
HAL Id: hal-02355185
https://hal.science/hal-02355185v1

Submitted on 6 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Increasing Accuracy of Timing Models: From CPA to
CPA+

Leonie Köhler, Borislav Nikolic, Rolf Ernst, Marc Boyer

To cite this version:
Leonie Köhler, Borislav Nikolic, Rolf Ernst, Marc Boyer. Increasing Accuracy of Timing Models:
From CPA to CPA+. Design, Automation and Test in Europe Conference and Exhibition, Mar 2019,
FLORENCE, Italy. �10.23919/DATE.2019.8714770�. �hal-02355185�

https://hal.science/hal-02355185v1
https://hal.archives-ouvertes.fr


Increasing Accuracy of Timing Models:
From CPA to CPA+ †

Leonie Köhler, Borislav Nikolic, Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig

Braunschweig, Germany
koehler—nikolic—ernst@tu-braunschweig.de

Marc Boyer
ONERA, The French Aerospace Lab

Toulouse, France
marc.boyer@onera.fr

Abstract—Formal analysis methods of embedded systems pro-
vide safe, but unfortunately often pessimistic bounds on response
times. An important source of pessimism is the common approach
to characterize service request either by the amount of data
or the number of events to be processed. Several works, e.g.
[1]–[4], have demonstrated that a dual model – which includes
information on both data and events – is more accurate, especially
for more complex scheduling problems. In this paper, we enrich
Compositional Performance Analysis (CPA) by a new component
interface which, as we show, is consistent with the generic dual
model proposed in [3]. Furthermore, we discuss how composition
of components should be realized and how the new information
should be integrated into the analysis technique. The improved
CPA is called CPA+, and we identify different types of scenarios
where CPA+ is particularly beneficial.

Index Terms—Timing analysis, compositional performance
analysis, real-time system models

I. INTRODUCTION

The objective of formal timing verification is to prove real-
time properties of embedded software systems, buses and,
networks. Of particular interest are formally verified lower
and upper bounds on latencies, e.g., worst case response times
(WCRTs) of software tasks or packet traversal times. A major
issue with formal timing verification in practice is that the
upper bounds on latencies are to such an extent pessimistic that
they are often deemed as not useful by industry. One approach
to tackle this problem is to reconsider whether the underlying
system model of the timing verification mechanisms is accu-
rate enough. An interesting starting point is to compare the
system models of two major timing verification frameworks
namely Network Calculus (NC) [5] and CPA [6]. Both NC and
CPA have their useful domains of applications, and as being
different they dominate each other in specific scenarios [7].
Why is that? One reason relates to how they model service
request. In NC, a data flow A(t) models service request in
units of data to be processed up to time t. In CPA, an event
flow E(t) counts the number of events to be processed up to
time t. Of course, conversion is possible but it is pessimistic:
The standard approach is that NC obtains information on
event count by E(t) = A(t)

p , where p is a known static
packet size. CPA recovers information on the amount of
data by weighting the event flow with the static packet size
A(t) = p · E(t). It is obvious that these relations are not

† See note version at end of the paper.

accurate if packet sizes may vary, which is the realistic case.
Variations in packet sizes result from different packet types
in a stream (e.g. I, P or B frames in MPEG video streams),
a varying amount of payload to be transmitted, re-packaging
(e.g. protocol translation), etc. We conclude that NC has
an advantage in precisely modeling workload, while CPA is
favorable when the number of events is decisive for modeling
accuracy. Modern, sophisticated modeling problems have yet
been a game changer: When scheduling decisions depend on
both the number of occurred events and the amount of received
workload, then it is desirable to have precise information on
both data and events. Examples are (de)packetizers, gateways,
and traffic shapers. In this paper, we make the case for a true
dual system model in CPA, including both the workload-based
and the event-based information. We refer to the work of Boyer
et al. [3] which shows how the data flow A(t) and the event
flow E(t) can be transformed into each other: E = P ◦ A,
where P is the so called packet function. The dual model,
that we propose, comprises the triple A,E, P as well as their
best case and worst case bounds (α, α), (η, η), (π, π). As an
addition, we show that the event distance functions (δ, δ),
which are often used in CPA, can be represented in this
model. We discuss the question whether the triple A,E, P
entails redundancy and how propagation of data flow resp.
event flow between components should be realized, as well as
how to integrate the new information properly in the analysis
technique. Also, we illustrate in which types of scenarios the
dual model is particularly beneficial. An interesting side effect
of the enriched version of CPA, called CPA+, is that the input
models are then interchangeable with NC.

II. RELATED WORK

Both event and data count are important parameters to
accurately quantify service request, and therefore the existing
system models which consider only one of the two domains
are ultimately unsatisfactory [4]. Examples for analysis frame-
works with one-domain system models are Real-Time Calcu-
lus (RTC) [8], NC [5] (data/workload domain) and CPA [6]
(event domain). Transformations between the data and event
domain are indeed possible, yet the prevalent transformation
techniques are pessimistic. Works from the RTC [1] resp.
NC community [2] addressed this problem and showed that
a packet function together with the data flow is necessary to
obtain information on the associated event flow. The work of



Boyer et al. [3] goes one step further and formulates how the
input models of CPA and NC relate, discussing the subtleties
of transformations. The authors of [1] were the first to use a
dual system model in the context of a compositional analysis
framework namely RTC. They developed a new component
interface as well as algorithms how to compute the output
data/event flows. The works [2] [3] discuss the benefits of
dual models only for single-component systems, neglecting
the composition aspect. In this paper, our goal is to introduce
a dual system model for CPA, and to provide the necessary
new component interface, composition rules, as well as an
algorithm how to compute an output data flow.

III. ELEMENTS OF A DUAL SYSTEM MODEL

We present now the elements of a system model, which
explicitly models the service request in terms of data to be
processed and in terms of events to be processed. First, let us
revisit several definitions from the unified model in [3].

A. Background and Preliminaries

Definition 1 (Data flow [3] [9]). A data flow A : R+ → R+

is a request function indicating the amount of data that has
been sent up to time t.

Definition 2 (Event flow [3]). An event flow E : R+ → N is
a request function indicating the number of activation events
that have occurred up to time t.

A service request of a task is thus modeled by cumulative
functions. The packet function P establishes a connection
between the data flow and the event flow in the following
way: E = P (A(t)) = P ◦A.

Definition 3 (Packet function [3]). A packet function P :
R+ → N is a function indicating the number of packets in
the first m units of the data flow.

Both CPA and NC, which concentrate on best case and
worst case scenarios, employ interval bounding pairs (IBPs)
on data flow α, α, event flow η, η and the packet function π, π.
The concept of IBPs is introduced with Definition 4.

Definition 4 (Interval bounding pair [3]). Let f : R+ → I
(with I being R+ or N) and φ, φ : R+ → R+ be functions, φ
and φ non-decreasing. Then φ and φ are respectively a lower
and upper interval bounding function of f if

∀t, d ∈ R+, φ(d) ≤ f(t+ d)− f(t) ≤ φ(d).

Definition 5 (Pseudo-inverses). Let f : D→ I (with D and I
being R+ or N)

f −1(y) = inf {x ∈ D f(x) ≥ y}

f −1(y) = sup {x ∈ D f(x) ≤ y}

Note that Definition 5 is a generalization of the definition
in [3] where D was R+.

t

E(t)

1
2
3
4

t1 t2 t3, t4 t5

Fig. 1: Event flow E and arrival instants t1, t2, . . .

B. Event Occurrence Function and Event Distance IBP
The aforementioned three functions, as well as their re-

spective IBPs, are connected in a sense that one of them
can be derived from the other two with a certain degree of
pessimism (more details available in the work of Boyer et
al. [3]). However, the CPA framework consists of yet another
pair (δ, δ), which holds the information about the distance
between events, and constitutes an essential part in the event
propagation process for multi-component problems in CPA as
detailed in Section IV. Specifically, δ(n) and δ(n) represent
the minimum and the maximum distance between n consecu-
tive events, respectively. Therefore, in order to establish a dual
system model for CPA+, the pair (δ, δ) has to be expressed in
the context of A,E, P and (α, α), (η, η), (π, π). In order to
do that, we first define the event occurrence function which is
also illustrated in Figure 1.

Definition 6 (Event occurrence function). Let E be an event
flow. The function T : N → R+, T (i) = min {t | E(t) ≥ i},
is a function indicating the time instants of event arrivals.

The arrival time of the ith event is the smallest time instant
ti which satisfies the following condition: E(ti) ≥ i, or
alternatively: ti = min{t | E(t) ≥ i}. To unify the notation,
we refer to that time instant as T (i), i.e. T (i) = ti. Similarly, it
is possible to extract the event flow function from the event oc-
currence function as follows: E(t) = max {i ∈ N T (i) ≤ t}.
The fact that it is possible to extract E from T and vice versa
implies that these functions have a pseudo-inverse relation, i.e.
T (i) = E −1(i) and E(t) = T −1(t) (see Definition 5).

Now, the event occurence function T allows us to reason
about the distance between consecutive events. For example,
the distance between two consecutive events ith and i+1th is
T (i+1)−T (i). Similarly, the distance between n consecutive
events ith and i+n− 1th is: T (i+n− 1)−T (i). Given this,
the pair δ, δ can be formally introduced.

Definition 7 (Event distance). Let T be an event occurence
function. An event distance pair is a pair of functions δ, δ :
N+ → R+ such that

∀i,∀n > 0 : δ(n) ≤ T (i+ n− 1)− T (i) ≤ δ(n)

However, (δ, δ) cannot be directly identified as an IBP
since Definition 7 contains the term T (i + n − 1), whereas
Definition 4 of an IBP requires T (i+n). This can yet be solved
by a substitution δIBP(n) = δ(n+1), δIBP(n) = δ(n+1). Now
we demonstrate that the IBPs on event flow (η, η) and event
occurrence (δ, δ) can be extracted from each other.



Theorem 1. Let E be an event flow and T its event occurrence
function. Then, if (η, η) is an IBP for E, then (η −1, η −1)

is an IBP for T , and (η −1(n + 1), η −1(n + 1)) is an event
distance pair. Conversely, if (δ, δ) is an event distance pair,

then ((δIBP)
−1
, (δIBP)

−1
) is an IBP for E.

Proof. Going from (η, η) to (η −1, η −1) is a direct application
of Proposition 5 in [3]. We cannot use it for the other way
since the domain of event distance is the set of natural numbers
whereas the proof of Boyer et al. [3] assumes that the domain
is the set of real numbers. Nevertheless, we just have to
conduct the same proof with natural numbers.

Let t, d ∈ R+. Notice that E(t) = sup {i T (i) ≤ t} =
max {i T (i) ≤ t} = min {i T (i+ 1) > t}. Let I =
{i T (i+ 1) > t}, E(t) = min I . The same way, with J =
{j T (j) ≤ t+ d}, E(t+ d) = maxJ .

Let be any (i, j) ∈ I×J : T (j)−T (i+1) < (t+d)−t = d.
And by definition of δ, δIBP(j−i−1) ≤ T (j)−T (i+1), leading
to δIBP(j− i−1) < d, which yields j− i−1 < δIBP

−1(d) and
since (E(t+d), E(t)) ∈ I×J , E(t+d)−E(t)−1 < δIBP

−1(d),

so E(t+d)−E(t) ≤ δIBP
−1(d). The relation δIBP

−1 ≤ E(t+
d)− E(t) is done the same way.

IV. PRINCIPLES OF CPA

CPA [10] is a compositional analysis framework, that an-
alyzes the timing behavior of each component in the system
and encodes behavioral dependencies between components by
the propagation of event flows. A component can represent (1)
a task or (2) a join or fork of event flows where the join/fork
operation adheres to system-specific rules. In the following,
we present how CPA computes the input-output relations for
a task. A task τi is an entity, which takes a flow of events
as input η

i
, ηi and produces a flow of output events η′

i
, η′i

as illustrated in Figure 2. Further task parameters comprise
the max. amount of data to be processed per job p+

i and the
priority. CPA computes the following relations for each task

η′ = f1(η, η) η′ = f2(η, η) (1)

According to the CPA algorithm at the component level [10],
the IBP η′, η′ is derived in a 3-step procedure which we briefly
reproduce:

Step 1 The best case response time (BCRT) R− and the
WCRT R+ of the task are obtained based on the busy window
approach. The busy window approach was first introduced in
[11]. It was later generalized to arbitrary activation event flows
and the computation of an output event flow was added for
the composition of components [6] [12].

Definition 8 (Level-i busy window [11]). A level-i busy
window is a time interval [t, t + ∆t] within which jobs of
priority i or higher are processed but no jobs of level i or
higher are processed in (t− ε, t) or (t+ ∆t, t+ ∆t+ ε) for
sufficiently small ε. The longest level-i busy window comprises
q+
i jobs of task τi.

Fig. 2: CPA component interface

The processing duration of q consecutive jobs inside a level-
i busy window can be bounded by the maximum and minimum
multiple activation processing time.

Definition 9 (Multiple activation processing time [12]). The
maximum q-activation processing times B+

i (q) returns an
upper bound on the time interval between the arrival of the
first activation and the termination of the q-th activation in
any level-i busy window, where 1 ≤ q ≤ q+

i .

The maximum processing times B+
i (q) are computed by

the fixed-point equation

β(B+
i (q)) = αiBW (B+

i (q)). (2)

The fixed point problem converges if the minimum service
available in B+

i (q) (β(B+
i (q))) corresponds to the maximum

workload to be processed until the qth job of task τi terminates
(αiBW (B+

i (q))). The workload αiBW (B+
i (q)) depends on the

maximum workload of q jobs of task τi, and the maximum
workload of each task τj that may delay the execution or
preempt task τi in B+

i (q). We denote the set of tasks which
may delay/preempt task τi as Γi.

αiBW (B+
i (q)) = q · p+

i + f(
∑
τj∈Γi

p+
j · ηj(B

+
i (q))) (3)

It is known that in the longest level-i busy window, which
corresponds to B+

i (q+
i ), the WCRT of task τi, denoted as R+

i ,
is contained. To derive R+

i , the maximum response time of
every job q of task τi, denoted as RT+

i (q), in longest level-i
busy period is computed.

R+
i = max

1≤q≤q+i

{
RT+

i (q)
}

= max
1≤q≤q+i

{
B+
i (q)− δ−i (q)

}
(4)

For the BCRT, the lower bound R−i = C−i can be applied.

Step 2 It is known that the maximum response time jitter

J+ = R+ −R− (5)

determines the transformation of the input event flow [6]: In
the best case, the distance between events grows at most by
the jitter J+. In the worst case, the density of events increases
at most by the maximum response time jitter of the task.

δ
′
e(n) = δe(n) + J+ δ′e(n) = δe(n)− J+ (6)

Step 3 Finally, the IBP δ
′
, δ′ is converted back to η, η as

defined in [13].



GATEWAY

CAN Stage Fork Stage Join
Stage

Ethernet 
Stage

••
• 

Ju
nc

ti
on

 1
Ju

nc
ti

on
 2

Transmission
Stage

Multiplexer 2

Multiplexer 1

CAN frame unpacked CAN frame
SOME/IP 

frame
Ethernet frame

SOME/
IP

Fig. 3: CAN-to-Ethernet Gateway

V. MOTIVATING THE DUAL MODEL IN CPA
As already discussed, CPA models service request by lower

and upper bounds on event arrival encoded by the IBP η, η.
Conversion rules from the event domain to the workload
domain are known from the unified model [14, Thm. 5]

α(∆t) = (π −1 ◦ η)(∆t) α(∆t) = (π −1 ◦ η)(∆t) (7)

A step beyond conversion is to integrate both dimensions –
event and workload – into the analysis framework, creating
a dual model. For now, we propose to complement the
input model of CPA with the IBP π −1, π −1 as illustrated in
Figure 4a. We call this enhanced version CPA+; and it will
be discussed in more detail in Section VI. In the following,
we present a practically relevant use case which shows the
modeling limitations of the traditional versions of CPA.

A. Use Case

1) CAN-to-Ethernet Gateway: For over 30 years, the
message-based Controller Area Network (CAN) protocol has
been the cornerstone of automotive communication networks.
CAN is still dominant w.r.t. many vehicle functions, but in
recent years Ethernet has been adapted as a new automotive
network protocol given its high bandwidth, flexibility and com-
petitive cost. The exchange of data between different network
technologies is realized by gateways, we focus here on CAN-
to-Ethernet gateways as modeled in [15]. CAN frames have
small payload sizes in comparison to Ethernet frames, while
the protocol overhead of Ethernet frames is much higher than
that of CAN frames. It is therefore reasonable to buffer a
number of incoming CAN frames, and aggregate their payload
in a common Ethernet frame. Buffering is assumed as lossless,
i.e., CAN frames are queued until their collective dispatch in a
common Ethernet frame. Apart from a good payload/overhead

ratio of packaging, the timeliness of data transmission has to
be guaranteed for CAN-to-Ethernet traffic by finding triggering
conditions for the dispatch of an Ethernet frame. Different
triggering conditions have been proposed in the literature, and
a selection of those has been standardized in AUTOSAR.
For simplicity, we concentrate here on the dispatch of an
Ethernet frame on a buffer-full event, i.e., an Ethernet frame is
transmitted once the buffer is full. Let us explain the gateway
functionality, which can be divided in several stages, with the
help of Figure 3.

CAN stage. A set of CAN message streams represents the
input to the gateway. Messages of a stream arrive periodically
with jitter. A CAN message stream si has a given priority i
and the payload of a message varies between 0 to 64 bits. A
task RXi models the service that is required to unpack and
process a CAN message of stream si.

Fork stage. In the fork stage, the unpacked CAN payload is
forwarded to one or multiple receivers. A receiver may request
the entire payload or only a fragment.

Join stage. Each unpacked CAN frame which arrives at a
multiplexer is equipped with a SOME/IP header. The junction
then combines the CAN message streams of the fork stage
with added SOME/IP headers to a single stream.

Transmission stage. The frames of a stream of the join stage
are queued in a buffer according to the FIFO principle. The
content of the buffer is dispatched at the output if a a buffer-
full event occurs.

Ethernet stage. A task TXi models the execution time of
the Ethernet stack and the time that is required to transmit an
Ethernet frame.

2) Benefits of the Dual Model for the CAN-to-Ethernet
Gateway: In this section, we discuss the benefits gained in
timing verification by applying the dual model to the CAN-
to-Ethernet gateway.

CAN stage and Fork stage. For the event-based CPA,
complementing the input model with the IBPs π, π allows to
model the variation of CAN payloads in a stream as well as
the effects of subsequent splitting of CAN payload in the fork
stage. CPA+ brings here real benefit compared to a reasoning
based on minimum and maximum CAN payload sizes.

Transmission stage. A major benefit of the dual model is
related to the transmission stage. One important problem in
transmission stage analysis is to calculate how many buffer-full
events may occur at most in any given time interval of size ∆t.
Let us assume, that the organization of the buffer is such that
frames are placed in a contiguous memory. In CPA, the amount
of required bit storage in ∆t is then pessimistically given
by max. payload · η(∆t). CPA+ improves considerably by
deriving the tighter bound α(∆t) = (π−1 ◦ η)(∆t), provided
that packet sizes are variable. The maximum number of buffer-
full events in ∆t is then given by the number of required bit
storage divided by the buffer size.

Ethernet stage. If the transmission stage is accurately mod-
eled by CPA+, then the computed upper bound on the service



demand w.r.t. Ethernet network is tighter compared to the
results provided by NC and CPA. This is because fewer buffer-
full events are predicted.

B. Scenarios in Which the Dual Model is Useful

In general, the dual model is useful in two types of scenar-
ios: Firstly, if the system to be analyzed has heterogeneous
components and the behavior of some is event-dependent
while others have a more workload-dependent behavior. Sec-
ondly, if both the number of occurred events and the amount of
data to be processed are important parameters for scheduling
decisions or buffer allocation. Apart from the gateway sce-
nario, we would like to give some further examples:

(1) Round-robin scheduling relies on per-packet-decisions
for arbitration (event), while the size of the packets (workload)
determines for how long the processor/network is occupied.

(2) Packetizers can have complicated rules, when to empty
the buffer and dispatch a packet. Often, such rules are a trade-
off between having a good protocol/payload ratio and high
responsiveness. Fill level thresholds of a buffer (workload) are
then combined with trigger events (event) or timeouts (event).

(3) Buffer analysis depends much on how the storage is
organized. The assignment of memory slots per-frame (event)
and per-byte (workload) or combinations thereof are possible
decisions.

VI. INTRODUCING THE DUAL MODEL AND ANALYSIS:
CPA+

In the previous section, we had a preliminary concept of
CPA+. We proposed to complement the input model of CPA
with the IBP π−1, π−1. We now discuss and improve over this
choice, and touch upon more subtle details of the dual model.

A. Can the full dual information in CPA be fully recovered by
the IBP of the packet function?

While it is possible to construct the full information on the
event flow IBP (η, η) on the basis of the data flow IBP (α, α)
and the packet function IBP (π, π) [14, Thm. 4]

η(∆t) = (π ◦ α)(∆t) η(∆t) = (π ◦ α)(∆t), (8)

this is not true for the reverse direction of transformation as
needed in CPA. The reason is that neither the event flow IBP
(η, η) nor the packet function IBP (π, π) contains information
on the bit arrival rate of packets. As a consequence, the
extremes of bit arrival rates (instantaneous arrival and maximal
delay) are considered when computing the best case and worst
case of workload in form of the IBP α, α [14, Thm. 5]

α(∆t) = (π −1 ◦ η)(∆t) α(∆t) = (π −1 ◦ η)(∆t). (9)

Thus the IBP α, α is safe but potentially pessimistic.

B. Is a triple interface of a data flow IBP, event flow IBP and
packet function IBP adequate?

As a consequence of the discussion in the previous section,
it seems insufficient to complement the input model of CPA
with the IBP π −1, π −1, if the full information on bit arrival
rate should be preserved. A solution is to define the triple

IBPs (η, η), (α, α), (π −1, π −1) as the extended input interface
for CPA+. This goes beyond the CPA+ interface proposed in
Section V which only adds the IBP (π−1, π−1).

Another important argument for this interface of three IBPs
is the the issue of repeated transformations. A transformation
from the event domain to the workload domain and back
entails information loss, this has been observed in [16]. The
effect can be illustrated by the following equation

η(∆t) = (π ◦ π −1 ◦ η)(∆t). (10)

The key problem here is as follows. We begin with the
transformation from the event domain to the workload domain.
The maximum data flow is obtained in the scenario, in which
maximum packet size is combined with maximum event arrival
as expressed by α(∆t) = (π −1 ◦ η)(∆t). The transformation
back to the event domain, namely η(∆t) = (π ◦ α)(∆t)
relies on the scenario that minimum packet sizes coincide with
maximum data flow, creating a maximum of event arrivals.
The different assumptions on packet sizes leads to extreme
pessimism in the composition of the two rules as in Eq. 10
[16]. The problem of repeated transformation is thus a strong
argument to use the triple IBPs interface to avoid multiple
chained transformations.

C. Improved CPA+ interface and its composition

Figure 4b shows the improved interface of a task in CPA+
and how it can be connected to another task, if their behaviors
are correlated. We assume that the external input provided to
the first task is specified by (η, η) and (α, α). Since there
is no a priori information which of the two inputs is the
more accurate one, a pointwise minimum w.r.t. the upper
bounds π −1 ◦ η, α and a pointwise maximum w.r.t. the lower
bounds π −1 ◦ η, α is performed in the workload domain.
The CPA+ interface then provides also a dual output namely
(η′, η′) and (α′, α′). If the outputs are independent of each
other, so that (α′, α′) is not the result of a transformation
of (η′, η′), it is not known which of the bounds is tighter
and a pointwise minimum/maximum is again applied for
comparison. To achieve some independence between outputs,
we propose how to compute the IBP of an output data flow –
this has not been part of CPA before. An important point of the
proposed CPA+ interface is that it excludes multiple chained
transformations of a flow into the event/data domain and back
can occur. This is achieved by performing the comparison of
bounds only in the workload domain.

D. Impact of the CPA+ interface on the analysis

CPA+ has thus a dual input to the component covering
both the event and workload domain, and in the following we
discuss how the analysis can profit from the enriched input.

The above gateway example has illustrated that CPA+ is
helpful to accurately model complex fork, join as well as
buffering operations. With respect to tasks, we want now to
show formally how and why CPA+ is beneficial. First of all,
CPA+ derives a tighter upper bound for B+

i (q) than CPA.



local
CPA+

(η, η) (η′, η′)

(π −1, π −1) (π −1, π −1)

(α, α)
(α, α)

(a) Preliminary CPA+ interface

local
CPA+

min/
max

min/ 
max

(η, η) (η′, η′)

(π −1, π −1) (π −1, π −1)

(α, α) (α, α)

(b) Improved CPA+ interface

Fig. 4: Versions of CPA+ interfaces

Theorem 2. The CPA+ interface modifies the busy win-
dow equation β(B+

i (q)) = αiBW (B+
i (q)) such that

αiBW (B+
i (q)) is given by

αiBW (B+
i (q)) =

π −1i (q) + f(
∑
τj∈Γi

min{αj(B+
i (q)), (π −1i ◦ ηj)(B

+
i (q))}).

Proof. In Eq. 3, we replace the weighting approach by the
application of the packet function, so that

q · p+
i → π −1j (q)

p+
j · ηj(B

+
i (q))→ (π −1j ◦ ηj)(B

+
i (q)).

Moreover, we take into account by the minimum function that
the second input αj(B+

i (q)) to the CPA component might be
a tighter bound than (π −1j ◦ ηj)(B

+
i (q)).

The fixed point equation of Theorem 2 delivers a better
bound B+

i (q) than the standard CPA version in Eq.s 2-3.
This tighter bound on B+

i (q) results in a smaller WCRT
and consequently in a smaller maximum response time jitter
J+ (see Eq.s 4, 5). A second positive result is that the
IBP of output event distance functions is tighter (see Eq.
6). Also, the IBP of the output data flow, which can be
computed according to Theorem 3, benefits from a smaller
J+. Achieving tighter bounds on event and data flows at
each output stage is extremely important for multi-component
scheduling problems, where pessimism accumulates across
components and may dominate results.

Theorem 3. The IBP of the output data flow is given by

α′(∆t) = α(max{∆t− J+, 0}) (11)
α′(∆t) = α(∆t+ J+). (12)

Proof. Let dmin be the minimal delay, and dmin + J+ the
maximal delay. Then A(t+dmin) ≤ D(t) ≤ A(t+dmin+J+),
then D(t+∆t)−D(t) ≤ A(t+∆t+dmin+J+)−A(t+dmin) ≤
α(∆t+J+). Conversely, D(t+∆t)−D(t) ≥ α(∆t−J+).

VII. CONCLUSION

In this paper, we introduced an extended version of CPA
called CPA+. The new framework features a true dual com-
ponent model, where the service request at the input/output
is represented by lower and upper bounds on (i) the data
flow, (ii) the event flow, and (iii) the relating packet function.

However, CPA+ does not only provide a new component
interface, but it also defines algorithms how to compute
the new outputs. Composition rules of CPA+ are such that
the dual information is propagated between components and
transformation losses are prevented. Moreover, we identified a
set of practical scenarios where a dual model is beneficial, and
elaborated on a CAN-to-Ethernet gateway example in more
detail. As future work, we plan to conduct an experimental
evaluation, so as to quantitatively assess the benefits of CPA+.
Moreover, in terms of analysis frameworks, one step beyond
is to realize a collaboration between CPA+ and NC, given that
both frameworks rely on the common input model [3].

ACKNOWLEDGMENT

This work has been partially funded by the ANR-DFG
project RT-proofs (ANR-17-CE25-0016) and by the DFG
project TypicalCPA (168/30-2).

REFERENCES

[1] E. Wandeler and L. Thiele, “Characterizing workload correlations in
multi processor hard real-time systems.” in IEEE Real-Time and Em-
bedded Technology and Applications Symposium, 2005, pp. 46–55.

[2] A. Bouillard, N. Farhi, and B. Gaujal, “Packetization and aggregate
scheduling,” Ph.D. dissertation, INRIA, 2011.

[3] M. Boyer and P. Roux, “Embedding network calculus and event stream
theory in a common model,” in Proc. of the 21st IEEE Int. Conf. on
Emerging Technologies and Factory Automation, 2016.

[4] L. Ahrendts, S. Quinton, and R. Ernst, “Exploiting execution dynamics
in timing analysis using job sequences,” IEEE Design & Test, 2017.

[5] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer, 2001, vol. 2050.

[6] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis–the SymTA/S approach,” IEE Proc.
- Computers and Digital Techniques, vol. 152, no. 2, pp. 148–166, 2005.

[7] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker,
R. Henia, R. Racu, R. Ernst, and M. G. Harbour, “Influence of different
abstractions on the performance analysis of distributed hard real-time
systems,” Design Automation for Embedded Systems, vol. 13, no. 1-2,
pp. 27–49, 2009.

[8] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS 2000, vol. 4. IEEE,
2000, pp. 101–104.

[9] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. Wiley, 2018.

[10] R. Hofmann, L. Ahrendts, and R. Ernst, “Cpa: Compositional perfor-
mance analysis,” Handbook of Hardware/Software Codesign, pp. 721–
751, 2017.

[11] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with arbi-
trary deadlines,” in Real-Time Systems Symposium, 1990. Proceedings.,
11th. IEEE, 1990, pp. 201–209.

[12] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, “Providing accurate
event models for the analysis of heterogeneous multiprocessor systems,”
in Proc. of the 6th IEEE/ACM/IFIP Int. Conf. on Hardware/Software
Codesign and System Synthesis. ACM, 2008, pp. 185–190.



[13] J. Diemer, Predictable Architecture and Performance Analysis for
General-Purpose Networks-on-Chip. Verlag Dr. Hut, 2016.

[14] M. Boyer and P. Roux, “A common framework embedding network
calculus and event stream theory,” 2016.

[15] D. Thiele, J. Schlatow, P. Axer, and R. Ernst, “Formal timing analysis
of can-to-ethernet gateway strategies in automotive networks,” Real-time
systems, vol. 52, no. 1, pp. 88–112, 2016.

[16] E. Wandeler, Modular performance analysis and interface-based design
for embedded real-time systems. ETH Zurich, 2006.

NOTE ON VERSION

This version is an updated version of the paper published
in DATE’2019 proceedings.

It fixes a typo in the definition of the event distance IBP:
δIBP(n) = δ(n + 1), δIBP(n) = δ(n + 1) whereas the
proceedings version uses −1 (Section III-B).

A second mistake is the erroneous quote of [14, Thm. 4]
which lead to a misue of π, π functions and their inverses in
the conversion between event domain and data domain, and
thus had to be corrected in equations (7), (8), (9), Theorem 2
and Figure 4.


