →   ℎ! =  ℎ∗ + 𝑘 − 𝑙 .# 13  

 The reward value of this challenge is thus 

𝑟! ℎ∗ + 𝑘, ℎ∗ + 𝑘 − 𝑙 = 𝐷 ℎ∗ + 𝑘 − 𝐷 ℎ∗ + 𝑘 − 𝑙  .# 14  

Finally, at the final timestep homeostatic state returns to ℎ∗, so the final reward value is 

𝑟! ℎ∗ + 𝑘 − 𝑙, ℎ∗ =  𝐷 ℎ∗ + 𝑘 − 𝑙 −  𝐷 ℎ∗  .# 15  

From this setup, we can now compute the 𝑆𝐷𝑅 for action 𝑎 for the three timesteps: 

𝑆𝐷𝑅!  =  𝑟! ℎ∗, ℎ∗ + 𝑘 + 𝛾 ∙ 𝑟! ℎ∗ + 𝑘, ℎ∗ + 𝑘 − 𝑙 +  𝛾! ∙ 𝑟 ℎ∗ + 𝑘 − 𝑙, ℎ∗  

= − 𝑘 !! + 𝛾 𝑘 !! − 𝑘 − 𝑙 !! + 𝛾! 𝑘 − 𝑙 !! .# 16  

We can find the extrema of the SDR by examining the zeros of the derivative of the  SDR with respect to 𝑙. Since we can see the 𝑆𝐷𝑅 is 

convex in 𝑙 with a single maximum. By construction, it will attain its maximum when its derivative with respect to 𝑙! is zero. Taking 

the derivative of 𝑆𝐷𝑅! with respect to 𝑙, we show that we get the following algebraic equation: 

𝛾 − 1 𝑘! !!! = 𝛾 𝛾 − 1 𝑙−𝑘! !!!  

𝑘 = 𝑙
1

1 + 𝛾
!

!!!
 .# 17  

Since γ is always upper bounded by 1, we see that 𝑘 should always be some fraction of 𝑙. As temporal discounting slows (as 𝛾 tends to 

1) this fraction tends to ½. As discounting becomes more rapid (as 𝛾 tends to 0) this fraction tends to 1. In other words, the optimal 
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action for countering expected homeostatic challenges should be between 50% and 100%, depending on the level of temporal 

discounting. Future work will address the question of optimal discounting. 

Constraining the drive function. Let us now impose a biologically plausible constraint on the drive function: we will assume that the 

exponents adhere to the following inequality: 𝑚 > 𝑛 > 1. A drive function with this constraint yields a shape that elicits a number of 

interesting properties for behavioural homeostasis, and that may have important ramifications for decision-making and reward. 

Excursion aversion mandates risk aversion. In economics, the curvature of an agent’s utility function – the function that maps from 

outcomes to subjective value – is predictive of, and indeed equivalent, to the agent’s risk preference. In terms of the resulting choices, 

in the domain of gains, a concave utility functions yields risk-aversion, whereas a convex utility function yields risk-seeking. In this 

case, since the reward function is twice differentiable almost everywhere (since this is true for the drive function), concavity is 

achieved if: 

𝑑!𝑟 𝐻! ,𝐾!
𝑑𝑘!,!!

< 0 ∶ 𝑓𝑜𝑟 𝑘!,! > 0 .# 18  

Under the HRL definition of reward, the constrained drive function satisfies this condition: 

𝜕!𝑟 𝐻! ,𝐾!
𝜕𝑘!,!!

=  
𝜕! 𝐷 𝐻! − 𝐷 𝐻! ,𝐻! + 𝐾!

𝜕𝑘!,!!
= −1 ℎ!∗ − ℎ!,! − 𝑘!,!

!
!!!𝑚

𝑛
𝑚
𝑛
− 1  .# 19  

As long as 𝑚 > 𝑛, the second derivative above is negative, and thus risk aversion for gains will be expressed. Note that this is true for 

outcomes that increase and decrease homeostatic deviations, and thus risk aversion is predicted for both homeostatic gains and losses. 

Note that the same condition of concavity at the point of homeostatic equilibrium, is what determines it to be a stable equilibrium 

point. This points to a potentially deep connection between risk aversion and the stability of homeostasis that merits further empirical 

attention. 

Excursion aversion mandates loss aversion. An interesting corollary is that because of the constant curvature of the drive function, 

there is an inequality between the reward value of a unit increases in homeostatic error (a loss), and the reward value of unit decreases 

in homeostatic error (a gain). Where the utility of a loss exceeds that of the utility of the same sized gains is known in economics and 

psychology as loss aversion [28]. Letting 𝐾!! be a homeostatic error decreasing outcome, and 𝐾!! it’s additive inverse, acting to induce 

an equally sized increase in homeostatic error. Loss aversion is demonstrated by the fact that: 

𝑟 𝐻! ,𝐾!! < 𝑟 𝐻! ,𝐾!!  ∶  for 𝐾!! < (𝐻! − 𝐻∗) .# 20  

In other words, the loss of 𝐾 carries more disutility (negative reward value) than the gain of K carries utility (positive reward value). 

This provides a normative basis for why loss aversion should be observed within behavioral homeostatic settings. To our knowledge 

this has not been formally tested. 
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The excitatory effect of homeostatic deprivation. Again, under this constrained drive function, we can show that the reward value of 

a unit reduction of homeostatic error grows with increasing deviations from the setpoint. This is a form of alliesthesia, in which 

reward value changes as a function of homeostatic state [29]. To show this, we take the first derivative of the reward function with 

respect to deviations from setpoint: 

𝑑𝑟 𝐻! ,𝐾! 
𝑑 ℎ∗ − ℎ!,!

> 0 ∶   for 𝑘!,! ,> 0 .# 20  

The fact that this derivative is positive means that the reward value of a unit of homeostatic error reduction, increases with size of the 

initial homeostatic error. This formalises the idiom “hunger is the best sauce”. 

Inhibitory effect of irrelevant drive. It is interesting to note that under this constrained drive function, the reward value of an 

outcome is suppressed by deviations in “irrelevant drives”, i.e. in directions orthogonal to the direction in the homeostatic space along 

which the action-outcome is taken:  

𝜕𝑟 𝐻! ,𝐾!
𝜕 ℎ∗ − ℎ!,!

< 0 ∶  for all 𝑏 ≠ 𝑗 ∀ 𝑘!,! , ℎ!,! > 0 .# 21  

This formalises the phenomena whereby one motivational dimension can inhibit other motivations [30]. 

Applications of Homeostatic Reinforcement Learning 
 

 As a fundamental model of reward and decision-making, it is hoped that HRL can have applications beyond basic science. We have 

so far applied the framework to metabolic disorders [25] as well as the psychopathology of addiction [31]. Here we summarise the 

work done so far on addiction and related phenomena. 

Alcohol tolerance. We have previously shown that a learnt anticipatory response to the hypothermic effect of alcohol explains 

classical experimental results on acquired alcohol tolerance [13,14]. In these experiments the animal is exposed to cold stimuli under 

acute alcohol injections whilst tracking core temperature. Alcohol induces a larger body temperature deviation in response to cold 

stimulus, than that seen under saline injections. With repeated exposure this alcohol-dependent effect diminishes, hence the 

experiment was interpreted as measuring progressive development of tolerance to the effect of alcohol. We showed that internal 

regulation of reward as predicted by HRL, together with a simple model for the acute tolerance response to alcohol, can account for 

the experimental observations, where the animal learns to increase its anticipatory response to mitigate the effect of alcohol (see [25]). 

Interestingly, the model also captured the transient increase in the body temperature in catch trials where the alcohol injection was 

omitted. 

Cocaine addiction. The homeostatic perspective might also provide insight into addictions of substances that are not naturally 

subject to homeostatic regulation. Specifically HRL has been used to explain the escalation of cocaine seeking and consumption in rats 

with extended access to the drug [31]. In these experiments, animals were given access to cocaine either for a short period per daily 
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session (1 hour per day) or a long access (6 hours per day). While the short access animals reached a stable daily dose and cadence of 

cocaine, the long access animals progressively escalated their daily doses and increased consumption frequency. We posited that 

escalation is due to an allostatic deviation of the setpoint that results from a progressive build-up of a regulated internal variable, 

induced by the persistent presence of the drug. We then developed an extended version of HRL, where an acute injection of cocaine 

produced a modelled pharmaco-dynamic dopamine response that we treated as a reward signal. We conjectured that the regulated 

variable is a function of  the tonic dopamine levels, which in turn controls that location of the setpoint in the homeostatic state space 

and has a slow relaxation dynamic. While the exact nature of this regulated variable still remains to be determined, we further 

postulated that the regulated variable should specifically depend on the postsynaptic effects of the tonic dopamine outflow in the 

nucleus accumbens (and/or ventral striatum). Notably, our review of the literature lead us to propose that the tonic activation of D1 

dopaminergic receptors on the D1-expressing NAcc neurons that project to the ventral pallidum, is a likely (but possibly not the sole) 

regulated homeostatic variable compatible with our theory (see Keramati et al 2014 on the possible substrates). 

In simulating instrumental cocaine-taking tasks, we showed that the HRL agent, when exposed to cocaine for a limited time per day, 

learns to consume the drug at a stable, and relatively limited dose. This happens because the slow tonic dopamine level relaxes to 

control levels over night and the setpoint remains stable over the long time scale. Under prolonged access, the HRL agent escalates the 

dose. This happens because the tonic level of dopamine does not have time to relax and builds up on this longer time scale. This 

induces the setpoint so as to create an increasing homeostatic error. The agent in turn learns to seek and consume progressively larger 

doses of the drug to pre-emptively counter these increasingly large deviations in the homeostatic state space. Hence HRL predicts that 

escalation is a learnt instrumental response, conditioned by the acute effect of cocaine, and the longer-term opponent process 

dependent on the tonic dopamine levels. Interestingly the allostatic mechanisms of this HRL model captured a number of 

observations associated with escalation experiments: the loading phase at the beginning of each session, the regular drug seeking 

subsequently, the increase in injection frequency as the per-injection dose was decreased[32,33]. Most importantly, the model could 

account for dose-induced relapse to drug seeking after a prolonged withdrawal. Such relapse could be seen only in a “model-based” 

version of HRL, where the agent explicitly tracked if it is in a drug-available (drug-influenced) or drug-free state. This lead us to 

speculate that certain central aspects addictive behaviours may be goal directed, as opposed to automatic and habitual [34]. 

Discussion 
 

Challenges to HRL. The success of HRL offers promise in many regards, though it is worth discussing some of the residual problems 

with these approaches, some of which are inherited from optimal control theory. Firstly, HRL is still untethered from any biological 

maximandum, relying instead on value functions which are chosen as a sensible approximation based on the behavioural and 

economic phenomena. As reasonable as this might be, it is fitting the value function to the behaviour, which suffers the same 

circularity at the heart of economic conceptions of utility, and the behaviour-centric definitions of reward. The circularity lies in the 

fact that that value function (drive) is fitted to behaviour, and then behavioural optimality is defined with respect to drive reduction. 
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In economics the value function (utility) is fitted to behavior, and then behavioral optimality, or rationality, is defined with respect to 

utility maximisation. One plausible solution to this problem for homeostatic control problems, would be to specify the drive functions 

as a function of survival probability, which we will discuss in the next section. Secondly, almost all of the optimal control theory based 

schemes, which includes RL and thus HRL, are based on the Bellman equation (Hamilton-Jacobi-Bellman in continuous time), where 

the optimal policy that maximises the value function is the solution to the Bellman equation [35]. This assumes that the agent has 

access to hidden states with certainty, and that the optimal value function can be solved for all possible states[36]. Third, such learning 

schemes are notoriously slow, requiring hundreds if not thousands of trials to learn even the simplest value-function for a given 

setting [36]. Taken together, this motivates augmenting HRL, whilst also considering other approaches. We discuss how these 

challenges can be addressed by other models, or by imposing additional constraints on HRL. 

Active Inference. Explaining the many and varied control processes that range from basic physiological homeostasis to active 

planning, and execution of pre-emptive actions arguably requires a global theory of neural structure and function. Active inference 

(AI) offers such a framework, resting on the assumption that the brain is a hierarchical prediction machine that seeks to maximise the 

evidence for its own model of the world, by minimising an upper bound on surprise. We will unpack this last sentence: “maximising 

evidence for its own model”, entails simply maximising its probability of existence, where the model is taken as the agents phenotype 

– in other words maximising its survival probability. “…surprise”, on the other hand, is defined as the negative log probability of 

observing a given state (Fig. 1c). This has a natural interpretation in the context of homeostatic regulation. We opened this paper with 

the problem of staying alive as a problem of occupying the homeostatic states that afford high probability of survival. This can be 

restated in terms of minimising surprise, where the states that have a low probability of being observed, have a low probability 

precisely because they are the states that cause the agent to die, and thus carry high surprise (Fig. 1b & c). Minimising surprise, thus 

entails maximising survival and thus fitness. So how is this surprise minimisation achieved according to AI? 

According to AI, the brain embodies a hierarchy of multiple nested hypotheses about the world that it inhabits, and surprise is 

minimised at each level by minimising the discrepancy between incoming sensory signals and top-down predictions. In other words 

surprise is minimised by minimising prediction errors. Importantly, there are two ways prediction error and thus surprise can be 

minimised. The agent can engage in perception, in which it updates its predictions to conform to the sensory input. Or it can engage 

in action, in which it acts on the world, to change its sensory inputs to better match its sensory predictions. Both of these faculties are 

evidently relevant to homeostatic control. In the case of perception, for the agent to engage in homeostasis, it must engage in 

interoception in order to infer what homeostatic state it is in, and with what uncertainty. Note that this interoception is an inference 

problem in the same way that exteroception is. Both are subject to uncertainty, since in neither case can the hidden states of the 

environment, or the body be directly accessed. In the case of action, homeostatic control also becomes a highly relevant case. The 

agent is postulated to have genetically and epigenetically specified predictions for what homeostatic states it expects to occupy, from 

which prediction errors are computed by comparison to current interoceptive states. To reduce these prediction errors, and thus 
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minimise surprise, the agent needs to act on the world, to engage in behavioural exchange in order to minimise these errors across its 

hierarchical networks. 

In AI, a generative model establishes a probabilistic mapping between hidden causes (internal or external states) to their predicted 

sensory consequences (i.e. exteroceptive or interoceptive inputs). The generative model combines a prior with a likelihood function 

probabilistically mapping from hidden internal states to the interoceptive inputs. The generative model is generative in the sense it 

generates sensory predictions. Under active inference models of homeostatic control [2,37], homeostatic setpoints are recast as prior 

belief distributions of the interoceptive states that the agents predicts it will occupy. These prior belief distributions are either 

genetically inherited, epigenetically or experientially programmed, and subject to allostatic modulations by other states over multiple 

timescales. Under evolutionary pressure, these genetic and epigenetic priors are selected to best fit the hypothesis of survival in the 

organisms expected econiche (see [36] for discussion). In other words, prior beliefs that do not fit well to the econiche, will result in 

agents being motivated to occupy states that afford low survival probability, and thus those priors (as phenotypes) will be selected 

against. Importantly, these prior beliefs replace the need for an explicit value function such as the drive function discussed above [38]. 

The value function such as the drive function in DR or HRL attracts the agent to the valuable states, of low drive, and in turn to states 

that obtain low homeostatic errors. The same is achieved in AI, but by virtue of acting to fulfil prior beliefs over homeostatic states. 

The trajectories of homeostatic state (p! as defined in the HRL model) that support survival, would thus have a high value in an 

optimal control theoretical sense, are now defined as trajectories (of states) that are likely to occur, and thus have low surprise. Indeed 

taking the path integral of surprise scores the cumulative survival probability of that homeostatic trajectory, such that minimising it, 

maximises cumulative survival. If the agent is equipped with prior beliefs that are adaptive to its eco-niche then acting to sample 

viscero-sensory inputs that conforms to low surprise, and thus expecting to keep homeostasis error minimised becomes a self-

fulfilling prophecy [37]. 

Stephan et al. [2] formulate a minimal model of hierarchal Bayesian homeostasis and its allostatic modulation. In Figure 5 we replicate 

this model to demonstrate how dynamics of key elements of active inference (homeostatic state, surprise and action) evolve under 

environmental flux. In column a, environmental flux pushes homeostatic state away from its setpoint (encoded as a prior belief 

distribution over viscerosensory states) which results in a homeostatic prediction error, and the execution of a subsequent action in 

order to restore the homeostatic state to its setpoint. In column b, the agent expects a future deviation, and engages in allostatic 

control by modulating its prior beliefs distribution, in essence changing its beliefs as to what viscerosensory states its expects now to 

occupy. This results in the agent executing action to change its current visceral state in order to minimise deviation from setpoint, via 

interoceptive prediction error minimisation. Notice that because the deviation is expected, prediction error and subsequent action is 

smaller compared to column a. In column c the agent’s precision (inverse variance) of its homeostatic belief increases and as a 

consequence the homeostatic flux entails much larger deviations interoceptive surprise and subsequent action. This is because the 

agent has stricter beliefs for the states that it expects to occupy, and thus is more surprised by deviations, and acts with greater priority 
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to resolve any errors, from those beliefs. For this specific model, the interested reader is recommended to consult [2], or for a more 

general introduction to active inference models see [39]. 

Survival constraints on drive. It should be noted at this stage, that there are some salient parallels between AI and DR theory. If we 

take seriously Hull’s statements about drive minimisation being an optimisation of survival probability, then one can consider what 

drive function would be predicted in relation to survival probabilities. Defining drive in the same way surprise is defined, yields some 

interesting qualitative features: 

𝐷 𝐻! = 𝐼 𝐻!  

=  − 𝑙𝑛 𝑃𝑟 𝐻! ,# 22  

where 𝐼 is the surprisal of observing state 𝐻!. Firstly, since survival probabilities are monotonically decreasing with respect to 

homeostatic error, drive is monotonically increasing with respect to increasing homeostatic errors, which is qualitatively what is 

specified by DR. Minimising drive thus minimises homeostatic error, where drive is highest for the most hazardous states, and lowest 

for the least hazardous. Secondly, if agents are to minimise drive over homeostatic trajectories, then they should minimise the integral 

of drive over time. A drive function specified as in eq. 22, means that minimising its time integral, would have the effect of 

maximising the cumulative survival probability over that integral. This can be seen in the following discrete example, where 

cumulative survival probability from the present up to time 𝑡 is 

𝑆! = 𝜙!

!

!!!

 

= 𝑒𝑥𝑝 𝑙𝑛 (
!

!!!

𝜙!) # 23  

which can be expressed as a sum over the log survival probabilities, where 𝜙! is the survival probability at time 𝑢. Similarly, we can 

define the cumulative drive 𝐶𝐷, again from present up to time 𝑡, as a sum over (negative) surprise values, which is approximated by 

the sum over drives: 

𝐶𝐷 = 𝑒𝑥𝑝 − 𝐼 ℎ!

!

!!!

 

= 𝑒𝑥𝑝 𝐷!

!

!!!

 .# 24  

As such, minimising cumulative drive is an approximate means of maximising cumulative survival:  

𝑎𝑟𝑔𝑚𝑖𝑛
!∈ !(!! )

𝐶𝐷! 𝐻! ≈ 𝑎𝑟𝑔𝑚𝑎𝑥
! ∈ !(!! )

𝑆! 𝐻!  , 

where 𝛲(𝐻! ) is the set of all homeostatic trajectories that start at 𝐻! and end anywhere in homeostatic state space 𝐻!. Consideration 

of these drive trajectories is an important exercise, since agents should not just maximise survival probabilities over the narrowest of 
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temporal windows, but over the temporal scales that contribute substantially to their fitness. For instance, for an agent to realise its 

fitness, it must at least reach sexual maturity. If such an agent was endowed with the drive function in eq. 22, then if it was successful 

in minimising the time integral of drive up to sexual maturity, then it would be maximising a major component of its fitness. Under 

these assumptions, the optimal drive function is fixed by the phenotype-specific mappings from homeostatic state to probability of 

survival. Intriguingly if homeostatic survival probability functions are governed by central limit theorem, then the survival optimal 

drive functions are quadratic with respect to homeostatic error, and this mandates all of the key properties described for HRL above: 

risk aversion, loss aversion, the inhibitory effect of irrelevant drive, and the excitatory effect of homeostatic deviation. This is 

important since it provides a basis for grounding the drive function not on a fit to behaviour, but on a fundamental level constrained 

by the statistics of homeostatic survival. This offers an escape from the circularity of value. Furthermore, this perspective provides an 

intriguing  insight that seemingly disparate behavioural phenomena might be emergent as evolutionary solutions to homeostatic 

control.  

 

Figure 5 | Allostatic regulation and homeostatic control using hierarchal Bayes. See main text for details and [2] for modelling details. 
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Drive without survival constraints. If the agent is to act to minimise any superordinate variable such as drive, then if the phenotypes 

that manifest as drive functions are subject to evolutionary selection pressure, then those phenotypes should be selected out as a 

function of their divergence from their surprise function. If an agent’s drive function were to have any other functional form, then it 

would by definition be suboptimal with respect to survival. In other words, drive functions vary in fitness as a function of the degree 

to which they approximate the negative log survival probability, because this allows drive minimisation when evaluated over time, to 

optimise cumulative survival. To illustrate, we can entertain what would happen if this was not the case. An agent is endowed with a 

phenotype whose drive minima (the minima of its drive function with respect to homeostatic state) is such that it is motivated to visit 

say thermal states that are incompatible with survival (e.g. body temperature of 52 °C). The agent is destined to visit, or try to visit, 

fatal homeostatic states; the candidate phenotype thus has low fitness. For the same reason, an interoceptive system that is inefficient 

or biased in its representation of internal state, will result in motivations to visit suboptimal states (that it estimates to be optimal) and 

thus have low fitness.  

Survival statistics. This perspective provokes several questions, the most immediate being, how does the organism know the 

relationship between its homeostatic state and its chance of survival, i.e. how does the organism become a ‘good’ model of its 

environment (internal and external)? Learning about the relation between one's homeostatic state and the probability of death is 

difficult, not least because obtaining the first data point directly is game over. A gods-eye observer, observing species over 

evolutionary timescales, could in principle piece together such a survival function. But how does a single agent obtain this information 

if it cannot infer from exteroceptive input in its own lifetime? We postulate that the relationship between homeostatic state and the 

probability of death is ‘learned’ by an evolutionary process, where the optimal drive functions are encoded in the genotype (which 

scaffold epigenetic and developmental systems) and are subject to evolutionary optimisation. Recall this is in effect the same 

assumption embedded in AI theories of homeostatic control, where the prior belief distribution for interoceptive states is genetically, 

epigenetically, or developmentally programmed. This perspective of evolution offering optimal solutions to the “hypotheses of life” is 

congruent with contemporary theories of self-organisation, such as the free energy theory [36,40],  escort evolutionary game theory 

[41] and other diffusion and flow-based accounts of evolution [42].  

Empirically tractability. According to the perspective offered above, there should be a systematic relationship between survival 

statistics of homeostatic state, and the prior beliefs encoded and enacted by the brain. Insofar as it is possible to approximate the 

natural statistics of homeostatic survival, an experimenter can (in principle) approximate the setpoint(s) one would normatively 

expect to observe under evolutionarily equilibria. However, for ethical reasons, high precision experimental data is intractable for 

larger lifeforms. For simpler lifeforms though, experimental data already exists; the best example to date is that afforded by the C. 

elegans lifespan machine, a modified document scanner used to accurately record time of death of a large population of C. elegans 

[43]. The possibility to record actuarial metrics such as force of mortality over time, with respect to homeostatic variables such as 

temperature is now automated for large populations, yielding the means by which to estimate survival probability functions 
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experimentally and with the precision of large ensembles. A more powerful and immediately applicable insight comes from realising 

that the specific functional form of prior beliefs fundamentally restricts the nature of expected interoceptive signals under homeostatic 

equilibria. As a result, the framework specifies qualitative normative predictions for the dependencies between homeostatic state, 

reward value, and behaviour. 

The natural statistics of homeostasis. Restricting ourselves to the case study of glucose or energy homeostasis, we can ask what do 

these statistics look like? Serum glucose levels that deviate from the norm (less than 2.8 mmol/L) can cause cognitive impairment [44], 

seizure, coma [45], and ultimately death [46]. This is corroborated by data that shows correlation between all-cause mortality rates in 

humans and increased deviation from setpoint glucose, defined as the highest occupancy frequency state [47,48]. The supra-linear 

relation between homeostatic error and mortality is not limited to serum glucose, and has been documented across species for other 

fundamental homeostatic variables, such as temperature [49] and osmolality [50]. This points to a limited set of attracting 

homeostatic states that are occupied with a high probability is commensurate with organisms entertaining low-entropy prior beliefs, 

as theories such as AI prescribe. These high frequency states are often organised around the mean of the distribution, which typically 

have the lowest force of mortality (the instantaneous rate of death). Taking this at face value means that the adaptive animal expects 

interoceptive signals that are consistent with a small set of setpoints (the heteroclinic orbit) and that increasing the distance of one's 

current (or expected future) states to those setpoints increases interoceptive surprise non-linearly. 

Future. Though it is often lamented that in the biological sciences, there is much more data than theory, in the domain of homeostatic 

control, it is quite clear we have the converse problem. We have a set of theories that require discipline and provocation from data. As 

we articulated above, what is lacking is precise and systematic data on the homeostatic statistics of higher animals living in natural 

settings, on their survival statistics, and on their choice behavior with concurrent homeostatic measurement. All of these domains of 

empirical data are currently sparse to non-existent. We thus end with a nebulous but optimistic call to encourage ethologists, 

physiologists, psychologists and neuroscientists to embark on charting this vast but fundamental frontier.  
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