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Some guidelines for the kinematic design of new 
manipulators 
Philippe Wenger 

Institut de Recherche en Cyberne'tique de Nantes, u.m.r. C.N.R.S. no. 6597 1 rue de la Noe , BP 92101, 44321, Nantes 
Cedex France 

Abstract 

This work provides tools and guidelines for the designer of new manipulators in order that, in the 
synthesis process, there can be the possibility to adjust the kinematic parameters in function of three 
unusual but important kinematic properties (1) cuspidality (non-singular posture changing ability), (2) 
genericity (stability of the kinematic properties with respect to small variations in the design parameters) 
and (3) solvability (the inverse kinematic problem can be solved with quadratics). This work should 
contribute to the use of alternative manipulator designs. © 1999 Elsevier Science Ltd. All rights 
reserved. 

1. Introduction

Most industrial manipulators are solvable, i.e. their inverse kinematic problem reduces to the
solution of quadratic equations. Solvability based design results in manipulators with severe 
simplifying geometric conditions like parallel and intersecting joint axes and reduces 
considerably the possibility to design manipulators with new interesting properties. However, 
the increasing progress in the computation of non-closed form inverse kinematic solutions has 
enabled the use of alternative manipulator designs. An unusual important kinematic feature 
may arise in manipulators with non-standard geometries, namely, the non-singular posture 
changing ability. A manipulator is said to change posture, when it goes from one inverse 
kinematic solution to another [1]. A change of posture may be desired for various purposes, 
like joint limit or obstacle avoidance. Non-redundant manipulators, which are the subject of 
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this work, are commonly said to have to cross a singularity when changing posture. lf this 
statement is true for most current industrial manipulators [1], it is now established that the 
non-singular posture changing ability may occur  in  many  non-redundant  manipulators 
structures [2-5]. Such manipulators are called cuspidal manipulators, because of the existence 
of cusp points (i.e. points with three coincident inverse kinematic solutions) in their workspace 
[6]. The possibility for a manipulator to change posture without meeting a singularity can be 
considered as an enhancement of manipulator performances. However, there is no definite 
statement as to whether a cuspidal manipulator is a better design than a non-cuspidal one. To 
answer this difficult question, one should consider other kinematic features, like solvability [7] 
or genericity [8], which are intimately related to the non-singular posture changing ability (see 
Section 4.3). Anyway, the non-singular posture changing ability may  strongly  affect 
manipulator control and trajectory planning. Anyone involving in the control of a new 
manipulator should be aware of the possible existence of several inverse kinematic solutions 
which are not separated by a singularity. But more importantly, it is of primary importance for 
the designer of a new manipulator to have the possibility to 'tune' the design parameters in 
function of the desired posture changing property. However, there is no tool  available  for 
helping the designer in such a task. The synthesis of new manipulators generally relies on the 
optimization of various geometric/kinematic criteria like global workspace requirements (e.g., 
shape, volume and density, connectivity) or local performances (e.g., dexterity), but, as far as 
we know, the non-singular posture changing property has never been taken into account in the 
design process. The aim of this work is to provide tools for the purpose of new manipulator 
design, in order that it is possible to adjust the kinematic parameters according to whether a 
cuspidal manipulator is desired or not. Relationship with genericity and solvability is  also 
studied. The analysis presented here applies to non-redundant 3R positioning manipulators and 
6R spatial manipulators with spherical wrist. 

This article is organized as follows. Section 2 recalls the cuspidality property. Section 3 
derives DH-parameter based conditions for cuspidal manipulators. The application of these 
conditions to the design of new manipulators is treated in Section 4, where the relationship 
between cuspidality, genericity and solvability is also studied. Section 5 concludes this work. 

2. Cuspidal  manipulators

A cuspidal manipulator is one which can change posture without meeting a singularity. The
existence of manipulators having this property was first pointed out in [2,3]. A theory was 
developed in [4] for the characterization of new uniqueness domains in the joint  space  of 
cuspidal manipulators. ln [5], the non-singular changing posture mechanism was deeply 
analyzed using typical examples. lt was shown, in particular, that if a manipulator can change 
posture without passing through a singularity, it cannot do so in all parts of its workspace, but 
only in a region with four inverse kinematic solutions. A major difficulty has been the 
characterization of cuspidal manipulators. lt has been conjectured by different authors that (1) 
manipulators with geometric simplifying conditions like intersecting,  orthogonal  or  parallel 
joint axes are not able to avoid a singularity when changing posture, and, conversely, (2) 
manipulators  with  arbitrary  kinematic  parameters  have  the  non-singular  posture  changing 



property. These conjectures were based on the observation of several examples which tend to 
follow this rule. Unfortunately, the examination of counter-examples have clearly revealed that 
the aforementioned conjectures could not be stated in such a general way. ln effect, the 
manipulator  depicted  in  Fig.  1   (with   conventional  DH-parameters  α1 = -80°,   α2 = 70°, 
a1 = 2.5, a2 = 0.5, a3 = 2, d2 = 1, d3 = 0.3), can be shown  to  be  non-cuspidal  [9].  On  the 
other hand, Fig. 2 shows a cuspidal manipulator with several simplifying geometric conditions. 
A significant progress in the characterization of cuspidal manipulators was done in [6]. lt was 
shown that a 3-DOF positioning manipulator can execute a non-singular change of posture if 
and only if there exists at least one point in its workspace with exactly three coincident inverse 
kinematic solutions. ln a cross section of the workspace, such points are defined as cusp points 
(hence the word 'cuspidal' manipulators). Fig. 2 depicts a cuspidal manipulator along with the 
generator of its workspace (i.e. a half cross-section) with four cusp points (the DH-parameters 
for this manipulator are α1 = -90°, α2 = 90°, a1 = 1, a2 = 2, a3 = 1.5, d2 = 1, d3 = 0). Note 
that this manipulator has several simplifying kinematic conditions. The cusp points are located 
at  the  corner  points  of  a  four-solutions  region.  A  cusp  point  appears  when  two  singular 
segments bounding the four-solutions region, merge tangentially. Each segment is characterized 
by a pair of coincident inverse kinematic solutions, and only one solution is common to two 
adjacent segments. The remaining distinct solutions coincide at the cusp points, resulting in 
three equal solutions. 

More details regarding properties of cusp points can be found in [5,10]. Note that the two 
points located on the joint axis 1 are not cusp points, since they appear at the corners of a 
two-solutions region of the workspace (see Fig. 3). 

The equivalence between the existence of cusp points and the ability to  change  posture 
without meeting a singularity provides a useful tool for the purpose of manipulator design. 

Fig. 1. A non-cuspidal manipulator with 'general' geometry. 



Fig. 2. Cusp points in a cross section of the workspace for a cuspidal manipulator. 

Section 3 is devoted to the investigation of DH-parameters based cuspidality rules for the 
design of new manipulators. 

3. DH-parameters  based  conditions

3.1. Effects of simplifying geometric conditions 

Most industrial manipulators have simple kinematic parameters, and it turns out that they 
are  non-cuspidal.  The  first  common  feature  of  most  industrial  6-DOF  manipulators  is  the 



 

presence of a spherical wrist, i.e. the last three joint intersect at a common point. ln this way, 
the manipulator can be decomposed into a positioning (or regional) structure (the first three 
links), and an orienting device (the wrist). This work will deal with positioning 3R 
manipulators. Since a 6-DOF manipulator with a spherical wrist can be shown to be cuspidal 
if and only if its positioning structure is cuspidal [4], the results presented in this study can be 
extended to any 6R manipulator with wrist. 

Manipulator singularities generate surfaces that divide the joint space into two or more 
singularity-free domains, called c-sheet [3] or aspect [1]. For a manipulator to be cuspidal, more 
than one inverse kinematic solution must exist in a same c-sheet. Thus, a manipulator which 
admits only two inverse kinematic solutions is non-cuspidal (since in this case there is only one 
solution in each c-sheet [2]). On the other hand, for a manipulator with four inverse kinematic 
solutions to be non-cuspidal, its joint space must have at least four c-sheets, i.e., the 
singularities must divide the joint space into at least four singularity-free domains. lt is worth 
noting that this last condition is not sufficient. A manipulator with four or more c-sheets may 
be still cuspidal (see Fig. 3). 

When the determinant of the Jacobian can be put in a factored form (which arises under 
simplifying geometric conditions), there are more than two singularity surfaces in the joint 
space, yielding more than two c-sheets. We will study the influence of geometric simplifications 
on the possibility to execute non-singular posture changing trajectories. The basic simplifying 
conditions to be analyzed are those which may simplify the kinematic equations, i.e. nullify 
DH-parameters  

1. two parallel joint axes, i.e. sin(αi) = 0
2. two intersecting joint axes, i.e. ai = 0
3. two orthogonal joint axes, i.e. cos(αi ) = 0
4. joint offset vanishes, i.e. di = 0

lt is not sure that the aforementioned simplifying conditions necessarily lead to non-cuspidal 
manipulators (in Fig. 2 the manipulator has orthogonal joint axes and last joint offset 
vanished, but is still cuspidal). The seek for non-cuspidal geometries is carried out by first 
exhibiting all geometric simplifying conditions which lead to manipulators with at least four c- 
sheets. Then, we have to verify that there is only one inverse kinematic solution per c-sheet. To 
perform this task, it is sufficient to check for an arbitrary point in each  region  with  four 
solutions in the workspace [10]. Finally, six conditions, referred to as NC1 to NC6, have been 
found which lead to non-cuspidal manipulators  

(NC1) first two joint axes are parallel (i.e. sin(α1) = 0) 
(NC2) last two joint axes are parallel (i.e. sin(α2) = 0) 
(NC3) first two joint axes intersect (e.g. a1 = 0) 
(NC4) last two joint axes intersect (e.g. a2 = 0) 
(NC5) first two joint axes are orthogonal, and no joint offset (i.e. cos(α1) = 0, d2 = 0 and 
d3 = 0) 
(NC6) first two joint axes and last two joint axes are orthogonal and first joint offset 
vanishes (cos(α1) = 0, cos(α2) = 0, d2 = 0) 

The following remarks can be done 



• The conditions NC1 to NC6 were found to be also solvability conditions in [7] and non-
genericity conditions in [8]. Relation between cuspidality, solvability and genericity will be
discussed in Section 4.2.

• The preceding list endows the classical industrial manipulator classes (e.g. Puma), but also
unusual structures.

• The existence of two parallel (resp. two intersecting) joint axes always leads to non-cuspidal
manipulators.

• On  the  other  hand,  the  simultaneous  existence  of  two  pairs  of  orthogonal  joint  axes
(cos(α1) = cos(α2) = 0) is not sufficient for defining a non-cuspidal manipulator.

• When, in addition to the simultaneous existence of two pairs of orthogonal joint axes, the
last joint offset vanishes (d3 = 0), the manipulator is still cuspidal. However, when the first
joint offset vanishes (d2 = 0), the manipulator turns non-cuspidal (from NC6).

The conditions NC1 to NC6 provide interesting and simple rules for the designer of a new 
manipulator. ln some cases, however, it may be  not desirable to apply the aforementioned 
simplifying conditions (e.g. due to other design constraints). ln fact, it turns out that other 
geometric conditions (not necessarily simplifying) exist which also lead to non-cuspidal 
manipulators. This point will be discussed in Section 3.2. 

3.2. Manipulators with orthogonal joint axes 

Consider the family of positioning 3R manipulators such that cos(α1) = cos(α2) = 0. The 
determinant of the Jacobian can be written as  

det(J) = (c2(a2 + a3c3) + d3s2)(a2s3 - d2c3) + a1s3(a2 + a3c3) (1) 

where ci, si stand for cos(θi ), sin(θi ), respectively. 
lf no other DH-parameters vanishes, det(J) cannot be factored. lf, in addition to 

cos(α1) = cos(α2) = 0, we set d3 = 0 (like for the robot depicted in Fig. 1), det(J) can be put 
in the following factored form  

det(J) = (a2 + a3c3)((a2s3 - d2c3)c2 + a1s3) (2) 

The right-hand side factor yields two general singularities G1 and G2 in the joint space. When 
la3l < la2l, the first factor is always different from zero. When la3l>la2l, the first factor can 
vanish and there are two additional branch singularities BS1 and BS2 in the joint space (see 
Fig. 3, since the singularities are always independent from 81, they can be  represented  in (α2, 
α3)). 

The general singularities G1 and G2 (resp. BS1 and BS2) are the configurations for which 
the end-effector lies on a line which passes through all joint axes (resp. reaches the last joint 
axis z3). 

When there is no intersection between the BSi's and the Gi's, the manipulator belongs to a 
class of generic manipulators, which were shown in [11] to be non-cuspidal. On the other hand, 
it can be shown that the manipulator becomes cuspidal whenever one BSi intersects one Gi [9] 
(like in Fig. 3). lt is apparent from the right-hand side factor of Eq. (2) that the general 
singularities  G1  and  G2  do  not  depend  on  a3.  When  a3  varies,  the  additional  branch 
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Fig. 3. Singularities in the joint space (a) and workspace half cross-section (b) when la3l > la2l (DH-parameters 
a1 = d2 = 1, a2 = 2 and a3 = 2.5). 

singularities BS1 and BS2 'move', while G1 and G2 remain unchanged. Thus, it is easy to 
derive geometrically  the condition under which no  intersection  occurs, which, in  turn,  is a 
condition for the manipulator to be non-cuspidal. lt was shown in [9] that this condition can 
be expressed as  

2 2 223 2 (1 ( ) )
1 2
da a

a a
> +

−
     (3) 

Thus, we can write a new DH-parameter based condition, NC7, for a manipulator to be non- 
cuspidal  

cos(α1) = 0 

cos(α2) = 0 

d3 = 0 
2 2 223 2 (1 ( ) )

1 2
da a

a a
> +

−
Note that the inequality condition (3) is not intuitive and has no simple physical meaning. 

ln summary, a 3R manipulator with orthogonal joint axes (cos(α1) = cos(α2) = 0) is  
non- cuspidal if the remaining DH-parameters satisfy one of the following conditions  
• a1 = 0 (from NC3)
• a2 = 0 (from NC4)
• d2 = 0 (from NC6)

d3 0 and a32  > a22  1 d2 2
 

a1-a2 
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When none of the preceding conditions is satisfied, a manipulator with orthogonal joint axes 
can be still non-cuspidal under special values of its ai and di. However, although no analytical 
condition has been found, numerical investigations have shown that the set of (ai,di ) which 
lead to non-cuspidal geometries with four solutions appears to be drastically reduced [10]. 

3.3. General case 

Consider now general 3R manipulators. We will attempt to derive a general analytical 
condition for a 3R manipulator to be cuspidal (or non-cuspidal). This would permit to 
enumerate all possible non-cuspidal manipulator geometries. To reach this goal, we have to 
derive the existence condition of a cusp point. First, we have to write the equation, in the 
workspace, of the singular manifolds with three equal roots. There are several ways to do this. 
We can derive discriminant based conditions from the inverse kinematic polynomial. We can 
alternatively use a more compact technique as in [10,11]. lt is shown that the points with three 
equal roots can be defined by the following equations  

M4 = M ‘  = M’ ’ = 0 (4) 
4 4 

where M4  is the zero-order coefficient of the inverse kinematic polynomial in tan(θ1/2), and M ‘ 
(resp. M4 ) is the first (resp. second) partial derivative of M4  with respect to θ1. Note that M4
depends on the DH-parameters, and on the Cartesian position (X, Y, Z ) of the end-effector. lt 
is worth noting that Eq. (4) includes points with more than three equal roots (which are not 
cusp points). Since we are interested here in points with exactly three equal roots, the condition 
M4 ‘’’ ≠ 0 should be added to Eq. (4), where M4 ‘’’ is the third derivative of M4 with respect to θ1.
This additional constraint eliminates points with four equal roots (appearing in non-generic 
cases when two singularities intersect in the joint space) as well as points with an infinity of 
inverse kinematic solutions (occurring when the end-effector lies on a joint axis). Thus, the 
cusp points can be calculated by 

M4 = M ‘  = M’ ’ = 0 and M ‘’’ ≠ 0 (5) 
4 4 4 
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The partial derivatives of M4 with respect to 81 are obtained by noticing that, X ‘ = -Y, Y ‘ = 
X  and   Z ‘ = 0   (since   X   and   Y   can   be   put   in   the   form   X = cos(θ1)F(θ2, θ3)  and 
Y = sin(θ1)G(θ2, θ3), respectively). 

By expressing for a general robot, the coefficient M4 and its derivatives, Eq. (5) can be put in 
the following form  

2 2 2 
(R + U) +K(N + Y) -(a2a3) = 0 

V(R + U) + KX(N + Y) = 0 

V 2 - U(R + U) + K(Y 2 - Y 2 - NY) = 0 

V(4U + R) + K(4XY + NX) ≠ 0 (6) 

where 
K = a2sin(α1)2/sin(α2)2

N = (cos(α2)d3 + d2 - cos(α1)Z)/sin(α1) 

R = d2 N sin(α1) +( X 2 + Y 2 + Z 2 + a12 )/2 – (a22 + a32 + d22 + d32 + 2d2 d3 cos(α2))/2 

U = d2 sin(α1)Y - a1 X 

V = d2 sin(α1)X + a1 Y 

with the assumption that sin(α1) ≠ 0 and sin(α2) ≠0 (otherwise NC1 or NC1 is satisfied  and 
the manipulator is always non-cuspidal). Note that N depends on Z, U and V depend  on X 
and Y, and R depend on X, Y and Z. 

Our aim is to find condition on the DH-parameters. Thus,  we need to eliminate  the 
Cartesian coordinates between the first three equations in (6). We use MAPLE to solve Eq. (6). 
lt is found that the 'simplest' way is to eliminate successively Z and X in the first three 
equations of (6). The resulting equation is of the form Y 16P(Y ), where P(Y ) is a polynomial 
of degree 32 in Y and whose coefficients are extremely complex expressions of the DH- 
parameters (each coefficient contains more than thousand terms of degree 12 in the DH- 
parameters). We can verify that the trivial solution Y = 0 yields X = 0, i.e. points lying on the 
first joint axis, which are not cusps, since at such points, the inverse kinematic problem admits 
an infinity of solutions. Thus, P(Y ) must have at least one real root for a cusp point to exist. 
ln the general case, P(Y ) cannot be factored, and no analytical existence condition can be 
derived.  When  cos(α1) = 0,  P(Y )   can  be  shown  to  take  a  simpler  factored  form 
((Y - cos(α2)d3 - d2)/sin(α2))8Q(Y ) , where Q is a polynomial of degree 6 in Y. lt is easy to 
show that the solution Y = (cos(α2)d3 + d2)/sin(α2) is a spurious one. Thus, for a cusp point to 
exist, it is necessary that the polynomial Q(Y ) have at least one real solution. Unfortunately, Q 



cannot be further factored under the only condition cos(α1) = 0, and no symbolic cusp point 
existence condition can be derived. The additional condition cos(α2) = 0 does not simplify the 
expression of Q. An alternative way of deriving the equations of the cusp points using the 
conic method [7] has been attempted, but the resulting equations are similar to Eq. (6). For 
generic manipulators, Ref. [10] shows that the cusp points can also be characterized using the 
determinant of the Jacobian. Unfortunately, the resulting equations, again, leads to unwieldy 
expressions. The problem of deriving a general DH-parameter based condition for a 
manipulator to be cuspidal appears to be untractable. 

4. Cuspidality and the design of new manipulators

4.1. Integration of the cuspidality condition into an optimization scheme 

The design of a new manipulator is generally carried out through the optimization of a set 
of relevant criteria. However, the singular/non-singular posture changing feature is never 
considered in the optimization process. ln order to take into account this important feature, 
the conditions for the existence of cusp points can be checked numerically by using (6), which 
can be integrated as constraints in the optimization process. 

Assume that a cuspidal design is desired. ln this case, the verification procedure which has to 
be considered at each step of the optimization process can be set as follows  

If any of the NCi, i = 1, . . . , 4 is satisfied (which are the simplifying geometric conditions for 
non-cuspidality) 

then Reject 

else 
If (3) is satisfied 

then Reject 

else 

If (6) has no real solution 

then Reject 

else Accept 

Conversely,  when a  non-cuspidal manipulator  is  desired,  the  preceding  procedure,  with  the 
inversions of the words 'reject' and 'accept', should be applied. 

The seek for real solutions to Eq. (6) is not a major task, and can be  achieved  using 
numerical techniques. 

4.2. Genericity, solvability, and cuspidality 

The interesting concept of generic manipulators was first studied by Paï  [8], and later 
by Burdick [12]. A manipulator is said generic if its singularities are generic, that is, if they 
form 



smooth manifolds in the joint space. Practically, for a manipulator to be generic, its singular 
surfaces  should  not  intersect  in  the  joint  space.  Paï   showed  that  the  set  of   non-
generic manipulators  is  codimension  one   (e.g.,   forms   an   hyper   surface)   in   the   space  
of   all manipulators.  That  is,  a  manipulator  is  almost  always  generic,  in  the   sense that 
if  the geometric  parameters of  a  manipulator are given  at  random,  the  probability to get a 
non- generic manipulator is null. An important feature of generic  manipulators is that their 
global kinematic properties remain stable under small changes in  their kinematic parameters. 
This is not true for non-generic manipulators, which turn generic  under infinitely small 
variations in the value of their design variables. This means that  particular  attention  must 
be  paid  when manufacturing  a  non-generic  manipulator,  since   too large manufacturing 
tolerances  may profoundly  modify  the  expected  kinematic  properties of the manipulator (see 
Ref. [11] for more details). A list of non-generic  manipulators was provided in [8], and it 
turns out that most industrial manipulators are, in theory, non-generic. 

Solvable manipulators were introduced as those for which the inverse kinematic problem 
reduces to the solution of quadratic equations. Solvability was investigated  for  3R 
manipulators in [7]. As already mentioned, the conditions NC1 to NC4 appear to be also 
solvability conditions. Thus, any manipulator satisfying one of the NCi's is non-cuspidal, non- 
generic and solvable, which is the case for most industrial manipulators. Furthermore, it is 
easy to show that any solvable manipulator is necessarily non-cuspidal. ln effect, the degree of 
the inverse kinematic polynomial is 2 for solvable manipulators. Thus, we cannot have points 
with exactly three equal roots (points with four equal roots may exist but are not cusps). Since 
a solvable manipulator is necessarily non-cuspidal, the inverse kinematic problem of a cuspidal 
manipulator requires the resolution of a quartic polynomial. 

Solvable manipulators with four solutions were shown in [7] to be always non-generic. On 
the other hand, a non-generic manipulator is not necessarily non-cuspidal (see condition (2) in 
Section 3.2). 

Finally, most generic manipulators with four solutions are cuspidal. ln effect, generic 
manipulators with four solutions were shown in [11] to be classified into eight distinct classes 
of homotopic manipulators (i.e. manipulators with similar global kinematic properties). lt 
turns out that all classes but one are subsets of cuspidal manipulators. Furthermore, the only 
class of non-cuspidal manipulators was shown to be very 'thin' in comparison with the other 
seven classes. 

The scheme in Fig. 4 summarizes the classification of 3R regional manipulators. The set of 
3R manipulators with four solutions, M, is represented as a two-dimensional set for more 
legibility. The set of non-generic geometries divides M into the aforementioned eight 
homotopic classes of generic manipulators. lt appears that M is composed of mainly generic 
cuspidal manipulators. The investigation of the set of 3R manipulators with only two inverse 
kinematic solutions has not yet been addressed, and its classification is not included in Fig. 4. 

4.3. Comments 

Solvable manipulators are 'nice' since their inverse kinematics is simple. Generic 
manipulators are also interesting for stability reasons (see Section 4.2). However, a 3R 
manipulator  cannot  be  solvable  and  generic  in  the  same  time.  The  non-singular  posture 



Fig. 4. Classification of the set of 3R manipulators with four solutions (scheme). 

changing ability is also an interesting feature in itself. Most cuspidal manipulators are generic, 
but, unfortunately, no cuspidal manipulator  is solvable. Manipulators have often joint 
limitations, which reduce their joint space. A cuspidal manipulator with joint limits may not 
have the possibility to change posture without meeting a singularity. When the checking 
procedure in Section 4.1 concludes that a manipulator is cuspidal, the cusp point found with 
Eq. (6) may not exist in the actual workspace. The corresponding triple inverse  kinematic 
solution should be calculated in order to see whether it is within the joint limits of the 
manipulator at hand. 

Manipulators with prismatic joints have not been analyzed here. lt can be easily shown that 
3-DOF manipulators with at least two prismatic joints are always non-cuspidal, because they
are solvable. Those with one prismatic joint may be cuspidal. The checking procedure
described in Section 4.1 can be also applied to such manipulators (with the exception of PRR
manipulators for which the inverse kinematic polynomial should be  derived in d1, and the
derivatives of M4 should be calculated with respect to d1).

5. Conclusions

This article shows how it is possible to take into account, in the design stage, the possibility
for a manipulator to  execute  non-singular changing  posture motions.  Some geometric 
simplifying conditions which lead to non-cuspidal manipulators have been provided. Non- 
cuspidal 3R manipulators with orthogonal joint axes have been more deeply analyzed.  A 
general checking procedure has been derived on the basis of the existence condition of cusp 
points in the workspace. The connections between the concepts of solvability, genericity and 
cuspidality have been studied. The results presented here apply to 3R manipulators and 6R 



manipulators with spherical wrist. Generalization to manipulators with prismatic joints is 
straightforward. Spatial manipulators with non-spherical wrist are under  study.  First  results 
show that the simplifying geometric conditions NC1 to NC4 are not sufficient when applied to 
general 6R manipulators. 
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