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This article presents a new geometric analysis of the free work space of a robot among obstacles. The free work space (FW) is defined as the set of positions and orientations that the robot's end effector can reach, according to the joint limits and the various obstacles lying in the environment.

The aim is to give global descriptions of the robot's ability to move in the operational space (which coincides with Carte- sian space when only position coordinates are specified).

The main contribution of this work is the characterization of the effects of obstacles on the work space geometry, as well as on its topology. The ability of a robot to move freely in its work space (called the "moveability") is difficult to describe and needs stringent formalizations. The concept of moveability is introduced through various properties and their cor- responding necessary and sufficient conditions. Using a Con- structive Solid Geometry (CSG) Computer-Aided Design (CAD) description of robots and obstacles and an octree model of the FW, these properties permit characterization of selected moveability areas in the FW, where, for instance, any n points can be linked together or where any continuous trajectory can be achieved without changing configuration.

This new global description is of great interest for the user of CAD systems when designing robotic cells.

Introduction

Automatic Design or Computer Aided Design of ro- botic cells is actually an important challenge in in- dustry and involves several difficult geometric prob- lems :

. the choice of a robot; the difficulty is to find the morphology (type and number of joints, length of links, ...) that is best suited to the family of tasks to be achieved.

. the geometric layout of the cell; one has to position the robot(s) and the other components of the cell in such a way that the robot is able to work conveniently in the environment (accessibility of the specified work areas, as well as mobility in them, should be ensured). . Collision-free paths planning; the problem is to find a continuous path among obstacles between one specified location to another.

This third problem has drawn the interest of many authors, and its theoretical solution is now well known (Schwartz and Sharir 1982; Brady et al. 1982; Canny and Reif 1987). The techniques are various: for in- stance, the local approaches with potential methods (Khatib 1985; Koditschek 1987) or the global ones based on the configuration space analysis and using cell decomposition (Faverjon 1984; Brooks 1983a,b; Lozano-P6rez 1986) or retraction techniques such as stratified sets (Canny 1987) and Voronoi diagrams (O'Dunlaing et al. 1984; Canny and Donald 1988). These studies have already given rise to operational systems (Lozano-P6rez et al. 1987).

On the other hand, the first two problems have not been so extensively studied. Softwares of current ro- botics computer-aided design (CAD) systems (such as ROBCAD from Teknomatix, MACAUTO from McDonnel-Douglas, CATIA from Dassault System, or ROBOT PLUS from Computervision) all require the action of a human operator who selects the right solu- tion, validates the choices, and modifies the parame- ters if necessary (Bernard 1984; Dombre et al. 1986; Deligneres 1987). This article deals with these first two problems. For both of them, characterization and analysis of the free work space are well-suited aids. The free work space (FW) of a robot among obstacles is the space of positions and orientations of the end effector according to the joint limits and the various obstacles. Concerning the first problem, criteria such as volume, connectedness, compactness of the work space, or dexterity in it are very convenient for the optimization of the robot's morphology, as they give a good evaluation of the geometric performances of the manipulator (Vijaykumar et al. 1986; Lenarcic et al. 1988). A possible solution to the second problem is the characterization of selected regions of &dquo;moveabil- ity&dquo; in the work space. The aim is then to ensure the feasibility of tasks defined as areas to be freely reached (Deligneres 1987) and/or to be &dquo;travelled through&dquo; in a certain sense by the robot (e.g., areas of continuous welding or painting). In Figure 1, the piece cannot be placed anywhere in the free work space; it must be enclosed in a region reachable from configurations q2 > 0 or q2 < 0 separately.

The goal of our study is to give a global description of the obstacles in the operational space (space of positions and orientations of the end effector; this space coincides with the Cartesian space when only position coordinates are specified). This is achieved through geometric and topologic analysis of the FW. This new description is of great interest for the designer of ro- botic cells.

A lot of work has already dealt with work space analysis. Typical geometric characterizations of a work space are:

1. Its well-known projections in the Cartesian space: &dquo;reachable work space&dquo; (projection of the whole Fig. 1. The task to be achieved is continuous welding of a piece. The piece must be carefully placed in the work space to avoid configuration changing during the operation. The end effector must remain in the same aspect.

work space) and &dquo;dextrous work space&dquo; (projection of the work space part where every orienta- tion of the end effector is possible) (Kumar and Waldron 1981). 2. The analysis of holes and voids in the work space (Gupta and Roth 1982). 3. The approach angles and lengths (Hansen et al. 1983). 4. Work area analysis (Yang and Chiueh 1986). 5. Characterization of the so-called &dquo;aspects&dquo; (set of positions and/or orientations reachable under given configurations) (Borrel 1986). 6. &dquo;Well-connectedness&dquo; (ability to move between any two points in the work space without changing configuration) (Paden and Sastry 1988).

However, none of these take into account the effects of obstacles. The proximity of obstacles not only modi- fies the shape of the work space, but also reduces the moveability of the robot within it, as has already been shown in Chedmail and Wenger (1987; 1988). Figure ~A shows a very simple example where the FW is connected but does not allow the robot to travel through it. In Figure 2B, the mobility between any two points within the FW is ensured, but not necessar- ily along a given continuous trajectory.

In this article, we propose five stringent character- izations of the moveability in the FW for a robot among obstacles. We attach five necessary and suffi- cient conditions to these characterizations. These con- ditions are tested using a constructive solid geometry (CSG) CAD technique (Martin et al. 1985) and an octree model of the FW. Finally, an algorithm is de- scribed to check the various properties, and results are presented.

Definitions

We give in this section some definitions before pro- ceeding further.

Let a robot -called R OBO T(q) -be defined by its ~t degrees of freedom: ROBOT(q), enclosed in 1~3, is defined as a set of n solids, as in [START_REF] Wenger | Mod&eacute;lisation du robot et de l'environnement en vue de la d&eacute;tection de collision[END_REF] and Yu and Khalil (1986).

Let an environment with obstacles be defined by Ob = set of the physical obstacles of the environment, enclosed in R3 Let f: f~8~ ~ Rm be the geometric operator of the robot (Khalil and KJeinfinger 1986), where m is the number of operational coordinates of the end effector of the robot, m , 6. Fig. 2A, A two-DOF plannar linkage with one circular obsta- cle and -120° ::::; q, ::::; 1200,-1800 ::::; q2 ::::; 1800. The free work space is connected; however, the robot cannot travel through it but can only move separately within part 1 or part 2B, A two-DOF plannar linkage with one rectangular obsta- cle and -90° ~ q, -90°,-100° -q2 --1200. The robot can join any two points in its free work space but not along any trajectory (the given continuous trajectory is unfeasible; point X, can be reached only in aspect 1 because of the joint limits, and point X2 can be reached only in aspect 2 because of the obstacle).

Let .9 = (q E R&dquo; ~/1, CJl&dquo;~ ~ ~'i ~ ~'imin) be the con- figuration space, according to the joint limits.

Let Qf be the configuration collision-free space of ROBOT(q):

Let Wf be the FW of ROBOT(q). It is the image of Qf under the geometric operator:

The free work space is the space of positions and ori- entations of the end effector according to the joint limits and the various obstacles in the environment. A point X in Wf is a vector of m operational coordinates.

We suppose that there are N connected components of Qf. We shall denote them as:

The following relations hold: not connected.

Then: ) is the image of Qfi under the geometric operator.

d i E I: Wf = f(Qf
The following relation holds:

Define: The aspects are defined as in Borrel (1986); an aspect is a subspace A enclosed in Qf such that: l. A is connected, 2. V q E A; the determinant of any m X m matrix extracted from the Jacobian matrix J is not equal to zero, except if this minor is equal to zero ev- erywhere in 2. The components of J are:

where qj is the jth component of q, and x; is the ith operational coordinate of X = f (q) (1 _ i ~ m and 1 ; j = n.).

The number of aspects is finite. (14~),zj is a partition of 2.

3. Characterization of the Robot's Ability to

Move Through Wf

We expose in this section the five characterizations of the moveability in the FW of a robot, and their corre- sponding necessary and sufficient conditions.

First Characterization and Corresponding

Necessary and Sufficient Condition The FW can be travelled through by the robot in the sense of P, if, by definition, any two points in Wf can be joined by the end effector. This means that for any two points in the FW, a connected component of the configuration collision-free space exists such that its image under f contains both of these points:

Note: This first property can be expressed in a more succinct way:

Wf satisfies P, if and only if Wf is connected, and there exists a family (I, , 1~2, ... , Ip) _ (Iklk c K) of subsets of I such that:

(See the demonstration in Appendix A.)

Example: If Qf is composed of three connected components, the following relations hold:

Assume:

and Then Wf satisfies P, (Fig. 3).

COROLLARY 1 Wfp c Wf satisfies the generalized property P1 ( Wfp) where:

if and only if there exists a family {I~, 12, ... , Ip~ _

(Iklk E K) of subsets of I such that:

which can be written in the following more succinct way:

Note: Because any subset of set satisfying P, { Wfp) also satisfies P, (Wfp), such subsets are not necessarily connected.

Fig. 3. A case where the free work space can be traveled through in the sense of P, .

Definition I

The maximal parts Wfp of Wf satisfying Pi ( Wfp) are defined as follows:

There exists a family ~I~, I2, . _ . , Ip} _ (Iklk E K) of subsets of I such that:

Note 1: Any part satisfying PI(Wfp) is enclosed in such a maximal part. The converse being true, it is interest- ing to find the maximal parts satisfying P, (see Fig. 4A; in the case where Card(I) = 3, there are four max- imal parts satisfying P1 ( Wfp)). Note 2: The properties P, and P1(Wfp) do not take into account initial and final configurations. More- over, every trajectory in the FW between X1 and X2 is not necessarily achievable. That is why we will com- plete this definition in the following property; then, in the next two properties, we will successively take into account the configuration at point X, (or X2 ) and then at points X 1 and X2 ; finally, we will propose a prop- erty of mobility along any continuous trajectory through the FW.

Second Definition (Pz) and Corresponding

Necessary and Su,fj~cient Condition The FW can be traveled through by the robot in the sense of P2 if, by definition, every discrete trajectory Td in Wf is achievable, which means: (P2) V Td discrete trajectory in Wf, 3 i E I such that Td C W% Fig. 4. The different maximal parts of the free work space satisfying (A) P, (Wfp), P2(Wfp) (B), P3(Wfp) (C) and P¢(Wfp) (D) when the configuration collision-free space has three connected components.

Note: A discrete trajectory is an arranged sequence of points.

Wf satisfies P2 (PZ( W.~P))

V Td discrete trajectory in Wfp, 3 i E I such that Td C W£ n Wfp if and only if

Definition 2

The maximal parts Wfp satisfying P2(Wfp) are defined as follows:

(see Fig. 4B; in the case where Card(I) = 3, there are three maximal parts satisfying PZ(Wfp)).

3.3. Third Characterization and Corresponding Necessary and Su~cient.Condition The FW can be traveled through by the robot in the sense of P3 if, by definition, any two points in Wf can be joined by the end effector, whatever the initial or (exclusive or) final configuration:

Note: This third property can be expressed in a more succinct way:

Wf satisfies P3 if and only if:

(See the demonstration in Appendix C.) then Wfp satisfies the generalized property P3(Wfp), where:

if and only if: for some sets I' of indices in I. (See the demonstration in Appendix D.)

Definition 3

The maximal parts Wfp satisfying P~,(Wfp) are defined as follows:

for any subsets I' of I such that Wfp is nonempty. (See Fig. 4C; when Card(I) = 3, there are seven maximal parts satisfying P~(Wfp).)

Fourth Characterization and Corresponding Necessary and Su~tcient Condition

The FW can be traveled through by the robot in the sense of P4 if, by definition, any two points in Wf can be joined by the end effector, whatever the initial and final configurations:

Wf satisfies P4 if and only if Qf is connected (the proof is obvious).

COROLLARY 4 Let Qfp be defined as in previous corollary 3. Wfp c Wf satisfies the generalized property P4( Wfp) where:

if and only if:

(See the demonstration in Appendix E.)

Definition 4

The maximal parts Wfp satisfying P4 Wfp) are defined as follows:

(See Fig. 4D; in the case where Card(I) = 3, there are three maximal parts satisfying P4(Wfp).) Note: Properties P4 up to P, characterize four in- creasing levels describing point-to-point motions in the FW of a robot:

Fifth Characterization and Corresponding Necessary and SuJ,~icient Condition

This fifth property will concern only nonredundant robots, for which the geometric operator is bijective on the aspects.

The FW can be traveled through by a nonredundant robot in the sense of Pg if, by definition, any two points in Wf can be joined with any continuous trajectory T~ without changing configuration and regardless of the initial or final configuration.

For any j in J (set describing the aspects Aj), define the single partition (Aik )kElj of the aspects A j in con- nected components Ajk as:

We note, for j E J and k E Ij:

is the image under f of the connected component k of the aspect j in the operational space.

Similarly, we note, for j E J:

is the image of the aspect j in the operational space.

According to the results obtained by Borrel (1986) and generalizing them in the case of environments with obstacles, this fifth property can be expressed as:

Wf satisfies property Ps if and only if

The proof is quite analogous to that of theorem 3. COROLLARY 5 Let Qjp be defined as in previous corollary 3. Then Wfp C Wf satisfies the property Ps(Wfp), where:

if and only if: where J' is a set of indices in J, and, for any j in J', I'( j ) is a set of indices in I(j).

The proof is quite analogous to that of corollary 3.

Definition 5

The maximal parts Wfp satisfying PS ( Wfp) are defined as the connected components of:

4. Algorithmic Analysis of the Robot's Ability to Travel Through Wf Let Wfp be enclosed in (or equal to) Wf. There exists an infinity of parts Wfp that verify P, ( Wfp) or P2 ( Wfp) (any subset of any Wfi, for instance). The following algorithm tests the properties P~ , P2 , P3 , and P4 for Wf and leads to all the maximal parts Wfp satisfying P, (Wfp) or P2(WfP).

The robot and its environment are modeled using a CSG CAD technique. It makes it possible to perform collision detection between the robot and its environ- ment (Yu and Khalil 1986; Deligneres 1987).

1. Determination of I, (<2/,),e~ {Wf,-}lEr, Wf, Qf: in the case where n -3 and 7~ ~ 3, we use an oc- tree (octal tree) description of these spaces in a similar way as in [START_REF] Faverjon | Object level programming of industrial robots[END_REF]. If r~ -3, the wrist may be modeled by a circumscribing sphere. The FW and the configuration collision- free space are obtained by sweeping the configuration space 2 according to the joint limits. Col- lision detection is performed using an efficient algorithm described in Yu (1987). Finally, analy- sis of the connected components of Qf, as de- scribed in Samet (1979) and Chedmail and Wenger ( 1988) leads to I and to the octree defini- tion of Qfi and W¡;. 2. Verification of the property P4: If Card(I) = 1, then Qf is connected; therefore P, (and so P1, P2 , P3 ) is true for Wf; end of the algorithm. else 3. Verification of the property P3 : If d i E I, W£ = Wf, then P3 is true for Wf; end of the algorithm. else 4. Verification of the property P2 and determination of the maximal Wfp satisfying P2( Wfp): If ~ i E I, Wf = Wf, the PZ is true for Wf; the maximal parts satisfying P2(Wfp) are the Wf ; end of the algorithm.

else 5. Verification of the property P, and determination of the maximal Wfp satisfying only P, ( Wfp):

a. Enumerate all possible families of nonempty subsets of I. For each such family, say {Ik/kEK}, determine Note: the deternnination of B is performed using the octree model with very simple and fast boolean operations. b. If B is nonempty, then it satisfies P~ ( Wfp); go to 5a.

End of the algorithm. We can make the following remarks concerning the part 5 of the algorithm: Note 1: It is possible to considerably reduce the number of cases as a lot of them do not have to be studied:

1. Card(Ik) = 1. Then the element i of Ik satisfies Wf = Wfp, already seen 2. There exists jo such that V k E K, jo c Ik. Then Wfp C W, f~ and Wfp is not maximal. In particu- lar, if Card(K) = 1: there exists i in I such that Wfp C Wf , and Wfp is not maximal.

3. A great number of sequences {Ik}kEK do not have to be tested as they generate nonmaximal parts.

For instance, in the case where N = 4, the se- quence {( 1, 2), (2, 3), (1, 3, 4)} does not have to be studied, because the subspace generated by it is enclosed in the maximal Wfp generated by the sequence f ( 1, 2), [START_REF] Deligneres | Choix de morphologies de robots[END_REF]3), ( 1,3)}.

Note 2: it is useless to study the case where, in a sequence {Ik~k~K, there exists k and k' such that Ik C Ik.. Indeed, let A k = B for any k E K; then and so Wfp generated by is equal to Wfp, generated by and do not have to be tested. For example, in the case where N = 3, it is useless to test the sequence: Therefore we verify that for N = 2, out of the cases where Wf = Wf, no subset of Wf exists that satisfies P, ( Wfp). For N = 3, then}{ = 127. Out of the cases where Wf = Wf, one single set of subsets of I may lead to parts of Wf that satisfy the condition PI(WfP): {( l, 2), (1, 3), [START_REF] Deligneres | Choix de morphologies de robots[END_REF]3)) where card(K) = 3 (see Fig. 4A).

Similarly, for N = 4, then = 32767. Out of the cases where Wf = Wf, we verify that only 27 sets of subsets of I may lead to parts of Wf that satisfy the condition P1 ( Wfp).

Results

We have developed a package that enables us to study any type of robot in any environment, by only deal- ing with three-dimensional spaces. In this section, we present some examples, using planar robots for graphic convenience, that illustrate the algorithmic analysis of the moveability in the FW of a robot among obstacles.

Example 1

The FW is not connected (Fig. 5). In this example, the algorithm detects two connected components in the Cartesian space and concludes that the FW cannot be traveled through in the sense of PI (it cannot enter the box). Two maximal parts Wf and Wf2 are detected as satisfying P 1 ( Wfp) and P~ ( Wfp).

Example 2

The FW is connected, and the configuration free space is not connected (Fig. 6). In this example, the algo- rithm detects two connected components Qfi and Qf2 in the configuration space. It verifies that FW cannot be traveled through in the sense of PI (the robot cannot move completely around the spherical obstacle), but the algorithm exhibits two parts Wfi and Wf2 as satis- fying PI(Wfp) and P2 ( WfP).

Example 3

The FW is connected, and the configuration free space is not connected (Fig. 7). In this case, the algorithm Fig. 5. The free work space is not connected (A, Cartesian space); the configuration collision-free space is composed of two connected components Qh and Qf2 (B, configuration detects two connected components (2f, and Qf2 in the configuration free space and exhibits two parts Wf and Wf2 such that Wf2 c Wf and Wfi = Wf. So the al- gorithm concludes that the FW can be traveled through in the sense of P2 ( Wfp) (and P, ( Wfp)).

We verify that Wf2 can be traveled through in the sense of P3( Wfp) and the subspace Wf -Wf2 in .the sense of P4( Wfp).

Example 4

The FW and the configuration collision-free space are both connected (Fig. 8). In this example, the algo- rithm finds only one single connected component in the sense of P4 (not in the sense of P5, as we could verify that the configuration space is composed of two aspects, whose images in the operational space are different).

Comments

As it has been shown in these examples, a simple con- nectivity analysis o.f'the configuration collision-free space is not sufficient to characterize the geometric space), and their image in the operational space (Wf and Wf~ satisfies property PI (Wfp). Fig. 7. The robot is able to travel through its free work space in the sense of P2 (A, Cartesian space) and through the sub- space Wf2 in the sense of Pj (Wfp) (B). The configuration properties of the free work space. The configuration collision-free space may be nonconnected, whereas the FW can be traveled through (in the sense of P, , P2, or P3; see example 3). On the other hand, the configuration collision-free space may be connected, whereas collision-free space is composed of two connected components (C, configuration space). the FW cannot be traveled through (in the sense of P 5; see example 4).

The analysis of this paradox and the characteriza- tions of the moveability of the robot in its FW are the main contributions of the present work. Fig. 8. The robot is able to travel through its free work space in the sense of P4 (A, Cartesian space) as the configuration free space is connected (B, configuration space).

Conclusion

This article presents a classification, in the operational space, of regions where the robot is able to achieve motions according to its joint limits and the obstacles lying in the environment. Five characterizations of the moveability in the work space have been explained, as well as the five corresponding necessary and sufficient conditions. Based on these conditions, an algorithm has been developed that tests whether Wf satisfies PI or P2 or P3 or P4 and finds all the parts of Wf satisfying P, ( Wfp) or P2 Wfp). Any robot in any environment can be studied, provided that the dimensions of the spaces are not greater than three (our algorithm is quite general and could theoretically deal with k- dimensional trees, with k > 3, but this would lead to prohibitive computational time; when k % 3, the num- ber of tests is reasonable and compatible with the ca- pacity of current minicomputers).

This work is a new contribution to the design of robotic cells. The geometric performances of the robot among the various obstacles of the cell can be evalu- ated through the five characterizations of its FW. This is an interesting aid for the morphology choice of a robot. In addition, the geometric layout of the cell may be realized by determining the suitable moveabil- ity areas in the environment. Independently, we have developed a methodology that performs the automatic positioning of a robot in its environment in order to reach a given area (Chedmail and Wenger 1989). This methodology and the present study are currently inte- grated in a software package that defines the auto- matic positioning of a robot among the various obstacles.

  if and only if (See the demonstration in Appendix B.) COROLLARY 2 Wfp c Wf satisfies the generalized property P2( Wfp), where:
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Appendix A. Demonstration of Property Pt 1 Sufficient Condition and so therefore:

That is the property Pi.

Necessary Condition

Suppose Wf is not connected, then no trajectory exists between the different connected components of it, and so it does not satisfy the property P, .

So we suppose that Wf is connected and satisfies the property Pl: Let Hence as PI is satisfied. Therefore such that and Elsewhere K is obtained by sweeping the finite set of the parts of I, the cardinal of which is finite: Card(K) :s:; 2N -1. Finally from (1) and (3), and from ( 2) and (3); therefore i and ii are satisfied.

Appendix B. Demonstration of Property P2 Sufficient Condition

It is obvious.

Necessary Condition

Suppose that: V i E I, Wf C Wf (strictly). Thus, for any i in I, Df = Wf -WjE'is nonempty.

Let Td = (Xl, X2, ... , Xp) be a discrete trajectory in Yljf, where p is the number of connected compo- nents of the configuration collision-free space: p = Card(I). This trajectory is chosen such that for any j % p, Xj is in Dfj. Thus there exists a discrete trajectory in WJ~such that V i E I, Td n Df,. ~ 0, which means:

Appendix C. Demonstration of Property P3

Sufficient Condition

Similarly, let X~ E Wh then 'd i E I, X~ E WJ;, and so P3 is satisfied.

Necessary Condition

Suppose 3 i E I such that ~ C Wf (strictly); let qi E Qfi and let X~ E Wf -Wf ; then P3 is false.

Appendix D. Demonstration of Corollary 3 (Property P3 ( Wfp))

Sufficient Condition

Let Wfp C (U~,. Wf ) -(Uk~l• Wfk) for some I' in I.

Let qi in Qfp and let X I = f (q, ).

As X i £ Wfk for any k not belonging to I', there exists io in I' such that ql E Qfp n QfiO.

Let X~ in Wfp: d i E I', X~ E Wfp n ~ and thus X2 E Wfp n WfiO.

Necessary Condition

Let D(I') = (niEI' Wx) -(Uk~l' Wf~). The sets D(I') make a partition of Wh when considering all possible subsets I' in I. Indeed, they are clearly all disjointed, and moreover:

Now, let Wfp in W£ and suppose V I' C I, Wfp / D(I'). Then, there exists 1', and 1'Z in I such that Wfp n D(I'1) ~ ~ and Wfp n D(I' 2) =1= ø. If 1'1 ct I'2, then there exists ql in f-'(Wfp n D(I',)) such that q, be- longs to (2fio for io in I', -1'2. Let X2 in Wfp n D(I'2); then the property P3( Wfp) is false. Similarly, if I', C I'~ , there exists q, in f -'( Wfp n D(I' 1 )) such that ql belongs to 64 for io in 1'2 -IZ . Let X2 in Wfp n D(I'2); then the property P3 ( Wfp) is false.